
1 23

Journal of Intelligent Information
Systems
Integrating Artificial Intelligence and
Database Technologies
 
ISSN 0925-9902
 
J Intell Inf Syst
DOI 10.1007/s10844-019-00588-3

Modeling cyber-physical systems – a
GliderAgent 3.0 perspective

Mariusz Marek Mesjasz, Maria Ganzha
& Marcin Paprzycki



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.



Journal of Intelligent Information Systems
https://doi.org/10.1007/s10844-019-00588-3

Modeling cyber-physical systems – a GliderAgent 3.0
perspective

Mariusz Marek Mesjasz1 ·Maria Ganzha1 ·Marcin Paprzycki1

Received: 12 October 2018 / Revised: 26 September 2019 / Accepted: 11 November 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Eight years ago we have designed and implemented an initial prototype of an agent-based
glider pilot support system (the GliderAgent). Our aim was to validate correctness of the
initial assumption that an agent-based system, combined with sensor data, can help pilots
in various situations that occur during a flight. For instance, the GliderAgent was capa-
ble of detecting certain dangers, warn the pilot and, autonomously, send notification(s) to
the ground station. Due to the continuous and rapid development of mobile technologies
and sensors, our initial prototype has evolved. First, we moved the system, from an emu-
lated environment, to real devices. Second, a semantic-rule-based decision making system
was integrated with the GliderAgent, to analyze feeds from sensors (altitude, temperature,
blood pressure, etc.) and, based on received information, to trigger appropriate behav-
iors. The result of our work provided a foundations for development of a general-purpose,
cyber-physical system framework, which will be described in this paper. Furthermore, the
developed system illustrates an interesting approach to integration of heterogeneous IoT
devices (potentially also IoT platforms).

Keywords Software agents · Decision support system · JADE · Android ·
Anomaly detection · Cyber-physical systems

1 Introduction

In 2009 we have started the development of an agent-based decision support system for
glider pilots. The reason for this work came from an analysis of a series of glider accidents
that took place in Poland and Czech Republic at that approximate time (for more details,

� Mariusz Marek Mesjasz
mesjaszm@ibspan.waw.pl

Maria Ganzha
maria.ganzha@ibspan.waw.pl

Marcin Paprzycki
paprzyck@ibspan.waw.pl

1 Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447, Warsaw, Poland

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-019-00588-3&domain=pdf
http://orcid.org/0000-0002-2892-8922
mailto: mesjaszm@ibspan.waw.pl
mailto: maria.ganzha@ibspan.waw.pl
mailto: paprzyck@ibspan.waw.pl


Journal of Intelligent Information Systems

see Gab et al. (2010) and Domanski et al. (2012)) and our direct access to knowledge con-
cerning the “world of gliding”. Mentioned accidents happened regardless of the fact that
pilots had standard pilotage software (e.g. the XCSoar (2019)) installed. However, it was
easy to notice that, either it would have been possible to avoid some accidents, or their
effects could have been mitigated if additional support was provided to the pilots and/or
ground stations. The envisioned support was not to “replace” the pilot (e.g. by use of an
auto-pilot), or the existing pilotage software, but to create an additional infrastructure that
would autonomously react to, among others, danger situations, without the need for the
pilot to do so; e.g. by informing the ground station that the crash is very likely (here, the
pilot could focus her/his actions on avoiding/minimizing effects of the crash). The need for
autonomy of actions suggested use of software agents (Jennings and Wooldridge 2001). As
a result, the preliminary design of the system was completed and presented in Gab et al.
(2010). Next, the design was turned into the initial working prototype (see, Domanski et al.
(2012), for a complete discussion). The implemented system consisted of (a) the sensor part
– SunSpot sensors (Sun SPOT 2019) emulated through the Solarium platform and managed
through the MAPS agents, (b) agent part – GliderAgent agents implemented in JADE (Java
agent development framework 2019), and (c) XCSoar pilotage software (XCSoar 2019)
running on a PC. It has to be stressed that the system was running on top of an “emulator
platform” that was also implemented. Over the years, the Gateway, one of the core parts of
the system that allowed communication between JADE and MAPS agents, and the Glider-
Agent system itself were updated and improved (see, Mesjasz et al. (2013)). However, no
major changes were introduced to the system itself.

In the meantime, a number of changes took place in computer technologies. The most
important of them (in the context of our work) were: proliferation of (i) smartphones, (ii)
wearable devices (such as wristbands and watches), (iii) high-end single-board computers,
and (iv) tracking platforms for small aircrafts. Smartphones and wearables have successfully
replaced Personal Data Assistants (PDAs) and opened new possibilities by popularizing
wearable sensors. Single-board computers (such as Raspberry Pi (2019), Banana Pi (2019),
etc.) gradually supplanted other devices (for example, the outdated SunSpots) from the mar-
ket. It became clear that the GliderAgent system has to evolve, to catch up with changes
in “computer hardware” and “intelligent software.” Furthermore, the JADE agent platform
has progressed to include more realistic support for running agents on mobile devices
(i.e. the JADEAndroid module). Several software updates, including a number of them in
the XCSoar pilotage software, have been released. Finally, a number of on-line tracking
platforms (i.e. SkyLines, Open Glider Network) emerged and provided significant advance-
ments in on-line tracking hardware and software for small aircrafts. All these changes
resulted in a need to redesign, partially re-implement and update the GliderAgent system.

Separately, a more general reflection concerning state of the “world of computing” made
us realize that the GliderAgent system is actually an instance of a more general class of,
so-called, Cyber-physical systems (2012). By analyzing the cyber-physicsl system concept
map available at Cyber-physical systems (2012), one can observe that most of its nodes are
currently covered by the GliderAgent system. Namely, it works in real-time, monitoring and
analyzing sensor feed. The human element plays a key role – the interaction with the user
and her/his feedback allows the system to understand the context. By the nature of an agent-
driven software, the GliderAgent agent is intelligent, adaptive and proactive. Therefore,
we have decided that, while updating the GliderAgent system, we will also “generalize
it” in a way that will allow it to become easily adaptable to realize other cyber-physical
systems/scenarios.

Author's personal copy



Journal of Intelligent Information Systems

In turn, this activity allowed us to suggest an approach to dealing with interconnection
of heterogeneous Internet of Things devices (and, possibly, integration of heterogeneous
Internet of Things platforms). Agreeing with the conceptualization of relationship between
the Internet of Things (IoT) and the Cyber-Physical Systems (CPS) found in IDEAS’2020:
A Tour of Tomorrow’s World (2019) (as well as in Internet of things towards ubiquitous and
mobile computing (2019) slide 10), we see the IoT as the physical (“low-level”) part of the
CPS. Hence, for instance, heterogeneous wearable and battery-powered sensors found in the
glider represent the IoT layer of our CPS. This being the case, theGliderAgent system, being
capable of (re)acting on the basis of feeds from such sensors represents a method of making
them interoperable. Furthermore, assuming that groups of sensors involved in gliding would
be combined into IoT platforms (e.g. personal sensors, equipment-related sensors, airfield
sensors, etc.) the proposed approach illustrates a potential way of combining them.

The aim of this paper is to provide detailed technical information about the results of
the, most recent, GliderAgent system redesign and to present our solutions to challenges
that we have faced during the development. With our latest iteration of the GliderAgent sys-
tem, we adapted our initial prototype to the current state-of-the-art in many research areas
– especially by replacing obsolete SunSpot sensors with modern IoT devices and introduc-
ing an ontology with the rule-based reasoning. These changes make this paper a case study
of practical aspects of working with software agent technologies within a CPS/IoT sys-
tem. In this way it is also a response to a lingering gap between theoretical work focused
on advancing agent system theory, and the practice of use of software agents in the real
world (see, Nwana and Ndumu (1999), Belecheanu et al. (2006), and Ganzha and Lakhmi
(2009)). The main message originating from these sources is that, in agent literature, there
is not enough discussions of practical aspects of development and implementation of agent
systems. Furthermore, instead of focusing on ideas that are supported by small-scale pro-
totypes, it is of great value to advancement of agent systems to develop complete system
prototype, even if only with a limited functionality of its individual parts. These observa-
tions provided the methodological underpinning of our work, as we have developed and
(re)implemented a prototype of a complete system, and we report on our findings.

To this effect we start from outlining key issues involved in glider flying. We follow
with summary of the state-of-the-art in all pertinent areas. Next, in Section 4, we describe
key facts concerning the development of the original GliderAgent system. This description
is followed by presentation of technical aspects of changes that led to the development of
GatewayAgent version 3.0. Brief description of tests performed with the current version of
the system are presented in Section 6. Next, we discuss how the GliderAgent 3.0 became
a general-purpose CPS platform and how it represents an attempt at solving a problem of
interconnection heterogeneous IoT devices. Summary of material and suggestion of future
research directions complete the paper.

2 Need for glider pilot support

Let us start from a very brief introduction to glider flying and concerns that led us to devel-
opment of the original GliderAgent system (for more details, see Gab et al. (2010) and
Domanski et al. (2012)). Before we proceed, let us note that, while the material presented
here concerns glider pilots, it can be easily extended to other forms of ultralight/microlight
aviation (Airspace in the U.S. 2019).

Author's personal copy



Journal of Intelligent Information Systems

2.1 Electronic equipment in gliding

Computer technology provides only minimal support for glider pilots. On board of gliders,
there are radios, which are the main and the oldest electronics on board. They provide
the basic means of communication between gliders, and between gliders and the ground
station(s).

Furthermore, we can often find so-called loggers, which collect data about the flight.
They are particularly important in the case of sport// flying (see, Section 2.2), but they do
not directly support the pilot in her/his actions.

Moreover, glider anti-collision systems are in the works. For example, the FLARM sys-
tem (2019), deployed primarily in German speaking countries, Scandinavia, as well as in
Australia, and New Zealand. Such systems are designed for a single functionality and have
very narrow communication bandwidth (needed to provide collision warning).

Separately, we observe growing interest in “on-line tracking,” which visualizes positions
of gliders during competitions. Here, the goal is to make gliding (as a sport discipline) more
audience-friendly. Note that tracking systems deliver only a single (tracking) service, and
do not support the glider pilot. Furthermore, since only a relatively narrow communica-
tion bandwidth is needed for tracking, they cannot be naturally extended to support other
functions.

2.2 Typology of glider flying

Let us now enumerate basic forms of glider flying, as they provide context for the decision
making (see, also Gab et al. (2010) and Domanski et al. (2012)).

1. Training flights, which can be divided into:

a) Flights with an instructor—early-training flights where a student gains basic
skills—how to start, to land, etc.

b) Solo training flights—conducted by a student alone, while an instructor is located
on the ground; solo training flights usually take place within no more than 20 km
from the airfield.

2. Recreational flying—involve long distances from the start airfield (more than 20km);
very often conducted over areas not well-known to the pilot; three sub-categories can
be distinguished:

a) Cross-country flying—the easiest and safest form; typically flown over plains;
awareness of other gliders is crucial to avoid collisions.

b) Ridge flying—demands high skills because of flying close to slopes of hills and/or
mountains; characterized by high variability of flying conditions (multiple lifts and
sinks); terrain characteristics (lack of landing space) exaggerates possible dangers.

c) Lee-wave flying—involves a dynamic phenomenon that allows gaining several
kilometers of heights, and make flights hundreds of kilometers long; characterized
by violent conditions for start, getting to the wave and landing; possibility of form-
ing “a solid cloud,” which makes returning to the ground very difficult, adds to
encountered dangers.

3. Sport/competitive flying—conducted in accordance with specified rules and procedures
(to be accepted as a sport). Among sport events we can distinguish:

Author's personal copy



Journal of Intelligent Information Systems

a) Sport badges and diplomas—achieved, for instance, for completing soaring per-
formances of: distance, duration and height.

b) Localized competitions—pilots fly together starting from the same place.
c) On-line contests—pilots conduct flights in their clubs and send documentation to

the contest organizer.
d) Record flights—establishing national or world records; validated by an appropriate

authority.

2.3 Supporting glider pilots – foundations

Combining above presented material, with analysis of incidents involving gliders, presented
in Gab et al. (2010) and Domanski et al. (2012), let us identify some of the key support
areas, arising in flying gliders. Obviously, this list is not exhaustive, for more information,
see Gab et al. (2010) and Domanski et al. (2012).

– In training flights it is important to instruct the student pilot. Here, we can distinguish
the advice made available during the flight, and post-flight analysis. During the flight,
the instructor could make suggestions while observing parameters transferred from the
glider. In a post-flight session, instructor and student could re-play and analyze data
collected during the flight.

– In a cross-country flying, help finding thermals would be useful (e.g. based on infor-
mation from other gliders). Furthermore, informing the ground (in advance) that the
glider cannot reach any airfield could improve flight safety. Finally, pilots could use
information like, for instance, meteo reports, especially warnings about possible storms.

– Ridge flying safety requires (fast) informing the ground on abnormal behavior(s) or
danger(s). Not only the mountainous area is not appropriate for landing, but the time
between appearance of the danger and the crash is much shorter than in cross-country
flying.

– Flights using the lee-wave phenomenon involves, among others, reaching heights
(above the 4000 meters) where lack of oxygen could result in altitude sickness (Alti-
tude sickness 2019) and loss of consciousness (see Gab et al. (2010), for the description
of an actual accident caused by oxygen deprivation). This further increases the need for
pilot support, as the danger becomes more pronounced than in the case of ridge flying.

– Finally, in sport// flying all the above mentioned needs can materialize, as the competi-
tions are conducted over the fields, and in the mountains. Furthermore, it is important
to make competitive glider flying interesting to the spectators.

3 State-of-the-art in related areas

Let us now summarize the state of the art in the main “technological areas” that are related
to the development of the GliderAgent system (its earlier versions, and the current one).

Software supporting glider pilots Nowadays, “glider software” falls into one of two cate-
gories: (i) simulators and (ii) glider computers. Simulators create a virtual reality, in which
aviation enthusiasts can fly an aircraft (not necessarily a glider, but almost any plane exist-
ing in the world) to learn, test their skills, or have fun. Note that flight simulation itself
is not our goal, and this is the key difference between such software and the GliderAgent.

Author's personal copy



Journal of Intelligent Information Systems

Our system is meant to operate in an actual glider and support the glider pilot. Henceforth,
a “simulation” is used only for the purpose of evaluating the correctness of the developed
system.

Glider Computers, such as SOAR (2019), SeeYou Mobile (2019), WinPilot (2019), or
XCSoar (2019) provide very similar functionality to the GliderAgent. However, there are
significant differences:

SOAR is a Windows based flight planning and analysis program. It can be used for
planning cross-country flights and analyzing GPS recordings. SOAR (as well as other glider
planners), does not work on an actual glider. Thus, the pilot can only use it before or after
a flight. This, obviously, is different from our system designed to monitor the environment
(geoposition, collision possibility, etc.) in a glider.

SeeYou Mobile is an in-flight navigation program designed for PDA and PNA devices,
with Windows Mobile or Windows CE operating systems. It generates visual and audio
warnings about the airspace in the vicinity of the glider. However, this function is
strictly limited to “forbidden areas” (hard-coded into the device). In comparison to the
GliderAgent’s collision detection, SeeMobile does not track nearby air-traffic.

WinPilot and XCsoar resemble the car GPS navigation, designed for pilots. The Win-
Pilot can run on Windows Mobile, Pocket PC and iOS operating systems. It is a closed-code
software (requiring license) maintained by the Sierra SkyWare. The original XCSoar was
a commercial software developed for the Pocket PC. In 2005, the program became an
open-source, community-driven project published under the GNU General Public License.
Nowadays, it is actively developed by a group of volunteers and community members (the
last release took place in August 2018). Moreover, developers can modify its publicly avail-
able source code to provide functionality beyond its original scope. Currently, the XCSoar
runs on Windows, Windows Mobile, Unix, and Android devices. These features make it
the most successful and popular tactical glide computer. XCSoar is also a client for Sky-
Lines (2019). SkyLines is an internet platform that allows flight sharing. Unfortunately,
SkyLines data is only available online via the official website.

Open glider network TheOpen Glider Network (OGN) is a community project, which
aims at creating a unified tracking platform for small aircrafts (i.e. gliders, helicopters,
drones). The platform consists of software and hardware that are used to communicate
with OGN servers. Each small aircraft (in our case, a glider) is to be equipped with an
OGN tracker. OGN receivers, placed on the ground, collect data sent by OGN beacons and
forward them to OGN servers. The collected data can be accessed by an API.

Thanks to the active OGN community, new receivers are installed in gliding clubs, air-
fields and mountain areas. Each OGN antenna (the detailed design provided on the OGN
website) can receive a signal form an aircraft at a distance of 130+ km. The coverage is espe-
cially good in western Europe (Germany, France, or United Kingdom) and in the eastern
part of Australia.

TheOGN infrastructure is very similar to theGliderAgent environment, proposed in Gab
et al. (2010). Namely, OGN receivers collect data about gliders (including their GPS loca-
tion) and send them to the OGN server. There data can be accessed and analysed by, for
example, a Search And Rescue (SAR) service. Each device is registered in the OGN net-
work, and has a unique ID. These IDs can by used for filtering gliders during competitions.
However, since all the communication is unidirectional (from a beacon through a receiver to
a OGN server), the OGN platform does not allow gliders to communicate with each other.
The OGN tracking protocol (http://wiki.glidernet.org/ogn-tracking-protocol) sends glider

Author's personal copy

http://wiki.glidernet.org/ogn-tracking-protocol


Journal of Intelligent Information Systems

meta data (i.e. an aircraft type) and current flight parameters. However, lack of pilot’s bio-
metric data stands in contrast to the proposed GliderAgent system that also takes pilot’s
current state as an important factor.

Since OGN already has a number of receivers all over the world, extending the well-
established OGN protocol and keeping it compliant with the existing infrastructure may
prove to be difficult (additional bytes can be seen as “damaged” radio frames by receivers,
or be dropped by servers). Thus, creating an incompatible radio frame may result in losing
the benefit of wide radio-coverage.

“Intelligence” in flying/gliding In scientific literature, one can find several references to
“intelligent soaring.” However, most of them involve autonomous flights; e.g. drones/UAV’s
flying without interaction with the user. For example, in Atkins et al. (1999), authors focus
on achieving fully automated aircraft flights. Despite the fact that the proposed system faces
many similar challenges (for instance, “real time” monitoring, collision detection), our work
represents a user-centric approach. The GliderAgent system aids the glider pilot during
flight, but always leaves the final decision to her. On the other hand, other gliding support
systems have rather limited functionality. For example, Hook et al. (2007) is dedicated to
determining when and where to seek a lift. In case of the GliderAgent, collecting data for
further analysis is only one of its possible functions.

Mobile devices Today, mobile devices play more and more important role in daily life. As
smart-phones and tables become more powerful, they gradually replace personal computers
for everyday use. Currently, there main mobile OSs are: Android (74.85%), iOS (22.94%)
and others (2.21%) (IDC: Analyze the Future 2019).

The most popular of them (and thus our choice), Android (2019), is an open source,
Linux-based, operating system developed by Google (2019) for touch-screen mobile
devices such as smartphones and tablets. The source code of the Android is provided by
Google under the Apache License (2019). Today, Android is expanding to cars, TVs and
wearable devices. The latest release, codename “Oreo”, appeared in August 2017 (Android
lollipop 2019).

Personal sensors In the last few years, there has been a significant increase in the num-
ber of personal sensors. Nowadays, people often wear various smart-bands, smart-watches
and other wearable devices (Apple watch 2019; Android wearable 2019). For example,
smart-bands with a heart-beat monitor (sensor) collect information about their user’ heart
rate. Modern wearable devices, can easily share such information. For example, a smart-
band, which is connected to a smart-phone via Bluetooth, can relay collected information
on the server for further analysis. This phenomenon resulted in many publications concern-
ing Body Sensor Network (BSN) (Fortino et al. 2013), that can collect and process huge
amount of data from different body sensors.

In the GliderAgent system, pilot’s health is an important factor. Each pilot’s body can
behave differently in the same conditions. Some accidents are results of pilot’s fainting
out in the cockpit (Gab et al. 2010). This is especially true for competitive flying where
the pilot is encouraged to push his/her limits. The advancements of and accessibility to
body sensors improves GliderAgent’s capabilities to monitor and warn the pilot before such
life-threatening situation occur.

New generation of computer hardware A new class of devices that resulted from current
trends in technology (miniaturization, development of smart-phones hardware caused by

Author's personal copy



Journal of Intelligent Information Systems

increasing number of mobile devices) are single-board computers (SBC). The SBCs are built
on a single circuit board. On such board, microprocessor(s), memory, input/output (I/O)
and other features required of a “complete computer” are placed. There are several popular
choices among SBCs (depending on hardware specification). Examples of cheap, yet high-
end SBCs, are Raspberry Pi (2019) and Arduino (2019) (known as Genuino outside US).
Both computers are actively developed – they were released in June 2019 (Raspberry Pi 4
Model B) and March 2019 (Arduino IDE version 1.8.9) respectively.

Software agent platforms Finally, let us discuss the pertinent state of the art in software
agents. Recall, that the GliderAgent is based on agent technology.

(1) Mobile-C (2019) is an Foundation for Intelligent Physical Agents (2019) standards-
compliant multi-agent platform written entirely in C/C++. This platform was specifi-
cally designed for real-time, resource constrained applications, with an interface to the
hardware. As a result, the Mobile-C is focused on development of small/lightweight
agents, which would fit the sensor part of our system, but not match well the needed
decision support functionality. The latest update to v2.1.5 of was on 12th August 2014,
which materialized after a period of about 3 years of dormancy. This makes it a bit
suspicious as far as future of this platform. From March 2017, Mobile-C is also avail-
able on Raspberry Pi and other ARM-based computers. The platform would make a
good candidate for our “sensor” part of the GliderAgent. Unfortunately, our code-base
is written in JADE and replacing the existing JAVA-based components would be a
huge undertaking which the current development cycle of Mobile-C does not justify.
Namely, Mobile-C focuses on low-cost modular robots with almost no feature-rich
updated to the core platform in the 5 years span.

(2) JADEX (2019) (latest stable update to v3.0.115 was released in January 2019) is an
agent platform that was developed on the basis of the Belief Desire Intention (BDI)
approach. It allows implementation of intelligent software agents using XML and Java.
While JADEX meets our requirements concerning decision support and capability of
running on Android, it has two major disadvantages: 1) it is systematically switch-
ing its focus to agent-as-component programming, which may-or-may-not provide the
right level of granularity for our systems, and 2) writing the BDI rules in XML is quite
a cumbersome and error prone process.

(2) JASON (2019) (latest stable update to v2.4 was released in May 2019) is interpreter
for an extended version of AgentSpeak. AgentSpeak is a Belief Desire Intention (BDI)
agent-oriented logic programming language. While JASON is a powerful tool, it is still
an extension that has to be utilized within a multi-agent system like JADE. Moreover,
there are no evidence of JASON being capable to run on a mobile device.

(3) JADE (2019), is a FIPA-compliant open-source framework for writing agent systems
in JAVA. The JADE has a community of developers who create add-ons for it. Cur-
rently, JADE runs on Windows, Unix and Android devices. Moreover, based on the
experimental research present in Chmiel et al. (2005), JADE is a highly scalable
agent platform limited only by the standard limitation of the JAVA programming lan-
guage. The latest update to v4.5 was released on 8th June 2017 (since its authors
consider JADE to be “feature complete”, in the future, only maintenance releases are
planned). Moreover, JADE agents can be compared to the Android OS (Pintea et al.
2018) (recall that running the GliderAgent system on mobile devices is one of our
initial goals). From the comparison, an observation can be made that there are many
common features between both platforms. Namely, both platforms utilize independent

Author's personal copy



Journal of Intelligent Information Systems

components that asynchronously communicate and cooperate with each other by send-
ing unified messages. These similarities in the architecture and functions can provide
to a interesting synergies and enhance a possible JADE-Android applications.

4 Architecture of the GliderAgent system

4.1 Summary of functionality

From our analysis presented in the Section 2, the GliderAgent system has been designed
to: (a) help the pilot in navigation and pilotage, (b) deliver additional flight information,
(c) provide support in emergency situations, and (d) facilitate communication, monitoring,
logging events, etc. Let us stress, again that it was not designed to replace the existing
systems (e.g. the XCSoar), but to integrate with them and extend their capabilities. Let us
outline the most important requirements underlining our design. The following material
should be matched with the use case diagram presented in Fig. 1 (and Domanski et al. (2012)
Fig. 1).

– Sharing information. The system should allow for messages to be passed between
various actors. Within a glider cockpit, a main unit (probably a smart-phone) should
communicate with sensors placed within the glider and on the pilot. The data collected
from sensor is to be aggregated and used in the decision making process. Beyond the
cockpit, the glider should communicate with other gliders and ground stations. In places
with no natural radio-coverage (i.e. mountains), the system should utilize, so called,

Fig. 1 Use case diagram of the GliderAgent system

Author's personal copy



Journal of Intelligent Information Systems

“proxy-stations” which extends its reach. By sharing these message, the GliderAgent
system should 1) avoid mid-air collisions, 2) alarm Search and Rescue (SAR) services
in case of life-treating situations and 3) log flights for further analysis (finding points
of interest, monitoring training flights etc.). The glider should also have access to more
advanced data (often unreachable without the Internet) like the weather forecasts and
warnings.

– Pilot state monitoring. The system should assess the “state” of the pilot. For this pur-
pose, it should track selected biological parameters (using appropriate bio-sensors),
and compare them to the norms. In selected contexts (e.g. perceived danger), results of
monitoring should be used to warn the pilot and, autonomously, communicated to the
ground station.

– Estimated life-time of the battery. The on-board electrical systems can function only if
they have energy. The system should estimate how much energy is left in the battery,
and warn the pilot (and possibly the ground station) when the battery is about to run out.
The energy-level, and the type of flight, provide the context for energy saving decisions
(e.g. when to pass a message to another glider, and when to preserve energy).

– Flight state monitoring. The system should track gliders (keep track of their flight
states). This includes, among others, position, speed vector, acceleration. This infor-
mation should help avoid crashes, observe student flights, gather data about a flight
for further use (see, data logging, below), etc. Here, the idea is to directly extend
capabilities of existing glider-GPS-software.

– Vertical stream indication. While software, like the XCsoar, indicates locations of
vertical streams, the system should use glider-glider communication to share this
information.

– Collision detection. The collision detection functionality should be based on exchang-
ing location information between gliders.

– Maximal range. The system should help the user to estimate the maximal range that can
be reached by the glider in given conditions. It would help properly plan the flight, and
react to specific conditions (e.g. inability to reach the nearest airfield; see, the accident
description presented in Domanski et al. (2012)).

– Data logging. Flight and pilot data should be logged and gathered for future analy-
sis. Since the glider may have limited data-space available, depending on the scenario,
selected information should be forwarded to be stored at the ground station.

4.2 GliderAgent 1.0 – implementation and testing

The system depicted in Fig. 1 has been turned into a prototype. During the implementation
process, the following software was used:

– The main part of the system was implemented using the Java Agent Development
framework (JADE) version 4.0.1.

– The Mobile Agent Platform for Sun SPOT devices (MAPS; Aiello et al. (2011)) was
selected for management of sensor data. Here, the Sun SPOT connected sensors were
envisioned as sources of information about the state of the pilot, as well as other data,
e.g. available battery power.

– A JADE-MAPS gateway was implemented to address the fact that both agent platforms
use different agent management (naming) and agent communication mechanisms.
JADE uses FIPA AMS for agent management and ACL messages for communication.

Author's personal copy



Journal of Intelligent Information Systems

MAPS uses Execution Engine for agent management and a simple set of proper-
ties encapsulated within a structure called MAPS Event for communication (for more
details, see Domanski et al. (2012) and Mesjasz et al. (2013) and Section 5.1).

– SunSpot SDK (Sun SPOT 2019; Sun Small Programmable Object Technology (Sun
SPOT) 2012), with an emulator – Solarium 6.0 – was used to develop the WSN
subsystem.

– The XCSoar (2019; version 6.0) was extended. Since the XCSoar is written in C++,
while the JADE platform is Java based, a bridge between the two was implemented to
allow them to exchange data.

– Swingx-ws (Web Oriented JavaBeans and Swing (2019), version 1.0) was used to
display a map including locations of gliders as seen by the ground station.

– Finally, the OpenStreetMaps (2019) software was used for mapping. The Swingx-ws’s
JXMapKit dynamically loaded data from the OpenStreetMaps server. Therefore, this
function required an active Internet connection.

Note that some key system implementation decisions were forced by the state of avail-
able computer technology. While it was assumed that the agents supporting the pilot will
run on her/his smartphone/PDA, at this time very few smartphones were capable of actually
running (JADE) agents (without an enormous effort; for instance, trying to make it happen
using the LEAP (Caire and Pieri 2011)). Therefore, it was decided that the GliderAgent 1.0
will work entirely in an emulated environment (GliderAgent Simulation) running on a per-
sonal computer (desktop or laptop). This environment not only provided the “external” data
needed for the GliderAgent to be experimented with (e.g. the glider position and altitude, or
the battery energy level), but also emulated the smartphone/PDA device itself.

The component diagram of the original simulation environment is presented in Fig. 2.
The GliderAgent Simulation is composed of three main components: 1) GliderAgent, 2)
GPS Server, and 3) Sensor Data Server. The GliderAgent agent is a JADE software agent,
which analyses incoming data and, based on their content, supports the glider pilot. In
other words, it can be seen as a pilot’s personal agent that runs on her/his smartphone.

Fig. 2 Component diagram of the GliderAgent 1.0 simulation environment

Author's personal copy



Journal of Intelligent Information Systems

The incoming data includes emulated radio messages from other entities in the system (e.g.
Groundstation(s), and other GliderAgent agents), the scenario GPS feed (provided by the
GPS Server; emulating glider’s movement in space), and sensor data provided by the Sen-
sor Data Server. The feed from the GPS Server is sent concurrently to the GliderAgent and
to the XCSoar. The last element of the GliderAgent Simulation is the Sensor Data Server.
The Sensor Data Server is not directly connected to the GliderAgent, but it feeds the data
to the Solarium-emulated sensors (for example, pilot’s oxygen level or blood pressure, or
battery state). This data is then forwarded to the MAPS agents. Next, the MAPS agents for-
ward the selected information to the GliderAgent, via the JADE-MAPS Gateway. Observe
that the developed system has the general structure of a CPS. First, the GPS Server and the
Sensor Data Server can be seen as two IoT platforms, while the GliderAgent agent repre-
sents the Cyber part of the CPS (see, also Internet of things towards ubiquitous and mobile
computing (2019); slide 10).

Note that the GliderAgent system does not interact with the pilot directly. These interac-
tions are achieved through the XCSoar software, which has been extended to interface with
the GliderAgent. In other words, content delivered by GliderAgent is displayed “within”
the XCSoar display. Moreover, to perform advanced calculations concerning the flight, the
GliderAgent utilizes the XCSoar engine.

The implemented prototype has been tested in multiple use case scenarios. Description
of these scenarios, as well as results of tests, can be found in Domanski et al. (2012).
Regardless of the limitations imposed by the technology, the initial version of the system
worked according to the expectations. Let us now proceed with the description of changes
and modifications made in the system.

5 Key novel elements ofGliderAgent 2.0

Let us now describe, in some detail, new elements that have been updated/implemented
in the GliderAgent release 2.0. First, we have updated the JADE-MAPS gateway. Results
of tests performed to evaluate its efficiency have shown weaknesses of the initial imple-
mentation. The most important problem was the delay between receiving an ACL message
from the JADE subsystem and sending corresponding MAPS Events to the specified MAPS
agent(s). In addition, we have generalized the gateway, allowing it to be used also when
other software interacts with JADE agents. We discuss these changes in Section 5.1.

Second, we made the GliderAgent run on actual mobile devices. This functionality
became available thanks to two developments. First, proliferation (and steady increase of
capabilities/power) of Android-based smartphones (see, Section 3). Separately, let us recall
that the concept of a Personal Data Assistant (PDA), understood as an independent device
running calendaring applications, featuring news and games, has been subsumed by the
smartphones. Second, implementation of the JADEAndroid add-on for JADE (see, JADE
Android add-on Guide (2019)). The key feature introduced in the JADEAndroid was the
ability to run the full JADE agent platform in a stand-alone mode. Here, while trying to port
theGliderAgent into an Android smartphone, we have found that using JADEAndroid when
JADE is run in a stand-alone container requires extra work, reported in Section 5.2.

Third, with the increasing number of on-line tracking systems, and the general advance-
ment in hardware for small aircrafts (like the one provided by the Open Glider Network
project), the decision was made to focus on a “intelligent” aspect of the GliderAgent sys-
tem. Since none of the analysed platforms (see Section 3) focused on aiding an individual

Author's personal copy



Journal of Intelligent Information Systems

glider pilot during a flight, our research in this area was a novelty with potential to bene-
fit the entire gliding community and the research area of software agents in general, more
than becoming a competitor to other fast-growing hardware-driven initiatives concerning
the radio communication and data transmission. Hence, we have analyzed ways of intro-
ducing “brains” into software agents. Specifically, we have considered placing intelligence
as an “agent code,” using rule based expert systems, and semantic technologies. The results
of this analysis have been presented in Mesjasz et al. (2013). In Section 5.3, we summarize
our findings and show that our decision holds also today.

Upon completion of the GliderAgent system update, we have successfully run the same
set of tests as we did for the original prototype. Since our ultimate goal, is to discuss the
most current version of theGliderAgent system, and to show how it became a general cyber-
physical platform (interconnecting heterogeneous IoT devices), in the next three section we
will discuss the current (used in GliderAgent 3.0) state of: (i) the Gateway, (ii) running
JADE agents on Android, and (iii) inserting decision-making capabilities into JADE agents.

5.1 A general purpose gateway

As stated above, the JADE-MAPS gateway (or, within this Section, the Gateway) has been
implemented to provide a communication mechanism between JADE and MAPS agents. It
facilitated bi-directional translation between JADE ACL messages and MAPS Events, and
supported routing of communication between the two agent platforms. Let us now discuss,
in more detail, the new design of the gateway that responded to (i) results of experiments
performed with GliderAgent 1.0 (and 2.0), and (ii) the need of replacing MAPS agents with
another “source of sensor information.” The experiments reported in Mesjasz et al. (2013)
pointed to two problems:

– If the number of simultaneously communicating agents exceeds a certain level, a
communication bottleneck has been observed.

– The JADE-MAPS interaction could have been simplified by using novel mechanisms
provided in the latest version of the JADE agent platform.

The first problem was addressed by significantly simplifying the work-flow of the Gate-
way. Instead of using time-consuming methods from the MAPS platform library, a new
light-weight communication module was introduced. The module utilized methods from
the SunSpot library (direct control over the radio channel) and performed only a minimal
number of operations that ensured the data frame was acceptable and understood by the
MAPS deceives. As a result, time between receiving and sending the message was greatly
reduced. The second problem was partially addressed by re-factoring the existing Gateway
code. The Gateway was decomposed into a general purpose Gateway agent and a separate
MAPS-specific engine. Since MAPS logic was encapsulated in an interchangeable module,
this was also the first step towards generalization of the Gateway. Namely, starting from
that moment, the Gateway could connect the JADE platform with “everything” that has a
suitable communication module (e.g. a device, an agent platform, etc.).

Addressing these two problems turned out to be a pivot point in prolonging the Glid-
erAgent system lifespan. When in late 2014, Oracle has officially stopped selling and
supporting Sun SPOTs, a new replacement module was implemented for theGateway agent.
SunSpots were replaced by the Banana Pi (2019). Since Banana Pi has sufficiently higher
hardware specification than the SunSpot device, and allows to connect sensors via general
purpose input/output (GPIO), it was a natural choice. Note that the Banana Pi was chosen
over the Raspberry Pi due to the amount of available RAM, and dual core CPU, within the

Author's personal copy



Journal of Intelligent Information Systems

Fig. 3 A component diagram of the gateway

same price tag. However, let us stress that the following discussion applies to any other SBC
that can run Linux-based system with Java SE for the ARM architecture (see, also Java se
for arm (2019)). Arduino was rejected, because it comes with preinstalled software and low-
spec hardware. When having IDE from hardware creators is beneficial for some projects, in
our case, Arduino would make us rewrite entire system (even parts that do not require any
update) (Fig. 3).

The component diagram, presented in Fig. 4, depicts the Gateway, used in the Glid-
erAgent system 3.0. Here, the Gateway consists of a set of JADE agents responsible for
receiving and pre-processing feeds from sensors. We call these agents connectors. Each
connector collects data from a single sensor. Note that, since connectors being software

Fig. 4 The component diagram of the system

Author's personal copy



Journal of Intelligent Information Systems

agents communicate by sending messages (this makes our proposed platform inherently
discrete), sensors read continous data feeds. Thus, continuous acting components can be
placed within the proposed framework. The process of communicating, with the specific
sensor, is handled by an instance of a Communication Module. The Communication Module
is an interchangeable module that processes raw sensor feed and forwards it to its con-
nector. Note that in the previous version of the Gateway, there was only one connector,
which interacted with the MAPS platform through the MAPS-specific engine (an instance
of Communication Module). Since the SBC can handle multiple sources of information
(such as GPIO, bluetooth, wi-fi, etc.), the Gateway should have at least one connector for
each communication channel.

However, let us stress that “one connector per sensor approach” is a more natural one,
since each connector can focus on one type of data and be easier replaced in case of a
failure. A damaged connector that handles a single connection can be identified when it
goes to a terminal state and destabilize the system with respect to only one data source.
Because all connectors work independently from each other, we decided to introduce a
control unit to the Gateway, which ensures stability of the resulting multi-agent system.
The GatewayMaster agent is a JADE agent, which monitors a work-flow of connectors.
This agent collects all preprocessed sensor feeds from the connectors and sends them to
the decision making unit (in our case, the GliderAgent agent). If a malfunction is detected
within the Gateway (for example, one of connectors “dies”), the GatewayMaster agent tries
to fix the work-flow by rebooting the defective agent(s). If the system is in an “unrepairable
state”, the GatewayMaster agent informs the decision making unit about the situation.

It should now be obvious that the Gateway represents the first step to instantiate com-
munication between heterogeneous IoT devices (platforms) and the Cyber part of the CPS.
Each sensor (platform) could be associated with a separate connector agent that deals with
the data feed. Note also that such connector agents can, if necessary, perform any required
data (pre)processing to make it “understandable” to the Cyber part of the system. Finally,
note that connector agents can act as gateways to IoT actuators, transmitting “decisions”,
undertaken by the Cyber, to the actuators residing in the IoT level of the CPS system.

5.2 Running GliderAgent on android

The following description applies to both Android Oreo and the newest version of JADE
(4.5). The JADEAndroid is an add-on for the JADE agent platform, which allows to run a
multi-agent system on the Android device. According to the documentation (JADE Android
add-on Guide 2019), the JADEAndroid supports two modes of execution: (i) split-container,
and (ii) stand-alone. The split-container execution mode requires a persistent (Internet) con-
nection to a remote machine running the JADEmain container. In this mode, the actual agent
container is split between the mobile device (front-end) and the remote machine (back-end).
The key drawback of this approach is the need to maintain the connection. If the connection
is broken, then the agent container (and all its agents) is (are) suspended until the connec-
tion with the remote (“main”) machine is re-established. The stand-alone execution mode,
on the other hand, allows to run the full JADE agent platform on a mobile device. This
ability is very important for applications similar to the GliderAgent that may not to be able
to maintain the network connection with the remote host. Specifically, in the GliderAgent
system the main container would have to be placed within the ground station. Since it is
impossible to guarantee connection between the glider and a specific ground station (more-
over, such connection would be highly undesirable because of resource consumption), we
had to proceed with the stand-alone-mode-based implementation.

Author's personal copy



Journal of Intelligent Information Systems

Let us start from a short description of how the JADEAndroid add-on works with the
Android system. This description is crucial to understand the problems that had to be solved.
In the Android system, there are two types of services: (i) started and (ii) bound. A bound
service provides an interface, and an implementation of the IBinder class, through which
other application components can communicate. Application components that are bound to
the service (by calling the bindService method) are called clients. The JadeAndroid add-
on contains two bound services, the MicroruntimeService and the RuntimeService. The
MicroruntimeServicewraps a split-container in the split-container execution mode. Through
its interface, the MicroruntimeBinder, an application component can request to create or
kill a JADE agent on a remote computer running the agent main container. The Runtime-
Service, unlike the MicroruntimeService, allows to initiate the main agent container and,
therefore, creates a stand-alone agent platform within the Android system. In this case, the
bindService method returns an instance of the RuntimeServiceBinder class.

Since the RuntimeService and the MicroruntimeService provide a way to manage the
agent life-cycle in the JADE agent platform, there is another mechanism, which allows
application components to interact with a JADE agent itself. The Clients (typically Android
activities) communicate with the JADE agents via the Object-to-Agent (or shortly O2A)
interface mechanism, introduced in JADE version 4.1.1. Each agent on the Android sys-
tem should provide and implement an O2A interface. During the execution of the agent’s
setup method, such O2A interface should be registered by calling the registerO2AInterface
method. Then, an application component can invoke the agent’s methods, after obtaining its
O2A interface. Moreover, if an agent enables the O2A communication, by calling the setEn-
abledO2ACommunication, its clients can send application-specific objects to an O2A queue
by calling the putO2AObject method. In the case of the GliderAgent, the O2A interface
mechanism is used to send the glider data for further processing. For instance, the Glid-
erAgent receives the GPS feed and the sensor data feed, which are used to support pilots
decision making; e.g. they can be used to detect life-threatening situations, like the possi-
bility of oxygen deprivation. Here, the GliderAgent creates a warning for the pilot to put an
oxygen mask on, if it finds out that the oxygen level dropped below the acceptable level.

Unfortunately, the JADEAndroid is not as easy to work with as the JADE itself. Above
all, the official documentation for the add-on does not cover details of the stand-alone exe-
cution mode, which significantly differs from the split-container execution mode. Thus, the
documentation does not provide best developer practices to solve common problems that
may arise in Android projects that utilize the stand-alone approach. The most troublesome
problem that we have encountered, was a difficulty in obtaining an O2A interface in the
stand-alone execution mode. The RuntimeService, unlike theMicroruntimeService, does not
provide a very useful method called getAgent, which returns an instance of the AgentCon-
troller object. The AgentContoller class provides the getO2AInterface method. The way
suggested by the source code of the JADEAndroid add-on, in the case of the stand-alone
execution mode, is to invoke the startAgent methods, which returns an instance of the Agen-
tHandler object to its callback function. However, the AgentHandler class does not provide
the getO2AInterface method to classes outside of its package.

To address this problem, we have decided that theGliderAgent itself will provide itsO2A
interface via a custom Application class. The Application class is a base class, which allows
to maintain the global application state. The Android system allows developers to provide
their own implementation of the Application class by specifying its name in the Manifest.
The instance of the Application class is accessible by all application components, which
makes it the proper place to store commonly used data, such as an O2A interface.

Author's personal copy



Journal of Intelligent Information Systems

5.3 Reasoning for GliderAgent agents

Infusing software agents with “intelligence” is a very interesting topic. There are multiple
ways to achieve it. However, the nature of the GliderAgent system imposes a number of
restrictions. Namely, (1) it is strongly preferred (though, not necessary) that the selected
approach will be Java-based (for better integration with other components of the system). (2)
It should run on mobile Android devices (as the GliderAgent agent does), which may have
relatively limited resources (e.g. memory and/or battery). It will be also desirable that (3) the
selected solution will be flexible enough to modify the “reasoning capabilities” of an agent
(or a selected group of agents) without taking the whole system down (see, also Frackowiak
et al. (2009) and Frackowiak et al. (2008)). Taking these limitations into account, we have
considered three approaches to inserting “intelligence” into software agents. (A) Native
methods provided by JADE, (B) rule-based expert systems, and (C) semantic technolo-
gies, including reasoners. While the detailed analysis can be found in Ganzha et al. (2014),
let us summarize the most important (refreshed) facts relevant to the development of the
GliderAgent system.

Let us start from a simple observation that JADE agents utilize Java classes to
“store/represent their knowledge. ”As a result, once compiled Java classes cannot be easily
changed without altering the entire application. Thus, an agent has to be recompiled, each
time when a change is introduced into its “knowledge.” Furthermore, as discussed in Frack-
owiak et al. (2009) and Frackowiak et al. (2008), such recompilation may result in need
to take down the whole system, to replace the old version of an agent (agents) with a new
one. Therefore, despite the fact that the native method is sufficient for many scenarios, the
GliderAgent agent, which has to operate in a constantly changing environment (cockpit of
a glider), requires much more flexible solution. Namely, the GliderAgent agent should be
able to add, modify or delete a “behavior” (related to a “knowledge fragment”) on-demand
(or, at least, without the need of restarting the whole system). Note that this observation
applies to any agent platform with “hard coded” knowledge and is of particular importance
as the size and “gravity” of the (sub)system increases. Henceforth, it should be obvious that
this solution is particularly unappealing for typical IoT scenarios.

Now, let us consider Rule-based Expert Systems (RES) that could be combined with
JADE agents running on (possibly mobile) Android devices. First, note that many Java
applications, and thus the RESs, are not natively compatible with Android. While having the
same syntax and similar interfaces, there are key differences between the standard Java API
and the Android API. (1) Android uses ART, a runtime environment written and maintained
by Google, instead of the standard Java Virtual Machine. (2) Some popular Java packages
are not included in the Android API. For example, the javax package (Swing, XML libraries,
etc.) is missing, and has to be replaced by the Android’s native classes. Therefore, to use a
RES within JADE agents, the selected RES should be an active, open source project, with a
small number of dependencies that can be partially rewritten/repacked for the Android API.
Based on these assumptions, we have selected three possible candidates: 1) Roolie (2019),
2) Drools (2019) and 3) OpenL Tables (2019).

Today, three year after our initial investigation, there are still problems with these RESs
(vis-a-vis our application area). Firstly, Roolie has not been updated since December 2013,
and therefore, still does not provide an algorithm for matching rules, e.g. RETE. Further-
more, this likely means that the project has been abandoned. Secondly, Drools (version 7.24,
updated in July 2019) while being a very robust software, reaches the size that poses a seri-
ous question about its usability on resource-limited mobile devices (placed on a glider with a
restricted energy supply). Finally, OpenL Table (version 5.22.5, released in July 2019) uses

Author's personal copy



Journal of Intelligent Information Systems

proprietary data formats (Excel and Word), which are not well-suited for an open source
type system.

Eventually, to implement a “brain” for the GliderAgent agent, we have decided to utilize
semantic technologies. They provide us with a flexible mechanism for maintaining agent
knowledge and, by utilizing flexible and extensible ontologies, ensure proper information
handling. Within an ontology, facts are stored in a form of triples (subject, predicate, object)
i.e. Glider’s battery is equal to 10% (here, Glider’s batter is a subject, is equal to is a pred-
icated and 10% is an object). Applications can use a reasoner to infer logical consequences
from them (i.e. Glider’s battery is equal to 10%, so Glider’s battery is in power-safe mode).
Statements within an ontology can be divided into: (i) a set of facts (A-box), and (ii) con-
ceptualization associated with them (T-box). T-box defines a schema in terms of controlled
vocabularies (for example, a set of classes, properties and axioms), while A-box contains
T-box-compliant facts. Combination of the A-box and the T-box makes up a knowledge
base.

We decided to use the Apache Jena for knowledge base manipulation. Jena is a
well-documented, open source framework for building semantic web and Linked Data appli-
cations. Note that, even though Jena was not designed as a rule-based engine, it implements
the RETE algorithm in a general purpose rule-based reasoner. This reasoner is used for
updating the loaded ontologies, when a certain rule is met.

We have found three community projects aiming at running Jena on Android. (1) The
Androjena (2019) project supported only a subset of the Jena features and was discontinued
in 2010. (2) The Apache Jena on Android (2019) project tried to fully integrate Jena (with
all its features) with the Android OS. However, the latest, stable version of Apache Jena
on Android was released for the outdated Jena (version 2.7.0), on August 7, 2012. This
indicates that also this project has been abandoned for good. (3) Jena Android (2019) is
the most recent project started in November 2014. Unlike other Jena ports for Android,
it does not publish deployment-ready binaries, but provides Maven (Apache maven 2019)
build files of the port. The collection of scripts only automate the entire process. While
compiling, Maven is instructed to replace and repack all missing dependencies. Thanks to
this, everyone receives a fully automated tool that can compile Jena and its dependencies.
Moreover, this project works with the latest Jena (version 3.12.0, updated May 2019).

Taking into account that all three projects ware not updated for more than a year after
their initial release, we decided to utilize Jena Android in the GliderAgent system. First of
all, this project was the most promising because it does not depend on its own development
cycle. Secondly, it is a collection of scripts that can be easily updated. Last but not least, we
have successfully use this project in our previous work presented in detail in Ganzha et al.
(2014). Specifically, we used Jena Android to implement an agent brain composed of a set
of rules.

Our implementation of agent intelligence requires the following libraries: i) jena-core,
ii) jena-iri, iii) slf4j-api, iv) xercesImpl and v) xml-apis. These libraries can be roughly
divided into three subsets: 1) Jena, 2) SLF4J, 3) Xerces. Here, SLF4J (Simple logging
facade for java 2019) and Xerces (Apache xerces 2019) are external projects. SLF4J (Sim-
ple Logging Facade for Java, 1.5.8 released in August 2009) serves as a simple abstraction
for various logging frameworks. It allows the user to plug-in the desired logging framework
at the deployment time. The SLF4J for Android can be downloaded from the SLF4J web-
site. The Xerces (licensed to the Apache Software Foundation, 2.11.0 released in October
2014), is intended for creation and maintenance of XML parsers. Unfortunately, Xerces uses
javax.* namespace (which is not available in Android) and, thus, had to be rewritten. Lucky,
Maven builds from Jena Android refractors all namespaces on-the-fly during compiling.

Author's personal copy



Journal of Intelligent Information Systems

After addressing all technical difficulties, let us describe how all components come
together. The component diagram is presented in Fig. 4. There, we can see two software
components: (1) Jena and (2) JADE agent. During the initialization, a pair – an ontology and
a set of rules – is loaded into Jena. They represent the knowledge base of the system. Within
the “brain”, the ontology is stored as an instance of the InfModel class. Next, the facts are
transformed into triples (object, predicate, subject) compliant with the loaded ontology. All
triples are sent to Jena, in order to update the InfModel. Note that the InfModel is a hybrid
of two different instances of the Model class: (i) the Ontology Model, and (ii) the Deduc-
tion Model. The Ontology Model stores all initial facts (loaded with the ontology) and the
inserted triples (added by the JADE agent). On the other hand, the Deduction Model stores
all facts inferred by matching rules against the ontology. When a new triple is added to the
Ontology Model, Jena runs its implementation of the RETE algorithm. During this process,
new inferred facts are added to the Deduction Model. The RETE algorithm runs until there
are no rules to fire.

To illustrate how the ‘brain‘ operates, let us analyse a simplified example of an ontology
and a set of rules presented in Listing 1. The ontology contains a set of fact about a battery
on the glider. Each rule is composed of label, condition and inferred fact. For example,
the log critical rule can be read as “if object D has a property power equal to A and A is
equal to Critical, then D also have loglevel equal to ErrorOnly”. The variables D and A
will be equal to the object representing our glider (it is the only subject having the property
power) and to its power level (a number between 0 and 100). JADE agent analyses its the
environment (extracts facts). The Glider agent checks the battery power. Let us assume that
the new value is equal to 4. During the first iteration, the “brain” will fire the battery critical
rule, because the Glider agent modified the power property from its initial value of 100 to
4 (other conditions are not met). Thus, the “brain” will infer a new fact that the battery is
equal to Critical. During the second iteration, the algorithm will fire the log critical rule

Listing 1 Facts and rules used in the battery example

Author's personal copy



Journal of Intelligent Information Systems

because the first iteration fulfilled its condition (the power is equal to Critical). In the third
iteration, the algorithm will not fire any rule and stop execution.

Since a JADE agent is not “interested” in what it already knows (facts added to the
Ontology Model), Jena returns new triples from theDeduction Model. TheGlider agent will
be informed that the power property is now Critical and the loglevel is now ErrorOnly. In
order to improve the system performance, these triples are combined into batches. A batch
is sent when the algorithm completes the execution (all fulfilled rules were fired). Finally,
the JADE agent analyses the batch and executes the appropriate behavior.

Because all the reasoning takes place inside Jena, our “brain”, similarly to the Gateway
agent, can be easily run as a separate component in other projects. Namely, the set of facts
and rules are independent from the implementation, so Jena can reason on any data and
any rules. Moreover, since our components takes and returns triples, the ‘brain‘ can be used
without changes inside the source code.

It is worth to notice that the “brain” is an external component with respect to the JADE
agent. Thus, this component can be easily replace or “improved”, but, as long as it is
understood by the agent, the structure of the system does not change. This may lead to an
interesting dynamics between different agents using different “brains”. For example, they
can come up with their individual conclusions and, then, vote for the best one. As described
in Stadnik et al. (2008) and Ganzha et al. (2010), combining multiple information sources
(multiple “brains”) can be beneficial providing a proper strategy is used.

6 Running GliderAgent 3.0

To test the GliderAgent 3.0, we have set up a test environment. The GliderAgent agent
was installed on a Samsung Galaxy S7 Edge smart phone running Android 7.0 Nougat.
The Gateway was deployed on the Banana Pi (A20 ARM Coretx -A7 Dual-Core, 1GB
DDR3 RAM) running the latest Armbian (mainline kernel 4.14.y) (Bananian linux 2019)
and OpenJDK 7 (1.7.0 79). To emulate sensors feed and to execute scenarios, we used a
GliderEmulator (re-developed with the prototype). The GliderEmulator was deployed on
a Dell laptop (Intel Core i5-4200U, 16GB RAM). Each device was connected to the same
network. During the tests, we used the JADE platform in version 4.5 (released 2017-06-08).

In the first scenario, we tested the ability of the Gateway to detect and repair a critical
state. Let us assume that the GliderAgent is flying near an airport. The Gateway receives
sensors feed from the battery. Suddenly, the battery power level reaches a critical state and
the remaining battery power is equal to 0%. However, after short time, the battery power
level is back to a “normal state”. The same situation repeats few more times. First, the Gate-
wayMaster should detect a malfunction of the system (it is constantly switching between
critical and normal states) and try to repair it by rebooting defective agents (in our case the
battery connector agent). If the connector is still sending contradictory information, then
the GatewayMaster should inform the GliderAgent agent about it.

In Fig. 5, we can see the output from the GatewayMaster and the JADE AMS. First, the
battery connector agent is killed by the GatewayMaster and, then, it is recreated. However,
the battery connector continuously sends contradicting messages. As a result, the Gateway-
Master “kills” the battery connector agent once more, and informs the GliderAgent about
it. Shortly after, a message is displayed on the smart phone screen that “battery sensor may
be broken.”

In the second scenario, we test the ability of the GliderAgent agent to interfere facts,
based on different sources of information. The GliderAgent agent receives a GPS feed

Author's personal copy



Journal of Intelligent Information Systems

Fig. 5 Running theGatewayMaster on BananaPi

from the GliderEmulator. Moreover, it receives sensed data from the sensors. To rep-
resent sensed data, the system utilizes Semantic Sensor Network Ontology (or SSN in
short) (Semantic sensor network ontology 2019). In Listing 2, the battery power level
sensor (BatteryPowerLevelSensor 1) makes an observation (PowerLevelObservation 0).
PowerLevelObservation 0 states that the glider battery (Battery 1) has its power level (Pow-
erLevelMeasurementValue) equal to 50%. Based on such information, the GliderAgent
agent can optimize the power consumption with respect to the context. Furthermore, the
system can communicate with other sensors which describe their data in SSN.

In Listing 3, we can see fragments of the glider ontology used to describe gliders and their
status (geo-position, sensed data, parameters). The ontology was created based on our many
years of experience with the GliderAgent system and was fine-tuned for the “brain” com-
ponent (Ganzha et al. 2014). Following the ontology, the listing contains a set of rules that
detect low batter level and low oxygen pressure. Each time the GliderAgent agent receives
a geo-position or sensed data, the glider ontology is updated. This action can trigger execu-
tion of the RETE algorithm. Here, the “brain” interferes new facts based on many sources of
information. For example, log1 and log2 determine the GliderAgent agent log level, where
0 stands for “all”, 1 for “warning” and 2 for “critical”. In the “Training” flight mode, every-
thing is logged (the system does not care about the battery level; see, Section 2.3). However,
in other modes (e.g. in/flying, in particular, see Section 2.2), if the battery level is below
a threshold (in our case 0.15), no warning messages will be displayed. The GliderAgent is
aware of its context and adjusts resources to its need. During the “Training” flight, the Glid-
erAgent displays all notifications (the system assumes that the glider is being piloted by as
inexperienced pilot who needs more information). For this scenario, we model two types of
warnings: (1) low oxygen level generated at 9842.52 ft (3000 m above the sea level), and (2)
critical oxygen level generated at 13123.36 ft (4000 m above the sea level). At the beginning
of the scenario, the glider stays on the ground at the altitude of 0 m. Next, the GliderAgent
agent starts to receive information generated by the GliderEmulator, which runs on PC and
is connected to the same network. The position of the glider and its altitude start to change
when the scenario is executed. It is assumed that the glider is conducting a lee-wave flight,
and its altitude is increasing fast. Each time, when an agent receives data from sensors, the
Ontology Model is modified accordingly. Namely, the position of the glider changes with
respect to the GPS feed. Depending on the context (here, it is set to the “Training” flight) and
the battery level, the GliderAgent agent decides to display a warning message. In this case,

Author's personal copy



Journal of Intelligent Information Systems

Listing 2 Sensed data represented in Semantic Sensor Network Ontology

Author's personal copy



Journal of Intelligent Information Systems

Listing 3 Facts and rules used in the second scenario

the Cyber part of our system has successfully “combined” information from two different
IoT devices and a context.

7 GliderAgent 3.0 as a general purpose cyber-physical system
modeling platform

During the development of GliderAgent 3.0, we made three important observations. (1) The
GliderAgent system is composed of interchangeable components, which can be modified
or replaced depending on the context/use case scenario. (2) It has many features of a cyber-
physical system (e.g. sensors, human-in-the-loop, intelligence and proactive behavior). (3)
It features a possible solution to the problem of interconnecting heterogeneous IoT devices
(and even platforms). Henceforth, let us now reflect how the GliderAgent system can be
adapted to other scenarios.

Cyber-physical systems can be found in areas as diverse as aerospace, automotive,
communication, infrastructure, energy, healthcare, manufacturing, transportation, robotics,

Author's personal copy



Journal of Intelligent Information Systems

consumer appliances and so on. To create a general purpose cyber-physical system that can
be easily adapt to a variety of different scenarios is not a simple tasks. Starting from the pro-
totype of the GliderAgent system in 2011, we came a long way during which we upgraded
the components from “glider system specific” to more general. As a result, the GliderAgent
system has three main components: a) the Gateway, b) the “brain”, and c) the emulator.

As shown in Section 5.1, and as proved experimentally, the Gateway can connect a
JADE platform with “almost anything.” In version 1.0 and 2.0, the Gateway was used to
exchange messages between the JADE and MAPS platforms. Thanks to our experience
with SunSpots (devices with very limited resources) and the WSN, we were able to cre-
ate a highly-optimized and efficient tool. In version 3.0, the Gateway communicates with
other non-JADE modules (i.e. Raspberry Pi, Banana Pi, PC) via connector agents and Com-
munication Modules. Depending on the scenario, the Gateway could receive feeds from
smart-meters via wi-fi or Bluetooth (to be used in “smart grid scenarios”), or health infor-
mation from smart-bands (to be applied in “healthcare scenarios”). As a matter of fact, for
plain curiosity we have managed to connect devices within our system using both Bluetooth
and Wi-fi. Moreover, it can be run on other devices than a PC, such as single-board com-
puters or smart-phones (using a slightly adapted JadeAndroid). Here, we have checked that
the system can gather information from multiple sources via different communication chan-
nels. It is worth noting that the Gateway does not require significant modifications in its
internal stucture (only Communication Modules are changed). In this way the Gateway can
be seen as a generic middleware that provides a bridge between heterogeneous IoT devices
(platforms) and the Cyber part of the CPS.

Thanks to our novel approach to infusing JADE agent with “intelligence”, based on
semantic technologies and a rule-based engine, the GliderAgent agent can be easily adapted
to multiple contexts. The key to achieve this was obtained by separating the application
logic from the compiled source code. In our approach, changes related to “reasoning,” intro-
duced to the system are reflected in the ontology (which can be reloaded at any moment)
and, in most cases, should not require restating the entire application. This allows to update
an agent knowledge base, and a set of rules, to be performed “on-the-fly.’’

In the most “twisted” scenario, one can successfully replace the entire “brain” of an
agent, as long as there are no need for changes in the source code. For example, the Glid-
erAgent could instantly become a SmartGridAgent that displays warning/error messages
about devices in the smart grid, based on the sensed information. The only operation that is
actually needed is to replace the ontology and provide the new sensor feed. Of course, we
assume that in both cases the same functions (including the text of the messages) are used
to display messages on the mobile device, thus no new code is introduced. Obviously, this
scenario is somewhat strange, but the main idea holds. Overall, the GliderAgent 3.0 became
a general platform that allows one to easily instantiate multiple, different, cyber-physical
systems.

It should be noted that the proposed approach is conceptually close to the way that the
“world of travel” attempts at integrate available services using the Open Travel Alliance
(OTA, Opentravel alliance (2019)) messaging standard. The OTA developed a set of XML-
based travel-world describing messages that cover “all” key travel scenarios (e.g. searching
for a hotel with given properties, and making reservations). Here, each player in the “world
of travel” can use its own local data storage and processing mechanisms and, as long as
it can send/receive/understand OTA messages, it can successfully communicate with other
players. Similarly, in the GliderAgent system, heterogeneous sensor feeds are translated to
formatted strings represented in the common ontology. Next, the reasoner is used to infer
what action (if any) the system should undertake. Henceforth, adding an additional device

Author's personal copy



Journal of Intelligent Information Systems

would require establishing a new connector agent (and CommunicationModule within the
Gateway, and modification of the ontology and the rules.

8 Concluding remarks, future directions

In the paper we have described the developments that led to the implementation of the
GliderAgent version 3.0. During this process, we have faced unique challenges that required
a novel solutions that are descried in details in their respective sections. Naming a few, we
can highlight: a) creating an interoperable and general-purpose gateway (Section 5.1) b)
running agents on mobile devices (Section 5.2), c) providing an “inteligent” way to process
userś input in MAS (Section 5.3).

Moreover, we have also shown, how this newest, modular, version of the GliderAgent
can become a general purpose Cyber-Physical platform that, thanks to the utilization of
a rule-based engine system, can be easily adapted to other CPS scenarios. Namely, the
proposed “brain” for agents can contain any set of facts and rules. Furthermore, it was
argued that the use of semantic processing simplifies dealing with the problem of combining
multiple heterogeneous Internet of Things devices (sensors and actuators) within a single
Cyber-Physical System.

Since our recent work focuses mainly on the “intelligent” part of the system, there is still
an open question of how the GliderAgent system can cooperate with other projects like the
OGN network. In this paper, we laid down the foundation for a discussion by pointing out
similarities and differences between these two systems.

In the near future we plan to, first, apply the developed system to the smart grid sce-
nario(s) to validate our claims that the GliderAgent is a general CPS platform. We also plan
to initiate studies concerning scalability of the approach.

References

Gab, A., Andreou, P., Ganzha, M., Paprzycki, M. (2010). GliderAgent—a proposal for an agent-based glider
pilot support system. In 2010 15th international conference on methods and models in automation and
robotics (MMAR), (pp. 55–60). https://doi.org/10.1109/MMAR.2010.5587263.

Domanski, J.J., Dziadkiewicz, R., Ganzha, M., Gab, A., Mesjasz, M.M., Paprzycki, M. (2012). Implementing
glideragent—an agent-based decision support system for glider pilots. In: Software agents, agent systems
and their applications, IEEE Press, pp. 222-244.

XCSoar (2019). http://www.xcsoar.org/.
Jennings, N., & Wooldridge, M. (2001). Agent-oriented software engineering, Handbook of Agent Technol-

ogy.
Sun SPOT (2019). http://www.sunspotworld.com/.
Java agent development framework (2019). http://jade.tilab.com/.
Mesjasz, M., Cimadoro, D., Galzarano, S., Ganzha, M., Fortino, G., Paprzycki, M. (2013). Integrating jade

and maps for the development of agent-based wsn applications. In Intelligent distributed computing
VI: Proceedings of the 6th international symposium on intelligent distributed computing - IDC 2012,
Calabria, Italy, September 2012 (pp. 211–220). Berlin: Springer.

What is a raspberry pi (2019). https://www.raspberrypi.org/.
Banana pi – a highend single-board computer (2019). http://www.bananapi.org/.
Cyber-physical systems (2012). http://cyberphysicalsystems.org/.
IDEAS’2020: A Tour of Tomorrow’s World (2019). http://www.ideen2020.de/en/2993/.
Internet of things towards ubiquitous and mobile computing (2019). http://research.microsoft.com/en-us/um/

redmond/events/asiafacsum2010/presentations/guihai-chen oct19.pdf.
Nwana, H.S., & Ndumu, D.T. (1999). A perspective on software agents research. Knowl. Eng. Rev., 14(2),

125–142. https://doi.org/10.1017/S0269888999142012.

Author's personal copy

https://doi.org/10.1109/MMAR.2010.5587263
http://www.xcsoar.org/
http://www.sunspotworld.com/
http://jade.tilab.com/
https://www.raspberrypi.org/
http://www.bananapi.org/
http://cyberphysicalsystems.org/
http://www.ideen2020.de/en/2993/
http://research.microsoft.com/en-us/um/redmond/events/asiafacsum2010/presentations/guihai-chen_oct19.pdf
http://research.microsoft.com/en-us/um/redmond/events/asiafacsum2010/presentations/guihai-chen_oct19.pdf
https://doi.org/10.1017/S0269888999142012


Journal of Intelligent Information Systems

Belecheanu, R., Munroe, S., Luck, M., Payne, T.R., Miller, T., McBurney, P., Pechoucek, M. (2006).
Commercial applications of agents: lessons, experiences and challenges. In: 5th International Joint Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12,
2006, pp. 1549–1555. https://doi.org/10.1145/1160633.1160932.

Ganzha, M., & Lakhmi, J.C. (2009). Multiagent systems and applications. New York: A John Wiley and
Sons, Ltd.

Airspace in the U.S., f.rom.t.he.F.’sA.eronautical.I.nformation.M.anual. (2019). http://www.faa.gov/air
traffic/publications/ATpubs/AIM/TOC.html (2010.02.04).

FLARM (2019). http://www.flarm.com/.
Altitude sickness (2019). http://www.altitude.org/altitude sickness.php.
Soar (2019). http://www.aeroclub.student.kuleuven.ac.be/lvzc/soar/.
Seeyou mobile (2019). http://www.naviter.com/products/seeyou-mobile/.
WinPilot (2019). http://www.winpilot.com/.
Skylines (2019). https://skylines.aero/.
Atkins, E.M., Durfee, E.H., Shin, K.G. (1999). Autonomous flight with circa-ii. In Autonomous Agents’99

workshop on autonomy control software.
Hook, M., Romsey, H., Purcell, A., Watkin, R. (2007). Autonomous soaring. In Autonomous systems, 2007

institution of engineering and technology conference.
IDC: Analyze the Future (2019). http://www.idc.com/prodserv/smartphone-os-market-share.jsp.
Android system (2019). http://www.android.com/.
Google (2019). http://www.google.com/intl/en/about/.
Apache license (2019). http://www.apache.org/licenses/.
Android lollipop (2019). https://www.android.com/versions/lollipop-5-0/.
Apple watch (2019). https://www.apple.com/watch/.
Android wearable (2019). https://developer.android.com/wear/.
Arduino (2019). https://www.arduino.cc/.
Mobile-c (2019). http://www.mobilec.org/.
The Foundation of Intelligent Physical Agents (FIPA) (2019). http://www.fipa.org/.
Jadex (2019). http://sourceforge.net/projects/jadex/.
Jason (2019). http://jason.sourceforge.net/.
Chmiel, K., Gawinecki, M., Kaczmarek, P., Szymczak, M., Paprzycki, M. (2005). Efficiency of jade agent

platform. Sci. Program., 13(2), 159–172.
Aiello, F., Fortino, G., Gravina, R., Guerrieri, A. (2011). A java-based agent platform for programming

wireless sensor networks. Comput. J., 54(3), 439–454.
Sun Small Programmable Object Technology (Sun SPOT) (2012). Documentation and software. http://www.

sunspotworld.com.
Web Oriented JavaBeans and Swing (2019). http://java.net/projects/swingx-ws/.
OpenStreetMaps (2019). http://www.openstreetmap.org/.
Caire, G., & Pieri, F. (2011). LEAP User Guide. http://jade.tilab.com/doc/tutorials/LEAPUserGuide.pdf,

Technical Report.
JADE Android add-on Guide (2019). http://jade.tilab.com/doc/tutorials/JADE ANDROID Guide.pdf.
Java se for arm (2019). http://www.oracle.com/technetwork/java/javase/downloads/jdk8-arm-downloads-

2187472.html.
Frackowiak, G., Ganzha, M., Gawinecki, M., Paprzycki, M., Szymczak, M., Badica, C., Han, Y.,

Park, M. (2009). Adaptability in an agent-based virtual organization. IJAOSE, 3(2/3), 188–211.
https://doi.org/10.1504/IJAOSE.2009.023636.

Frackowiak, G., Ganzha, M., Paprzycki, M., Szymczak, M., Han, Y., Park, M. (2008). Adaptability in
an agent-based virtual organization - towards implementation. In: Web information systems and tech-
nologies, 4th international conference, WEBIST 2008, Funchal, Madeira, Portugal, May 4-7, Revised
Selected Papers, 2008, pp. 27–39. https://doi.org/10.1007/978-3-642-01344-7 3.

Ganzha, M., Mesjasz, M.M., Paprzycki, M., Ouedraogo, M. (2014). Inserting “brains” into software agents–
preliminary considerations. In: Internet and distributed computing systems, Springer International
Publishing, pp. 3–14.

ROOLIE – A Simple Java Rule Engine (2019). http://roolie.sourceforge.net/.
JBoss Tools – Drools (2019). http://tools.jboss.org/features/drools.html.
Openl tables (2019). http://openl-tablets.sourceforge.net/.
androjena – jena android porting (2019). https://code.google.com/p/androjena/.
Apache jena on android (2019). http://elite.polito.it/index.php/research/downloads/182-jena-on-android-

download.
Apache jena for android (2019). https://github.com/seus-inf/jena-android.

Author's personal copy

https://doi.org/10.1145/1160633.1160932
http://www.faa.gov/air{_}traffic/publications/ATpubs/AIM/TOC.html
http://www.faa.gov/air{_}traffic/publications/ATpubs/AIM/TOC.html
http://www.flarm.com/
http://www.altitude.org/altitude_ sickness.php
http://www.aeroclub.student.kuleuven.ac.be/lvzc/soar/
http://www.naviter.com/products/seeyou-mobile/
http://www.winpilot.com/
https://skylines.aero/
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.android.com/
http://www.google.com/intl/en/about/
http://www.apache.org/licenses/
https://www.android.com/versions/lollipop-5-0/
https://www.apple.com/watch/
https://developer.android.com/wear/
https://www.arduino.cc/
http://www.mobilec.org/
http://www.fipa.org/
http://sourceforge.net/projects/jadex/
http://jason.sourceforge.net/
http://www.sunspotworld.com
http://www.sunspotworld.com
http://java.net/projects/swingx-ws/
http://www.openstreetmap.org/
http://jade.tilab.com/doc/tutorials/LEAPUserGuide.pdf
http://jade.tilab.com/doc/tutorials/JADE_ANDROID_Guide.pdf
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-arm-downloads-2187472.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-arm-downloads-2187472.html
https://doi.org/10.1504/IJAOSE.2009.023636
https://doi.org/10.1007/978-3-642-01344-7_3
http://roolie.sourceforge.net/
http://tools.jboss.org/features/drools.html
http://openl-tablets.sourceforge.net/
https://code.google.com/p/androjena/
http://elite.polito.it/index.php/research/downloads/182-jena-on-android-download
http://elite.polito.it/index.php/research/downloads/182-jena-on-android-download
https://github.com/seus-inf/jena-android


Journal of Intelligent Information Systems

Apache maven (2019). https://maven.apache.org/.
Simple logging facade for java (2019). http://www.slf4j.org/.
Apache xerces (2019). http://xerces.apache.org/.
Stadnik, J., Ganzha, M., Paprzycki, M. (2008). Are many heads better than one—on combining information

from multiple internet sources . Intel. Distr. Comput. Syst. Appl., 162, 177–186.
Ganzha, M., Paprzycki, M., Stadnik, J. (2010). Combining information from multiple search engines-

preliminary comparison. Inf. Sci., 180, 1908–1923.
Bananian linux (2019). https://www.armbian.com/.
Semantic sensor network ontology (2019). https://www.w3.org/2005/Incubator/ssn/ssnx/ssn/.
Opentravel alliance (2019). http://www.opentravel.org/.
Pintea, C.-M., Tripon, A.C., Avram, A., Crişan, G.-C. (2018). Multi-agents features on Android platforms.

Complex Adaptive Systems Modeling, 6(1), 1 0. https://doi.org/10.1186/s40294-018-0061-7.
Open Glider Network tracking protocol. Open Glider Network. http://wiki.glidernet.org/ogn-tracking-

protocol.
Fortino, G., Gravina, R., Guerrieri, A., Di Fatta, G. (2013). Engineering Large-scale Body Area Networks

Applications. In Proceedings of the 8th International Conference on Body Area Networks (pp. 363–369).
ICST, Brussels: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering). https://doi.org/10.4108/icst.bodynets.2013.253721.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Author's personal copy

https://maven.apache.org/
http://www.slf4j.org/
http://xerces.apache.org/
https://www.armbian.com/
https://www.w3.org/2005/Incubator/ssn/ssnx/ssn/
http://www.opentravel.org/
https://doi.org/10.1186/s40294-018-0061-7
http://wiki.glidernet.org/ogn-tracking-protocol
http://wiki.glidernet.org/ogn-tracking-protocol
https://doi.org/10.4108/icst.bodynets.2013.253721

	Modeling cyber-physical systems – a GliderAgent 3.0 perspective
	Abstract
	Introduction
	Need for glider pilot support
	Electronic equipment in gliding
	Typology of glider flying
	Supporting glider pilots – foundations

	State-of-the-art in related areas
	Software supporting glider pilots
	Open glider network
	``Intelligence'' in flying/gliding
	Mobile devices
	Personal sensors
	New generation of computer hardware
	Software agent platforms



	Architecture of the GliderAgent system
	Summary of functionality
	GliderAgent 1.0 – implementation and testing

	Key novel elements of GliderAgent 2.0
	A general purpose gateway
	Running GliderAgent on android
	Reasoning for GliderAgent agents

	Running GliderAgent 3.0
	GliderAgent 3.0 as a general purpose cyber-physical system modeling platform
	Concluding remarks, future directions
	References


