
Generalizing Matrix Multiplication for Efficient

Computations on Modern Computers

Stanislav G. Sedukhin1 and Marcin Paprzycki2

1 The University of Aizu, Aizuwakamatsu City, Fukushima 965-8580, Japan
sedukhin@u-aizu.ac.jp

2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland
marcin.paprzycki@ibspan.waw.pl

Abstract. Recent advances in computing allow taking new look at ma-
trix multiplication, where the key ideas are: decreasing interest in re-
cursion, development of processors with thousands (potentially millions)
of processing units, and influences from the Algebraic Path Problems.
In this context, we propose a generalized matrix-matrix multiply-add
(MMA) operation and illustrate its usability. Furthermore, we elaborate
the interrelation between this generalization and the BLAS standard.

Keywords: matrix matrix multiplication, algebraic semiring, path
problem, fused multiply add, BLAS, matrix data manipulation.

1 Introduction

Dense matrix multiplication is widely used in solution of computational problems.
Despite its simplicity, the arithmetic complexity and data dependencies make it
difficult to reduce its run-time complexity. The two basic approaches to decrease
the run-time of matrix multiplication are: (1) reducing the number of scalar multi-
plications, while increasing the number of scalar additions/subtractions
(and introducing irregularity of data access, as well as need for extra memory; see,
discussion in [1]), and (2) parallel implementation of matrix multiplication (see,
for example [2] and references found there). Of course, a combination of these two
approaches is also possible (see discussion and references in [3–5]).

The (recursive) matrix multiplication “worked well” in theoretical analysis of
arithmetical complexity, and when implemented on early computers. However,
its implementation started to became a problem on computers with hierarchical
memory (e.g. to reach optimal performance of a Strassen-type algorithm, recur-
sion had to be stopped when the size of divided submatrices approximated the
size of cache memory—differing between machines; see, [6, 7]), which contradicts
the very idea of recursion. Furthermore, practical implementation of Strassen-
type algorithms requires extra memory (e.g. Cray’s implementation Strassen’s
algorithm required extra space of order 2.34 · n2). The situation became even
more complex when parallel Strassen-type algorithms have been implemented [5].
Interestingly, the research in recursive matrix multiplication seems to be dimin-
ishing, with the last paper known to the authors’ published in 2006.

R. Wyrzykowski et al. (Eds.): PPAM 2011, Part I, LNCS 7203, pp. 225–234, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



226 S.G. Sedukhin and M. Paprzycki

In addition to the standard (linear-algebraic) matrix multiplication, a more
general matrix multiplication appears as a kernel of algorithms solving the Alge-
braic Path Problem (APP). Here, the examples are: finding the all-pairs shortest
paths, finding the most reliable paths, etc. In most of them, a generalized form
of a C ← C ⊕ A ⊗ B matrix operation plays a crucial role in finding the solu-
tion. This, generalized, matrix multiplication is based on the algebraic theory
of semirings (for an overview of computational issues in the APP, and their re-
lation to the theory of semirings, see [8], and references collected there). Note
that standard linear algebra (with its matrix multiplication) is just one of the
examples of algebraic (matrix) semirings.

While algebraic semirings can be seen as a simple “unification through general-
ization” of a large class of computational problems, they should be viewed in the
context of ongoing changes in computer (processor) architectures. Specifically,
the success of fused multiply-and-add (FMA) units, which take three scalar (in)
operands and produce a single (out) result within a single clock cycle. Further-
more, GPU processors from Nvidia and AMD combine multiple FMA units (e.g.
the Nvidia’s Fermi chip allows 512 single-precision FMA operations completed
in a single cycle; here, we omit issues concerning the data-feed bottleneck).

Our aim is to combine: (a) fast matrix multiplication, (b) mathematics of
semirings, and (c) trends in computer hardware, to propose a generalized matrix
multiplication, which can be used to develop efficient APP solvers.

2 Algebraic Semirings in Scientific Calculations

Since 1970’s, a large number of problems has been combined under a single
umbrella, named the Algebraic Path Problem (APP ; see [9]). Furthermore, it
was established that the matrix multiply-and-add (MMA) operations, in different
algebraic semirings, are used as a centerpiece of various APP solvers.

A closed semiring (S,⊕,⊗, ∗, 0̄, 1̄) is an algebraic structure defined for a set
S, with two binary operations: addition ⊕ : S × S → S and multiplication
⊗ : S×S → S, a unary operation called closure � : S → S, and two constants 0̄
and 1̄ in S. Here, we are particularly interested in the set S consisting of matrices.
Thus, following [9], we introduce a matrix semiring (Sn×n,

⊕
,
⊗

,�, Ō, Ī) as a
set of n × n matrices Sn×n over a closed scalar semiring (S,⊕,⊗, ∗, 0̄, 1̄) with
two binary operations, matrix addition

⊕
: Sn×n × Sn×n → Sn×n and matrix

multiplication
⊗

: Sn×n × Sn×n → Sn×n, a unary operation called closure of a
matrix � : Sn×n → Sn×n, the zero n× n matrix Ō whose all elements equal to
0̄, and the n× n identity matrix Ī whose all main diagonal elements equal to 1̄
and 0̄ otherwise. Here, matrix addition and multiplication are defined as usually
in linear algebra. Note that the case of rectangular matrices can be dealt with
satisfactorily, and is omitted for clarity of presentation.

As stated, large number of matrix semirings appear in well-studied APP’s.
We summarize some of them in a table (similar to that presented in [10]). For
simplicity of notation, in the Table 1, we represent them in the scalar form.
Note that the Minimum reliability path problem has not been encountered by



Matrix Multiplication for Efficient Computations on Modern Computers 227

Table 1. Semirings for various APP problems

S ⊕ ⊗ � 0̄ 1̄ Application

(0, 1) ∨ ∧ 1 0 1 Transitive and reflexive closure of binary relations
R ∪+∞ + × 1/(1−r) 0 1 Matrix inversion
R+∪+∞ min + 0 ∞ 0 All-pairs shortest paths problem
R+∪−∞ max + 0 -∞ 0 Maximum cost (critical path)
[0, 1] max × 1 0 1 Maximum reliability paths
[0, 1] min × 1 0 1 Minimum reliability paths
R+∪+∞ min max 0 ∞ 0 Minimum spanning tree
R+∪−∞ max min 0 -∞ 0 Maximum capacity paths

the authors before. It was defined on the basis of systematically representing
possible semirings—as a natural counterpart to the Maximum reliability problem
(the only difference is the ⊕ operation:min instead ofmax). Since the maximum
reliability path defines the best way to travel between two vertices of a graph; the
Minimum reliability problem could be interpreted as: finding the worst pathway,
one that should not be “stepped into”).

While Table 1 summarizes the scalar semirings, and scalar operations, kernels
of blocked algorithms for solving the APP, are based on (block) MMA opera-
tions [11]. Therefore, let us present the relation between the scalar multiply-
and-add operation (ω), and the corresponding MMA kernel (α), for semirings in
Table 1 (here, Nb is the size of a matrix block; see, also [12]):

– Matrix Inversion Problem:
(α) a(i, j) = a(i, j) +

∑Nb−1
k=0 a(i, k)× a(k, j);

(ω) c = a× b+ c;
– All-Pairs Shortest Paths Problem:

(α) a(i, j) = min
{
a(i, j),minNb−1

k=0 [a(i, k) + a(k, j)]
}
;

(ω) c = min(c, a+ b);
– All-Pairs Longest (Critical) Paths Problem:

(α) a(i, j) = max
{
a(i, j),maxNb−1

k=0 [a(i, k) + a(k, j)]
}
;

(ω) c = max(c, a+ b);
– Maximum Capacity Paths Problem:

(α) a(i, j) = max
{
a(i, j),maxNb−1

k=0 min[a(i, k), a(k, j)]
}
;

(ω) c = max[c,min(a, b)];
– Maximum Reliability Paths Problem:

(α) a(i, j) = max
{
a(i, j),maxNb−1

k=0 [a(i, k)× a(k, j)]
}
;

(ω) c = max(c, a× b);
– Minimum Reliability Paths Problem:

(α) a(i, j) = min
{
a(i, j),minNb−1

k=0 [a(i, k)× a(k, j)]
}
;

(ω) c = min(c, a× b);
– Minimum Spanning Tree Problem:

(α) a(i, j) = min
{
a(i, j),minNb−1

k=0 [max
(
a(i, k), a(k, j)]

}
;

(ω) c = min[c,max(a, b)].



228 S.G. Sedukhin and M. Paprzycki

Summarizing, the generalized MMA is one of the key operations for solving APP
problems, and a large class of standard MMA-based numerical linear algebraic
algorithms. Note that, this latter class includes most of block-oriented formula-
tions of standard problems involving the level 3 BLAS operations [13].

3 Matrix Operations and Computer Hardware:
Today and in the Near Future

In the late 1970’s it was realized that many algorithms for matrix computations
consist of similar building blocks (e.g. a vector update, or a dot-product). As a
result, first, during the design of the Cray-1 supercomputer, vector operations of
type y ← y+α ·x (where x and y are n-element vectors, while α is a scalar) have
been efficiently implemented in the hardware. Specifically, vector processors have
been designed with chaining of multiply-and-add operations [14]. Here, results
of the multiply operations have been forwarded directly from the multiplication
unit to the addition unit. Second, in 1979, the (level 1) BLAS standard was pro-
posed [15], which defined, a set of vector operations. Here, it was assumed that
computer vendors would provide their efficient hardware (and software) realiza-
tions. In this spirit, Cray Inc. built computers with efficient vector updates, and
developed the scilib library; while the IBM build the ES/9000 vector comput-
ers with efficient dot-product operation, and developed the ESSL library. This
library was later ported to the IBM RS/6000 workstations; the first commercial
computer to implement the fused multiply-add (FMA) operation [16]). Following
this path, most of today advanced processors from IBM, Intel, AMD, Nvidia,
and others include scalar floating-point fused multiply-add (FMA) instruction.

The FMA operation combines two basic floating-point operations (flops) into
one (three-read-one-write) operation with only one rounding error, throughput
of two flops per cycle, and a few cycles latency – depending on the depth of the
FMA pipeline. Besides the increased accuracy, the FMA minimizes operation
latency, reduces hardware cost, and chip busing [16]. The standard floating-point
add, or multiply, are performed by taking a = 1.0 (or b = 1.0) for addition, or
c = 0.0 for multiplication. Therefore, the two floating-point constants, 0.0 and
1.0, are needed (and made available within the processor).

FMA-based kernels speed-up (∼ 2×) solution of many scientific, engineer-
ing, and multimedia problems, which are based on the linear algebra (matrix)
transforms [17]. However, other APP problems suffer from lack of hardware sup-
port for the needed scalar FMA operations (see, Table 1). The need for min
or/and max operations in the generalized MMA operations introduces one or
two conditional branches or comparison/selection instructions, which are highly
undesirable for deeply pipelined processors. Recall that each of these operations
is repeated Nb-times in the corresponding kernel (see, Section 2), while the ker-
nel itself is called multiple times in the blocked APP algorithm. Here, note the
recent results (see, [12]), concerning evaluation of the MMA operation in differ-
ent semirings, on the Cell/B.E. processor. They showed that the “penalty” for
lack of the generalized FMA unit may be up to 400%. This can be also viewed



Matrix Multiplication for Efficient Computations on Modern Computers 229

as: having an FMA unit, capable of supporting operations and special elements
from Table 1 could speed-up solution of APP problems by up to 4 times.

Interestingly, we have just found that the AMD Cypress GPU processor sup-
ports the (min,max)-operation through a single call with 2 clock cycles per
result. In this case, the Minimum Spanning Tree (MSP) problem (see, Table 1)
could be solved more efficiently than previously realized. Furthermore, this could
mean that the AMD hardware has −∞ and ∞ constants already build-in. This,
in turn, could constitute an important step towards hardware support of gener-
alized FMA operations, needed to realize all kernels listed in Table 1.

Let us now look into the recent trends in parallel hardware. In the 1990’s three
main designs for parallel computers were: (1) array processors, (2) shared mem-
ory parallel computers, and (3) distributed memory parallel computers. After
a period of dormancy, currently we observe a resurgence of array-processor-like
hardware, placed within a single processor. In particular, the Nvidia promises
processors consisting of thousands of computational (FMA) units. This perspec-
tive has already started to influence the way we write codes. For instance, one of
the key issues is likely to become (again) the simplicity and uniformity of data
manipulation, while accepting the price of performing seemingly unnecessary op-
erations. As an example, for sparse matrix operations, the guideline can be the
statement made recently by John Gustafson, who said: “Go Ahead, Multiply by
Zero!” [18]. His assumption, like ours, is that in the hardware of the future, cost
of an FMA will be so low, in comparison with data movement (and indexing),
that computational sparse linear algebra will have to be re-evaluated.

4 Proposed Generalized Multiply-Add Operation

Let us now summarize the main points made thus far. First, the future of effi-
cient parallel MMA is not likely to involve recursion, focused on reduction the
total number of scalar multiplications, while not paying attention to the cost
of data movement (and extra memory). Second, without realizing this, scien-
tists solving large number of computational problems, have been working with
algebraic semirings. Algebra of semirings involves not only standard linear al-
gebra, but also a large class of APP’s. Solutions to these problems involve gen-
eralized MMA (which, in turn, calls for hardware-supported generalized FMA
operations). Third, benefits of development of generalized FMA units, capable
of dealing with operations listed in Table 1 have been illustrated. Finally, we
have recalled that current trends of development of computer hardware point
to existence of processors with thousands of FMA units (possibly generalized),
similar to SIMD computers on the chip. Based on these considerations, we can
define the needed generic matrix multiply-and-add (MMA) operation

C← MMA[⊗,⊕](A, B, C) : C← A⊗ B⊕ C,

where the [⊗,⊕] operations originate from different matrix semirings. Note that,
like in the scalar FMA operations, generalized matrix addition or multiplication,
can be implemented by making an n × n matrix A (or B) = Ō for addition,



230 S.G. Sedukhin and M. Paprzycki

or a matrix C = Ī for multiplication (where the appropriate zero and identity
matrices have been defined in Section 2).

Observe that the proposed generalization allows a new approach to the de-
velopment of efficient codes solving a number of problems. On the one hand, it
places in the right context (and subsumes) the level 3 BLAS matrix multiplica-
tion (more in Section 5). On the other, the same concepts and representations
of operations can be used in solvers for the APP problems.

Let us stress that the idea is not only to generalize matrix multiplication via
application of algebraic semirings, but also to “step-up” use of the MMA as the
main operation for matrix algorithms. In this way, we should be able (among
others) to support processors with thousands of FMA cores. To illustrate the
point, let us show how generalized matrix multiplication can be used to perform
selected auxiliary matrix operations.

4.1 Data Manipulation by Matrix Multiplication

Observe that the MMA operation, which represents a linear transformation of a
vector space, can be used not only for computing but also for data manipulations,
such as: reordering of matrix rows/columns, matrix rotation, transposition, etc.
This technique is well established and widely used in the algebraic theory (see, for
example, [19]). Obviously, data manipulation is an integral part of a large class
of matrix algorithms, regardless of parallelism. Due to the space limitation, let us
show only how the MMA operation can be used for classical matrix data manip-
ulations, like the row/column interchange, and how it can be extended for more
complex data transforms, like th global reduction and replication (broadcast).

Row/Column Interchange. If zeros(n,n) is an n×n zero matrix and P(n,n)

is an n × n permutation matrix obtained by permuting the i-th and j-th rows
of the identity matrix In×n = eye(n, n) with i < j, then multiplication

D(n, n) = MMA[×,+]
(
P(n, n), A(n, n), zeros(n, n))

gives a matrix D(n,n) with the i-th and j-th rows of A(n,n) interchanged, and

D(n, n) = MMA[×,+]
(
A(n, n), P(n, n), zeros(n, n))

gives D(n,n) with the i-th and j-th columns of A(n,n) interchanged.

Global Reduction and Broadcast. A combination of the global reduction and
broadcast, also known in the MPI library as the MPI ALLREDUCE [20], is a very
important operation in parallel processing. It is so important that, for example,
in the IBM BlueGene/L, a special collective network is used, in addition to the
other available communication networks, including a 3D toroidal network [21].
However, this operation can be also represented as three matrix multiplications
in different semirings,

B(n, n) = ones(n, n)⊗ A(n, n)⊗ ones(n, n),



Matrix Multiplication for Efficient Computations on Modern Computers 231

where ones(n, n) is the n× n matrix of ones. For example, the reduction (sum-
mation) of all elements of a matrix A to the single scalar element and its repli-
cation (broadcast) to the matrix B can be completed by two consecutive MMA
operations in the (×,+)-semiring:

C(n, n) = MMA[×,+]
(
ones(n, n), A(n, n), zeros(n, n)

)
,

for summation of elements along columns of a matrix A(n, n), and then,

B(n, n) = MMA[×,+]
(
C(n, n), ones(n, n), zeros(n, n)

)
,

for summation of elements along the rows of an intermediate matrix C. For a
sample 4×4 matrix A, it will be completed as follows

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠×

⎛

⎜
⎜
⎝

1 2 3 4
5 6 7 8
4 3 2 1
8 7 6 5

⎞

⎟
⎟
⎠×

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

72 72 72 72
72 72 72 72
72 72 72 72
72 72 72 72

⎞

⎟
⎟
⎠ .

If the (×,max)-semiring is used in these operations, i.e. the scalar multiply-and-
add operation would be c = max(a × b, c), then the maximal element selection
and its broadcast can be implemented as

C(n, n) = MMA[×,max]
(
ones(n, n), A(n, n),−inf(n, n)),

B(n, n) = MMA[×,max]
(
C(n, n), ones(n, n),−inf(n, n)),

where −inf(n, n) is an n× n matrix of negative infinity. Thus, we have
⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠×

⎛

⎜
⎜
⎝

1 2 3 4
5 6 7 8
4 3 2 1
8 7 6 5

⎞

⎟
⎟
⎠×

⎛

⎜
⎜
⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

⎞

⎟
⎟
⎠ .

It is clear that the implementation of this operation in the (×,min)-semiring
with a matrix inf(n, n) will select the minimal element in the matrix A(n, n) and
its replication, or broadcast.

Interestingly, all these (and other possible) operations for a matrix data ma-
nipulation can be realized on an n×n torus array processor by using a single, or
multiple, MMA operation(s), without any additional interconnection networks
(see, [22]). For implementation of each n×n MMA operation on the torus array
processor, n time-steps are needed and, therefore, only 2n steps are required to
realize the global reduction and broadcast.

Note that basic elementary matrices, like eye(n, n), zeros(n, n), ones(n, n),
and ±inf(n, n), can be hardwired within an array processor, where each of their
elements is stored in the corresponding processing element. The other required
transform matrices can be formed within an array processor by using these
elementary matrices, and the corresponding MMA operations. In fact, as stated
above, todays’ advanced microprocessors already contain special registers for
storing the fundamental constants like floating-point 0.0, 1.0, or the ±∞. An
array of such microprocessors will, therefore, automatically include some of the
needed elementary matrices.



232 S.G. Sedukhin and M. Paprzycki

5 Relating BLAS to the Generalized MMA

In the final part of this paper, let us briefly look into the interrelation between the
proposed generalized MMA and the BLAS standard [15, 23, 13]. Due to the lack
of space we focus our attention on the level 3 BLAS [13] (the remaining two levels
require addressing some subtle points, and will be discussed separately). For
similar reasons, we also restrict our attention to square non-symmetric matrices.
However, these simplifications do not diminish generality of our conclusions.

In our work we are concerned with the generalized MMA in the form: C ←
C⊕A⊗B. This matches directly the definition of the level 3 BLAS GEMM routine,
which performs operation: C ← βC + αop(A)× op(B), while its arguments are:

GEMM(transa, transb, m, n, k, α, A, lda, B,ldb, β, C, ldc).

When using GEMM in computations, the “ ” is replaced by one of the letters
S, D, C, Z defining the type of matrices (real, double real, complex, and double
complex, respectively); while the transa and the transb specify if matrices A

and B are in the standard or in the transposed form.
Let us now relate the semiring-based MMA and the GEMM. To use the semir-

ing constructs in computations, we have to distinguish two aspects. First, the
information that is needed to specify the unique semiring and, second, specifica-
tion of operands of operations within that semiring. As discussed in Section 2,
to define a semiring we need to specify: (1) elements (S), (2) operations (⊕,⊗,�),
and (3) special elements (0̄ and 1̄), Obviously, the semiring defined by the BLAS
operations is the linear algebra semiring. Here, the only aspect of the semiring
that is explicitly defined, is the set of elements of the matrices. This definition
comes through the “naming convention” and is realized by the “ ” part of the
subroutine definition; selecting the type of the numbers (real, or complex) and
their computer representation (single, or double precision). The remaining parts
of the definition are implicit. It is assumed that the objects of the semiring
are matrices, while the elements 0̄ and 1̄ are matrices consisting of all zeros,
and the standard identity matrix, respectively. Here, operations are the basic
matrix multiplication, addition and closure. At the same time, the elements
m, n, k, α, A, lda, B, ldb, β, C, ldc define specific operands for the MMA.

An interesting issue concerns the transa and transb parameters. They spec-
ify if matrices A and B (respectively), used in the GEMM operation are in their
standard or transposed forms. From the point of view of the theory of semirings,
it does not matter if a matrix is transposed or not; what matters is if it belongs
to the set S. The difference occurs when the actual MMA is to be performed.
Therefore, the standard BLAS operation set allowed to combine matrix multi-
plication, scaling, and transpose operations into a single, relatively simple, code.
However, as illustrated in Section 4.1, in the case of the approach advocated in
this paper, where “everything is a matrix multiplication,” matrix scaling and
transpose also become matrix multiplications.

It should be noted that all, but three, remaining level 3 BLAS routines
also perform operations of the type C = βC + αop(A)op(B), for a variety



Matrix Multiplication for Efficient Computations on Modern Computers 233

of specific operands. The only exceptions are the HER2K, SYR2K pair, which
perform “double updates” of a matrix. Obviously they can be replaced by two
operations of the type C = βC+αop(A)op(B) performed in a row (two MMA’s).

The only operation that is not easily conceptualized, within the scope of the
proposal outlined thus far, is the TRSM which performs a triangular solve. Here
the matrix inversion operation (defined in Table 1), could be utilized; but the
requires further careful considerations.

6 Concluding Remarks

In this paper we have reflected on the effect that the recent developments in
computer hardware and computational sciences can have on the way that dense
matrix multiplication is approached. First, we have indicated that the arithmeti-
cal operation count (theoretical floating point complexity) looses importance;
becoming overshadowed by the complexity of data manipulations performed by
processors with hundreds of FMA processing units. Second, we have recalled that
the “standard” matrix multiplication is just one of possible operations within
an appropriately defined algebraic semiring. This allowed us to illustrate how
the semiring-based approach covers large class of APP problems. Finally, on the
basis of these considerations, we have proposed a generalized matrix multiply-
and-add operation, which allows to further induce efficient matrix multiplication
as the key operation driving solution methods not only in linear algebra, but also
across a variety of APP problems. Finally, we have outlined the relation of the
proposed matrix generalization to the level 3 BLAS standard.

In the near future we plan to (1) propose an object oriented model for the
generalized MMA (see, [24] for description of initial work in this direction), (2)
proceed with a prototype implementation, and (3) conduce experiments with the,
newly-defined, fused multiply-add operations involvingmin andmax operations.

Acknowledgment. Work of Marcin Paprzycki was concluded while visiting the
University of Aizu as a Research Scientist.

References

1. Robinson, S.: Towards an optimal algorithm for matrix multiplication. SIAM News
38 (2005)

2. Li, J., Skjellum, A., Falgout, R.D.: A poly-algorithm for parallel dense matrix
multiplication on two-dimensional process grid topologies. Concurrency - Practice
and Experience 9, 345–389 (1997)

3. Hunold, S., Rauber, T., Rünger, G.: Combining building blocks for parallel multi-
level matrix multiplication. Parallel Comput. 34, 411–426 (2008)

4. Grayson, B., Van De Geijn, R.: A high performance parallel Strassen implementa-
tion. Parallel Processing Letters 6, 3–12 (1996)

5. Song, F., Moore, S., Dongarra, J.: Experiments with Strassen’s Algorithm: from
Sequential to Parallel. In: International Conference on Parallel and Distributed
Computing and Systems (PDCS 2006). ACTA Press (November 2006)



234 S.G. Sedukhin and M. Paprzycki

6. Bailey, D.H., Lee, K., Simon, H.D.: Using Strassen’s algorithm to accelerate the
solution of linear systems. J. Supercomputer 4, 357–371 (1991)

7. Paprzycki, M., Cyphers, C.: Multiplying matrices on the Cray – practical consid-
erations. CHPC Newsletter 6, 77–82 (1991)

8. Sedukhin, S.G., Miyazaki, T., Kuroda, K.: Orbital systolic algorithms and array
processors for solution of the algebraic path problem. IEICE Trans. on Information
and Systems E93.D, 534–541 (2010)

9. Lehmann, D.J.: Algebraic structures for transitive closure. Theoretical Computer
Science 4, 59–76 (1977)

10. Abdali, S.K., Saunders, B.D.: Transitive closure and related semiring properties
via eliminants. Theoretical Computer Science 40, 257–274 (1985)

11. Matsumoto, K., Sedukhin, S.G.: A solution of the all-pairs shortest paths prob-
lem on the Cell broadband engine processor. IEICE Trans. on Information and
Systems 92-D, 1225–1231 (2009)

12. Sedukhin, S.G., Miyazaki, T.: Rapid*Closure: Algebraic extensions of a scalar
multiply-add operation. In: Philips, T. (ed.) CATA, ISCA, pp. 19–24 (2010)

13. Dongarra, J.J., Croz, J.D., Duff, I., Hammarling, S.: A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Software 16, 1–17 (1990)

14. Russell, R.M.: The CRAY-1 computer system. Commun. ACM 21, 63–72 (1978)
15. Lawson, C.L., Hanson, R.J., Kincaid, R.J., Krogh, F.T.: Basic linear algebra sub-

programs for FORTRAN usage. ACM Trans. Math. Software 5, 308–323 (1979)
16. Montoye, R.K., Hokenek, E., Runyon, S.L.: Design of the IBM RISC System/6000

floating-point execution unit. IBM J. Res. Dev. 34, 59–70 (1990)
17. Gustavson, F.G., Moreira, J.E., Enenkel, R.F.: The fused multiply-add instruction

leads to algorithms for extended-precision floating point: applications to Java and
high-performance computing. In: CASCON 1999: Proceedings of the 1999 Con-
ference of the Centre for Advanced Studies on Collab. Research, p. 4. IBM Press
(1999)

18. Gustafson, J.L.: Algorithm leadership. HPCwire, April 06 (2007)
19. Birkhoff, G., McLane, S.: A Survey of Modern Algebra. AKP Classics. A K Peters,

Massachusetts (1997)
20. Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J.: MPI: The

Complete Reference. The MIT Press, Cambridge (1996)
21. Gara, A., Blumrich, M.A., Chen, D., Chiu, G.L.T., Coteus, P., Giampapa, M., Har-

ing, R.A., Heidelberger, P., Hoenicke, D., Kopcsay, G.V., Liebsch, T.A., Ohmacht,
M., Steinmacher-Burow, B.D., Takken, T., Vranas, P.: Overview of the Blue
Gene/L system architecture. IBM J. Res. and Dev. 49, 195–212 (2005)

22. Sedukhin, S.G., Zekri, A.S., Myiazaki, T.: Orbital algorithms and unified array
processor for computing 2D separable transforms. In: International Conference on
Parallel Processing Workshops, pp. 127–134 (2010)

23. Dongarra, J.J., Croz, J.D., Hammarling, S., Hanson, R.J.: An extended set of
FORTRAN basic linear algebra subprograms. ACM Trans. Math. Software 14,
1–17 (1988)

24. Ganzha, M., Sedukhin, S., Paprzycki, M.: Object oriented model of generalized
matrix multipication. In: Proceedings of the Federated Conference on Computer
Science and Information Systems, pp. 439–442. IEEE Press, Los Alamitos (2011)


	Generalizing Matrix Multiplication for Efficient Computations on Modern Computers
	Introduction
	Algebraic Semirings in Scientific Calculations
	Matrix Operations and Computer Hardware: Today and in the Near Future
	Proposed Generalized Multiply-Add Operation
	Data Manipulation by Matrix Multiplication

	Relating BLAS to the Generalized MMA
	Concluding Remarks


