
Library for Matrix Multiplication-based Data
Manipulation on a “Mesh-of-Tori” Architecture

Maria Ganzha, Marcin Paprzycki
Systems Research Institute

Polish Academy of Sciences

Warsaw, Poland

Email: firstname.lastname@ibspan.waw.pl

Stanislav Sedukhin
University of Aizu

Aizu Wakamatsu, Japan

Email: sedukhin@u-aizu.ac.jp

Abstract—Recent developments in computational sciences, in-
volving both hardware and software, allow reflection on the way
that computers of the future will be assembled and software
for them written. In this contribution we combine recent results
concerning possible designs of future processors, ways they will
be combined to build scalable (super)computers, and generalized
matrix multiplication. As a result we propose a novel library
of routines, based on generalized matrix multiplication that
facilitates (matrix / image) manipulations.

I. INTRODUCTION

S
INCE the early 1990’s one of the important factors

limiting computer performance became the ability to feed

data to the, increasingly faster, processors. Already, in 1994

authors of [1] discussed problems caused by the increasing gap

between the speeds of memory and processors. Their work was

followed, among others, by Burger and Goodman ([2]), who

were concerned with the limitations imposed by the memory

bandwidth on the development of computer systems. In 2002,

P. Machanick presented an interesting survey ([3]) in which

he considered the combined effects of doubling of processor

speed (predicted by Moore’s Law) and the 7% increase in

memory speed, when compared in the same time scale.

The initial approach to address this problem was through

introduction of memory hierarchy for data reuse (see, for

instance, [4]). In addition to the registers, CPUs have been

equipped with small fast cache memory. As a result systems

with 4 layers of latency were developed. Data could be

replicated and reside in (1) register, (2) cache, (3) main

memory, (4) external memory. Later on, while the “speed gap”

between processors and memory continued to widen, multi-

processor computers gained popularity. As a result, systems

with an increasing number of latencies have been built. On

the large scale, data element could be replicated and reside

in (and each subsequent layer means increasing / different

latency of access): (1) register, (2) level 1 cache, (3) level

2 cache, (4) level 3 cache, (5) main memory of a (multi-core /

multi-processor) computer, (6) memory of another networked

computer (node in the system), (7) external device. Obviously,

such complex structure of a computer system resulted in

need for writing complex codes to efficiently use it. Data

blocking and reuse became the method of choice for solution

of large computational problems. This method was applied not

only for multi-processor computers, but also computers with

processors consisting of multiple computational units (e.g.

cores, processors, etc.). In this context, let us note that as the

number of computational units per processor is systematically

increasing, the inflation adjusted price of a processor remains

the same. As a result, the price per computational operation

continues to decrease (see, also [5]).

While a number of approaches have been proposed to deal

with the memory wall problem (e.g. see discussion of 3D

memory stacking in [6]), they seem to only slow down the

process, rather than introduce a radical solution. Note that,

introduction of multicore processors resulted in (at least tem-

porary) sustaining the Moore’s Law and thus further pushing

the performance gap (see, [3], [7]). Here, it is also worth

mentioning recent approach to reduce memory contention via

data encoding (see, [8]). The idea is to allow for hardware-

based encoding and decoding of data to reduce its size. Since

this proposal is brand new, time will tell how successful it

will be. Note, however, that also this proposal is in line with

the general observation that “computational hardware” (i.e.

encoders and decoders) is cheap, and should be used to reduce

volume of data moved between processor(s) and memory.

Let us now consider one of the important areas of scientific

computing – computational linear algebra. Obviously, here

the basic object is a matrix. While, one dimensional matrices

(vectors) are indispensable, the fundamental object of majority

of algorithms is a 2D, or a 3D, matrix. Upon reflection, it

is easy to realize that there exists a conflict between the

structure of a matrix and the way it is stored and processed

in most computers. To make the point simple, 2D matrices

are rectangular (while 3D matrices are cuboidal). However,

they are stored in one-dimensional memory (as a long vector).

Furthermore, in most cases, they are processed in a vector-

oriented fashion (except for the SIMD-style array processors).

Finally, they are sent back to be stored in the one-dimensional

memory. In other words, data arrangement natural for the

matrix is neither preserved, nor taken advantage of, which puts

not only practical, but also theoretical limit on performance of

linear algebra codes (for more details, see, [9]).

Interestingly, similar disregard to the natural arrangement

of data concerns also many “sensor systems.” Here, the input

image, which is square or rectangular, is read out serially,

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 455–462

978-1-4673-4471-5/$25.00 c© 2013, IEEE 455

pixel-by-pixel, and is send to the CPU for processing. This

means that the transfer of pixels destroys the 2D integrity of

data (an image, or a frame, start to exist not in their natural

layout). Separately, such transfer introduces latency caused by

serial communication. Here, the need to transfer large data

streams to the processor may prohibit their use in applications,

which require (near) real-time response [10]. Note that large

data streams exist not only in scientific applications. For

instance modern digital cameras capture images consisting

of 22.3 × 106 pixels (Cannon EOS 5D Mark III [11]) or

even 36.3 × 106 pixels (Nikon D800 [12]). What is even

more amazing, recently introduced Nokia phone (Nokia 808

PureView [13]) has camera capturing 41× 106 pixels.

For the scientific / commercial sensor arrays, the largest of

them seems to be the 2-D pixel matrix detector installed in

the Large Hadron Collider in CERN [14]. It has 109 sensor

cells. Similar number of sensors would be required in a CT

scanner array of size approximately 1m2, with about 50K

pixels per 1cm2. In devices of this size, for the (near) real-time

image and video processing, as well as a 3-D reconstruction, it

would be natural to load data directly from the sensors to the

processing elements (for immediate processing). Thus, a focal-

plane I/O, which can map the pixels of an image (or a video

frame) directly into the array of processors, allowing data

processing to be carried out immediately, is highly desired.

The computational elements could store the sensor information

(e.g. a single pixel, or an array of pixels) directly in their

registers (or local memory of a processing unit). Such an

architecture has two potential advantages. First, cost can be

reduced because there is no need for memory buses or a

complicated layout. Second, speed can be improved as the

integrity of input data is not destroyed by serial communica-

tion. As a result, processing can start as soon as the data is

available (e.g. in the registers). Note that proposals for similar

hardware architectures have been outlined in [15], [16], [17].

However, all previously proposed focal-plane array processors

were envisioned as a mesh-based interconnect, which is good

for the local data reuse (convolution-like simple algorithms),

but is not proper to support the global data reuse (matrix-

multiplication-based complex algorithms).

Separately, it has been established that computational linear

algebra can be extended through the theory of algebraic

semirings, to subsume large class of problems (e.g. including

a number of well known graph algorithms). The theoretical

mechanism is named Algebraic Path Problem (APP). As

shown, for instance, in ([18]), there is an interesting link

between the arithmetical fused multiply and add (FMA) oper-

ation, which is supported in modern hardware, and the FMAs

originating from other semirings that are not. Specifically,

if it was possible to modify the standard FMA to include

operations from other semirings (in a way similar to the

proposals of KALRAY; [19]), and thus develop a generalized

FMA, it could be possible to speed-up large class of APP

problems at least 2 times ([18]).

Let us now assume the existence of a computational unit

that satisfies the above requirements: (1) accepts input from

the sensor(s) and transfers it directly to its operational registers

/ local memory; (2) is capable of generalized FMA operations.

The latter requirement means that such FMA should store

(in its registers) constants needed to efficiently perform FMA

operations originating from various semirings. Let us name

it the extended generalized FMA; EG FMA. Recall, that the

cost of computational units (of all types) is systematically

decreasing ([5]). Therefore, cost of the EG FMA unit should

not be much higher than that of a standard FMAs found in

today’s processors. Hence, it is easy to imagine m(b)illions

of them “purchased” for a reasonable price. As stated above,

such EG FMAs should be connected into a square array that

will match the shape of the input data. Let us now describe

how such system can be build.

II. MESH-OF-TORI INTERCONNECTION TOPOLOGY

Since early 1980’s a number of topologies for supercom-

puter systems have been proposed. Let us omit the unscalable

approaches, like a bus, a tree, or a star. The more interesting

topologies (from the 1980’s and 1990’s) were:

• hypercube – scaled up to 64000+ processor in the Con-

nection Machine CM-1,

• mesh – scaled up to 4000 processors in the Intel Paragon,

• processor array – scaled up to 16000+ processor in the

MassPar computer,

• rings of rings – scaled up to 1000+ processors in the

Kendall Square KSR-1 machines

• torus – scaled up to 2048 units in the Cray T3D

However, all of these topologies suffered from the fact that

at least some of the elements were reachable with a different

latency than the others. This means, that algorithms imple-

mented on such machines would have to be asynchronous,

which works well, for instance, for ising-model algorithms

similar to [20], but is not acceptable for a large set of

computational problems. Otherwise, extra latency had to be

introduced by the need to wait for the information to be

propagated across the system.

To overcome this problem, recently, a new (mesh-of-tori;

MoTor) multiprocessor system topology has been proposed

([21], [22]). The fundamental (indivisible) unit of the MoTor

system is a µ-Cell. The µ-Cell consists four computational

units connected into a 2× 2 doubly-folded torus (see, Figure

1). Logically, an individual µ-Cell is surrounded by so-called

membranes that allow it to be combined into larger elements

through the process of cell-fusion. Obviously, collections of µ-

Cells can be split into smaller structures through cell division.

In Figure 1, we see total of 9 µ-Cells logically fused into a

single macro-µ-Cell consisting of 4 µ-Cells (combined into

a 2 × 2 doubly folded torus), and 5 separate (individual)

µ-Cells. Furthermore, in Figure 2 we observe all nine µ-

Cells combined into a single system (a 3 × 3 doubly folded

torus). Observe that, when the 2 × 2 (or 3 × 3) µ-Cells

are logically fused (or divided), the newly formed structure

remains a doubly folded torus. In this way, it can be postulated

that the single µ-Cell represents the “image” of the whole

system. While in earlier publications (e.g. [22], [23], [24], [25]

456 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

0300

3330

1310

2320

0100

1110

0201

3231

1211

2221

0100

1110

0100

1110

0100

1110

0100

1110

Figure 1. 9 µ-Cells fused into a single 2×2 “system,” and 5 separate µ-Cells

the computational units were mostly treated as “theoretical

entities,” in the context of this paper we assume that each one

of them is the EG FMA described above. However, analysis

of cell connectivity in Figure 1 shows that the model EG

FMA proposed in the previous section has to be complemented

by four interconnects that allow construction of the MoTor

system. Therefore, from here on, we will understand the EG

FMA in this way. Furthermore, we will keep in mind that

the MoTor architecture is build from indivisible µ-Cells, each

consisting of four, interconnected into a doubly folded torus

EG FAMs.

Let us now observe that the proposed MoTor topology

has similar restriction as the array processors from the early

1990’s. To keep its favorable properties, the system must

be square. While this was considered an important negative

(flexibility limiting) factor in the past, this is no longer

the case. When the first array processors were built and

used, arithmetical operations and memory were “expensive.”

Therefore, it was necessary to avoid performing “unnecessary”

operations (and maximally reduce the memory usage). Today,

when GFlops costs about 50 cents (see, [5]) and this price is

systematically dropping, and when laptops come with 8 Gbytes

of RAM (while some cell phones come with as much as 64

Gbytes of flash memory on a card), it is data movement /

access / copying that is “expensive” (see, also [26]). Therefore,

when matrices (images) are rectangular (rather than square), it

is reasonable to assume that one could just pad them up, and

treat them as square. Obviously, since the µ-Cell is a single

indivisible element of the MoTor system, if the matrix is of

size N ×N then N has to be even.

Observe that there are two sources of inspiration for the

MoTor system: (i) matrix computations, and (ii) processing

data from, broadly understood, sensor arrays (e.g. images).

0500

5550

1510

4540

2520

3530

0401

5451

1411

4441

2421

3431

0302

5352

1312

4342

2322

3332

Figure 2. 9 µ-Cells fused into a single 6× 6 EG FMA system

Furthermore, we have stated that the extended generalized

FMA can contain a certain number of data registers to store (a)

the needed scalar elements originating from various semirings,

(b) elements of special matrices needed for matrix transfor-

mations (see, below), as well as (c) data that the FMA is

to operate on. However, we also consider the possibility that

each FMA may have a “local memory” to allow it to process

“blocks of data.” This idea is based on the following insights.

First, if we define a pixel as “ the smallest single component

of a digital image” (see, [27]), then the data related to a

single pixel is very likely to be not larger than a single 24

bit number. Second, in early 2013 the largest number of FMA

units combined in a single computer system was 5.2 × 106.

This means that, if there was a one-to-one correspondence

between the number of FMA units and the number of “sensed

pixels” then the system could process stream of data from a

5.2 Megapixel input device (or could process a matrix of size

N ≃ 2200).

Let us now consider, development of the MoTor-based

system. In the initial works, e.g. in [22], links between cells

have been conceptualized as programmable abstract links

(µ-Cells were surrounded by logical membranes that could

be fused or divided as needed, to match the size of the

problem). Obviously, in an actual system, the abstract links

and membranes could be realized logically, while the whole

system would have to be hard-wired to form an actual MoTor
system of a specific size. Therefore to build a large system with

M2 µ-Cells (recall the assumption that the mesh will constitute

a square array), it can be expected that their groups will be

combined into separate “processors,” similarly to multicore /

multi-FMA processors of today. As what concerns cell fusion

and division, it will be possible to assemble sub-system(s) of a

needed size, by logically splitting and/or fusing an appropriate

MARIA GANZHA ET AL: LIBRARY FOR MATRIX MULTIPLICATION-BASED DATA MANIPULATION 457

number of cells within the MoTor system. However, it is

worthy to stress that, while the theoretical communication

latency across the mesh-of-tori system is uniform, this may not

be the case when the system will be assembled from processors

constituting logical (and in some sense also physical) macro-

µ-Cells. In this case it may be possible that the communication

within the processor (physical macro-µ-Cell) will be slightly

faster than between processors. Therefore, the most natural

split would be such that would involve complete macro-µ-

Cells (processors). However, let us stress that, the design of

the mesh-of-tori topology does not distinguish between the

connections that are “within a chip” and “between the chips.”

Therefore, the communication model used in the algorithms

described in [22], [23], and considered in subsequent sections,

is independent of the hardware configurations.

Finally, let us consider the input from the sensor array

(or sending a matrix) into the mesh-of-tori type system. As

shown in [22], any input that is in the canonical (square

matrix) arrangement, is not organized in a way that is needed

for the matrix processing in a (doubly folded) torus. How-

ever, adjusting the data organization (e.g. to complete a 2D

N ×N DFT), requires 2 matrix multiplications (left and right

multiplication by appropriate transformation matrices, see be-

low). These two multiplications require 2N time steps on a

MoTor architecture. Next, after the processing is completed,

the canonical arrangement can be restored, by reversing the

original transformation. Here, again, two multiplications are

needed and their cost is 2N time steps. For the details about

the needed transformations and their realizations as a triple

matrix multiplication, see [22].

III. DATA MANIPULATIONS IN A MoTor SYSTEM

Let us summarize points made thus far. First, we have

refreshed arguments that there is an unfulfilled need for

computer systems that (1) have focal-plane I/O that, among

others, can feed data from sensors directly to the operand

registers / memory of extended FMA units (generalized to be

capable of performing arithmetical operations originating from

different semirings), (2) operate on matrices treating them as

square (or cuboidal, e.g. tensor) objects, (3) are developed

in such a way that (i) minimizes data movement / access /

copying / replication, (ii) maximizes data reuse, and (iii) is

aware of the fact that arithmetical operations are cheap in

comparison with any form of data “movement.” Such systems

are needed not only to process data originating from the Big

Hadron Collider, but also for everyday electronics. Here, it is

worth mentioning that virtual reality and 3D media (part of

the new enterprises, so called creative industries) are in the

latter category, illustrating where the computational power is

going to be needed in an increasing rate, beyond the classic

domains of scientific computing.

Second, we have briefly outlined key features of the,

recently proposed, mesh-of-tori topology, which has some

favorable features and naturally fits with the proposed EG

FMAs. Furthermore, we have pointed to some issues that

are likely to be encountered in the development of (large-

scale) MoTor based systems. Let us now assume, that the,

just proposed, MoTor computer systems have been built. In

([22], [23], [25]) it was shown that a large number of matrix

operations / manipulations can be unified through the use of

a generalized matrix multiply-and-update (MMU) operation.

However, in this context it is important to realize that one more

problem we are facing today is the increasing complication of

codes that are being developed to take advantage of current

computer architectures (see, for instance [28], [26]). This being

the case, a return to simplicity is needed. In the remaining

sections of this paper we will illustrate how a MATLAB

/ MATHEMATICA style (meta-level) approach can be used

to build a library of matrix manipulation operations that,

among others, can be implemented on the proposed MoTor
computer architecture. This library will be uniformly based on

the “fused” matrix multiply-and-update (MMU) operation.

A. Basic operations

To proceed, we will use the generalized matrix multiply and

update operation in the form (as elaborated in [28]):

C← MMU[⊗,⊕](A, B, C) : C← C⊕ A
N/T ⊗ B

N/T. (1)

Here, A, B and C are square matrices of (even) size N
(recall the, above presented, reasons for restricting the class

of matrices); while the ⊗,⊕ operations originate from a scalar

semiring; and N/T specify if a given matrix is to be treated

as being in a canonical (N) or in a transposed (T) form,

respectively.
In what follows, we present a collection of matrix / im-

age manipulations that can also be achieved through matrix

multiplication. While they can be implemented using any

matrix multiplication algorithm, we use this as a springboard

to further elaborate the idea of MoTor system, and a library of

routines that can complement it. Note that, for simplicity of

discussion (and due to the lack of space), in what follows we

only discuss the special case when a single EG FMA stores

scalar data elements. However, as discussed in [22], [23], [25],

[24] all matrix manipulations can be naturally extended to

blocked algorithms. Therefore, we actually do not contradict

our earlier assumption that each EG FMA holds a block of

data (e.g. pixel array, or a block of a matrix).
1) Reordering for the mesh-of-tori processing: Let us start

from the above mentioned fact that the canonical form of the

matrix (image) fed to the MoTor system through the focal-

plane I/O is not correct for further (parallel) processing on a

doubly folded torus. As shown in [23], the proper format can

be obtained by corresponding linear transform through two

matrix-matrix multiplications. Specifically, matrix product in

the form M ← R× A× RT , where A is the original / input

(N × N) matrix that is to be transformed, M is the matrix

in the format necessary for further processing on the mesh-

of-tori system, and R is the format rearranging matrix (for

details of the structure of the R matrix, consult [23]). Taking

into account the implementation of the generalized MMU,

proposed in [28], the needed transformation is:

458 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

M = R ·A · transpose(R). (2)

Note that on the MoTor system: (a) operation R · A is

performed in place and requires N time steps, (b) operation

A·transpose(R) is performed in place, requires N time steps

and is implemented as a parallel matrix mutiplication with a

different data movement (operation scheduling) that the stan-

dard multiplication. In other words, the matrix arrangement

remains unchanged and well-known problems related to row

vs. column matrix storage (see, for instance, [29]) do not

materialize (for more details, see [30]).

Observe that when instantiating the MoTor system, it is

assumed that appropriate matrix R will be pre-loaded into

the macro-µ-Cell, upon its creation. In earlier work, see for

instance [28] and references to earlier work of S. Sedukhin

collected there, it was assumed that the generalized FMA will

store in its operand registers the (scalar) constants originating

from implemented semiring(s) and representing elements 0̄
and 1̄. Here, we assume that, in addition to the separate

operand registers dedicated to each 0̄, 1̄ element originating

from the semiring implemented in the hardware, in a separate

operand register an appropriate element of a transformation

matrix needed to perform operations summarized in this paper

will be pre-loaded. It is in this way, that the matrix R will be

pre-loaded into the MoToR system.

Observe that in the MoTor system, the size of the “logical”

system (macro-µ-Cell) can vary with time and be changed

through cell fusion and division. This means that, after a

group of µ-Cells is fused (split), some of the “transformation

matrices” will have to be re-instantiated. However, this will

not concern matrices like ONES (see, below) that preserve

format during cell fusion / division. Nevertheless, matrix R
will have to be re-initialized each time cells are fused / divided.

We summarize these considerations, for the “special matrices”

identified in this paper, in Table I.

When considering the implementation of the transformation,

observe that the information about the R matrix does not need

to be known to the user (only to the implementer). This being

the case, we can define the Canonical to MoTor function

that will have as its input the matrix A in the canonical form,

and as its output matrix M in the form ready to use in the

MoTor system. This function will perform operations from

equation 2, while hiding matrix R from the user. Obviously,

an inverse function MoTor to Canonical, that will perform

operation A ← RT · M · R (with the same matrix R),

will restore the matrix to its original (canonical) format in

2N time steps. Obviously, these two functions make sense

only in the context of the MoTor system. Specifically, such

transformations can be performed on any computer system,

but they are useless if that system has a different topology.

2) Row and column permutations: It is a well known

fact, that row and column permutations can be represented

as matrix-matrix multiplications. Specifically, permutation of

rows of matrix A is achieved through left hand side multipli-

cation by an appropriate matrix P (A′ ← P ·A), while column

permutation is achieved through the right hand side multiplica-

tion by an appropriate matrix Q (A′ ← A·Q). Both matrices P
and Q are identity matrices, with two elements (corresponding

to appropriate rows or columns) modified. While the matrix

multiplication is typically treated as a convenient notation

used in theoretical linear algebra, in computational practice

row and column permutations are usually implemented as

vector operations. However, in the MoTor approach, row and

column permutations will be achieved through actual N ×N
matrix multiplication, performed in place, in O(N) time steps.

As far as the implementation is concerned, matrix P will

be initially stored in the meta-µ-Cell as a copy of the identity

matrix(I). Note that this means that this matrix will be actually

represented in separate operand registers of appropriate EG

FMAs. Let us now introduce function Row permute(A, i, j).
This function, when called, will send information to ap-

propriate four EG FMAs ((i, i), (j, j), (i, j), (j, i)) to flip

their values from 0̄ to 1̄ and vice-versa. Depending on the

implementation, this should be achieved in no more than

4 time steps. Next, the actual matrix multiplication will be

performed. Finally, the four processing units (belonging to

matrix P) that changed their values, will revert to the original

ones (again, in no more than 4 time steps). The same approach

will be used in the case of column permutation (function

Column permute(A, i, j)). Observe that, while there exist

algorithms that ask for (A′ ← P · A · Q), these two oper-

ations (left and right side multiplication) do not have to be

performed simultaneously (in this paper we do not consider

a more general case of performing concurrently triple matrix

multiplications). This means that actually, we do not need to

store two separate matrices P and Q. All that is needed is a

single PERMUT matrix than can be used by the implementer

to support both operations (this matrix is not being made

available to the user). Potential use of the actual identity matrix

(in place of the separate PERMUT matrix) needs to be further

considered, before such decision could be made. As what

concerns the effect of cell fusion and splitting, it should be

obvious from Figures 1 and 2 that it is during this process it

is necessary to reinitialize both the identity and the PERMUT

matrices.

3) Scalar data replication (broadcast): Let us now consider

replication of a data element across all processors in the

system (operation that in MPI [31] is known as MPI BCAST).

As shown in [23], this can be achieved through two matrix

multiplications. The appropriate triple has the form B ←

LBCAST∗D ∗RBCAST, where B is the resulting matrix with

all of its elements equal to the replicated one; D is a zero

matrix with the element to be replicated in position d(i, j);
LBCAST is a matrix with all zeros except of the ones in

column i; and RBCAST is a zero matrix with ones in row j.

Obviously, on the MoTor system (since the broadcast involves

2 matrix multiplications) it will be completed in place, in 2N
time steps.

Based on the material presented thus far, we propose the

following implementation of broadcast of a selected element

across all processors of a MoTor system. Assume that ma-

MARIA GANZHA ET AL: LIBRARY FOR MATRIX MULTIPLICATION-BASED DATA MANIPULATION 459

trices LBCAST and RBCAST are zero matrices with ones

in column 1 and row 1 respectively. Furthermore, matrix D
is a copy of the 0̄ matrix, which is going to be used in

both multiplications. In the first step, the selected element

is send to the EG FMA located in position (1, 1) of the

MoTor system and stored in the operand register correspond-

ing to D(1, 1). Next, the MMU operation is invoked twice

(B ← LBCAST ∗ D ∗ RBCAST) within a ElBcast function,

which has the form: ElBcast(element), where the element
specifies element that should be replicated. As a result, in 2N
time steps, the selected element is replicated to all elements

of matrix B and thus made available across the MoTor
system. Finally, the D(1, 1) element is zeroed. Note that, while

matrices LBCAST and RBCAST have to be reinstantiated, the

matrix D, being a copy of the zero matrix remains unchanged

during cell fusion / division. Possibility of use of the actual

zero matrix, instead of matrix D has to be further evaluated.

Obviously, matrices LBCAST and RBCAST are available only

to the implementer, while being hidden from the user.

4) Global reduction and broadcast: The next matrix opera-

tion that can be formulated in terms of matrix multiplications,

is the global reduction and broadcast. As seen in [23], when

the standard arithmetic is applied, and matrix A is multiplied

from both sides by a matrix of ones (matrix with all elements

equal to one, let us name it ONES), then the resulting matrix

will have its elements equal to the sum of all elements of A.

On a mesh-of-tori system, this can be implemented in place,

in 2N time steps, when the matrix ONES is available (pre-

loaded) in all EG FMAs of the system.

However, recall that our approach is based on use of the

generalized MMU. Thanks to this, we can apply operations

originating from different semirings. Here, particularly inter-

esting would be semirings, in which the addition and multi-

plication operations are defined as (×,max) or (×,min). In

this case, the “generalized reduction and broadcast” operation

is going to consist of two generalized MMUs (represented in

notation from the equation 1):

MMU[⊗,⊕](A, ONES, TEMP) : TEMP← TEMP⊕ A⊗ ONES;

MMU[⊗,⊕](ONES, TEMP, RESULT) :

RESULT← RESULT⊕ ONES⊗ TEMP.

Here, operations [⊗,⊕] are defined in an appropriate semir-

ing, while matrices TEMP and RESULT are initialized as

copies of the 0̄ matrix (zero matrix for a given semiring).

Finally, ONES is a matrix of all ones, where the “one” element

originates from a given scalar semiring (its element 1̄).

Under these assumptions it is easy to see that we can

define at least three functions that will have the same general

form, while being based on different semirings: AddBcast –

realizing summation of all elements in a matrix and broad-

casting the result to all processors (function based on the

standard arithmetic); MaxBcast finding the largest element

in a matrix and broadcasting it to all processors (based on

the (×,max) semiring); and MinBcast finding the smallest

element in the matrix and broadcasting it to all processors

(based on the (×,min) semiring). Each of these functions will

be completed in place, in 2N time steps, through 2 generalized

matrix multiplications. Observe that, for all practical purposes,

matrix ONES does not have to be instantiated. It consists of

1̄ elements that, according to our assumptions, are already

stored in operand registers of the EG FMAs. Finally, note that

(regardless of the way it will finally be instantiated in the

MoTor system) matrix ONES is independent of the size of

the macro-µ-Cell and remains unchanged and available after

cell fusion / division operation. As previously, all information

about very “existence” of matrices ONES and TEMP, and

initialization of matrices TEMP and RESULT is going to be

hidden from the user.

B. Matrix (image) manipulations

Let us now consider three simple matrix manipulations that

can be achieved with help of matrix multiplication. While they

are presented as matrix operations, their actual value can be

seen when the underlying matrices represent images (e.g. each

matrix element represents a pixel, or a block of pixels).

1) Upside-down swap: Image (matrix) upside down swap

can be achieved by multiplying the matrix from the left hand

side by the SWAP matrix, which has the following form:

SWAP =
0 0 1
0 1 0
1 0 0

Obviously, we assume that on the MoTor system, matrix

SWAP will be instantiated when macro-µ-Cell(s) will be cre-

ated (appropriate elements will be stored in separate operand

registers of the EG FMAs). However, it will not be made

available to the user. This means that the upside-down swap

will be achieved by calling a UDswap(A) function, and

completed in place, in N time steps. Matrix SWAP will have

to be re-initialized after each µ-Cell fusion or division.

2) Left-right swap: The left-right image (matrix) swap can

be achieved the same way as the upside-down swap, with

the only difference being that the image matrix A is going

to be multiplied by the SWAP matrix from the right hand

side. Therefore, on the MoTor system, the left-right swap

will be completed in place, in N time steps, by calling the

LRswap(A) function. All the remaining comments, concern-

ing the SWAP matrix, presented above, remain unchanged.

3) Rotation: Interestingly, combining the two swaps into a

single operation (multiplication of a given image / matrix A
from left and right by the matrix SWAP) results in rotation

of the matrix / image A by 180◦. Obviously, from the above

follows that on the MoTor system, this operation can be com-

pleted in place, in 2N steps using two matrix multiplications,

by calling an appropriately defined Rotate(A) function.

IV. TOWARDS LIBRARY OF MATRIX MULTIPLICATIONS

BASED DATA MANIPULATIONS

Let us now summarize the above considerations from the

point of view of development of a library of operations that can

be performed on matrices / images though generalized matrix

460 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

Table I
SUMMARY OF FUNCTIONS PROPOSED FOR THE LIBRARY

Functionality Function Matrices Re-instantiate
Reorder Canonical to MoTor Canonical to MoTor(A) R yes
Reorder MoTor to Canonical MoTor to Canonical(A) R yes

Row permutation Row permute(A, i, j) PERMUT yes
Column permutation Column permute(A, i, j) PERMUT yes

Replication ElBcast(element) LBCAST, RBCAST, D yes & no
Addition and broadcast AddBcast(A) ONES no

Max and broadcast MaxBcast(A) ONES no
Min and broadcast MinBcast(A) ONES no
Upside-down swap UDswap(A) SWAP yes

Left-right swap LRswap(A) SWAP yes
Rotation by 180◦ Rotate(A) SWAP yes

multiplication. In Table I we combine proposals presented thus

far. There, we present the functionality, the proposed function

name, the “special matrices” that have to be instantiated within

the MoTor system to complete the operations, and information

if these matrices have to be reinitialized after µ-cell fusion /

splitting operation. Observe that, while the first two functions

are directly connected with the MoTor architecture, the remain-

ing ones can be seen as “system independent.” In other words,

they can be implemented for any computer architecture, taking

full advantage of the underlying architecture.

This latter observation deserves further attention, and some

points have to be made explicit. Only the transformations

from the canonical to the MoTor format and back are

MoTor architecture specific. The remaining functions are

system independent. While the above considerations have in

mind the MoTor architecture, the proposed functions use only

matrix multiplication and thus can be implemented to run

on any computer architecture, using its best of breed matrix

multiplication algorithm. This being the case, and taking into

account discussion presented in Section I, it may be desirable

to implement functions from Table I on existing computers,

using state-of-the-art matrix multiplication algorithms and

consider their efficiency.

A. Object oriented realization

Let us now recall that our main goal is to consider func-

tions from Table I in the context of the MoTor architecture.

However, we also see them as a method of simplifying code

writing (by introducing matrix operations represented in the

style similar to that found in MATLAB / MATHEMATICA).

This being the case we assume that there may be multiple

ways of implementing these routines, and that they are likely

to be vendor / hardware specific. Nevertheless, at the time of

writing of this paper, object oriented programming is one of

more popular ways of writing codes in scientific computing

and image processing. Furthermore, this means the possible

trial implementations, suggested above, are likely to be tried

using this paradigm. This being the case, we have decided

to conceptualize the top-level object-oriented representation

of the library of routines from Table I. Since different OO

languages have slightly different syntax (and semantics), we

use a generic notation, distinguishing information that needs

to be made available in the interface and in the main class.

We start from the interface (see, also [28]).

/∗ T − t y p e of m a t r i x e l e m e n t ∗ /

i n t e r f a c e M a t r i x i n t e r f a c e {
p u b l i c M a t r ix 0 (n) { /∗ g e n e r a l i z e d z e r o m a t r i x ∗ /}
p u b l i c M a t r ix I (n) { /∗ g e n e r a l i z e d i d e n t i t y m a t r i x ∗ /}
p u b l i c M a t r ix o p e r a t o r + /∗ g e n e r a l i z e d A+B∗ /
p u b l i c M a t r ix o p e r a t o r ∗ /∗ g e n e r a l i z e d A∗B∗ /
p u b l i c M a t r ix C a n o n i c a l t o M o t o r (A) ;
/∗ r e o r d e r i n g f o r themesh−of−t o r i p r o c e s s i n g ∗ /
p u b l i c M a t r ix M o t o r t o C a n o n i c a l (A) ; / ∗ i n v e r s e o f
t h e r e o r d e r i n g f o r t h e mesh−of−t o r i p r o c e s s i n g ∗ /
p u b l i c M a t r ix t r a n s p o s e (A) ;
{ /∗ t r a n s p o s i t i o n of m a t r i x A∗ /}
/∗ g e n e r a l i z e d p e r m u t a t i o n of column / row

i and j i n m a t r i x A∗ /
p u b l i c M a t r ix Column Permut (A, i , j) ;
p u b l i c M a t r ix Row Permut (A, i , j) ;
/∗ g e n e r a l i z e d e l e m e n t b r o a d c a s t ∗ /
p u b l i c M a t r ix E l B c a s t (e l e m e n t) ;
p u b l i c M a t r ix AddBcas t (A) ; / ∗ g e n e r a l i z e d summation
of a l l e l e m e n t s o f A and b r o a d c a s t ∗ /
/∗ b r o a d c a s t t h e l a r g e s t e l e m e n t o f A∗ /
p u b l i c M a t r ix MaxBcast (A) ;
/∗ b r o a d c a s t t h e s m a l l e s t e l e m e n t o f A∗ /
p u b l i c M a t r ix MinBcas t (A) ;
/∗ M atr ix (Image) M a n i p u l a t i o n ∗ /
p u b l i c M a t r ix UDswap (A) ; /∗ ups ide−down swap∗ /
p u b l i c M a t r ix LRswap (A) ; /∗ l e f t −r i g h t swap∗ /
/∗ image v e r t i c a l r o t a t i o n ∗ /
p u b l i c M a t r ix R o t a t e (A) ; . . .

}

Just defined interface is to be used with the following class

Matrix. This class summarizes the proposals outlined above.

c l a s s Mat r ix i n h e r i t s c a l a r S e m i r i n g
implement M a t r i x i n t e r f a c e {

T : t y p e of e l e m e n t ; / ∗ double , s i n g l e , . . . ∗ /
p r i v a t e Mat r ix R (n) ; / ∗ m a t r i x f o r MoTor

t r a n s f o r m a t i o n ∗ /
p r i v a t e Mat r ix ONES (n) /∗ m a t r i x of ones ∗ /
p r i v a t e Mat r ix PERMUT(i , j , n) /∗ i d e n t i t y m a t r i x

wi th i n t e r c h a n g e d columns i and j ∗ /
/ / a n t i −d i a g o n a l m a t r i x of ones
p r i v a t e Mat r ix SWAP (n)

/ / Methods
p u b l i c Mat r ix 0(n) { /∗0 m a t r i x ∗ /}
p u b l i c Mat r ix I (n) { /∗ i d e n t i t y m a t r i x ∗ /}
p u b l i c Mat r ix t r a n s p o s e (A: Mat r ix){

/∗MMU −based t r a n s p o s i t i o n of A∗ /}
p u b l i c Mat r ix o p e r a t o r + {A, B : Mat r ix }

{ r e t u r n MMU(A, I (n) , B , a , b)}
p u b l i c Mat r ix o p e r a t o r ∗ {A, B : Mat r ix }

{ r e t u r n MMU(A, B , m at r ix 0 , a , b)}
p u b l i c Mat r ix Column Permut (A, i , j){

r e t u r n MMU(PERMUT(i , j , n) ,A,O(n))}
p u b l i c Mat r ix Row Permut (A, i , j){

r e t u r n MMU(A,PERMUT(i , j , n) ,O(n))}

MARIA GANZHA ET AL: LIBRARY FOR MATRIX MULTIPLICATION-BASED DATA MANIPULATION 461

p u b l i c Mat r ix C a n o n i c a l t o M o t o r (A){
M = R ∗ A ∗ t r a n s p o s e (R) ;
r e t u r n M}

p u b l i c Mat r ix UDswap (A) ; / ∗ ups ide−down swap ∗ /
{ r e t u r n MMU(O(n) ,SWAP,A)}

p u b l i c Mat r ix LRswap (A) ; / ∗ l e f t −r i g h t swap ∗ /
{ r e t u r n MMU(O(n) , A,SWAP)}

/∗ image v e r t i c a l r o t a t i o n ∗ /
p u b l i c Mat r ix R o t a t e (A) ;

{A=MMU(O(n) ,SWAP,A) ;
r e t u r n MMU(O(n) ,A,SWAP)}

. . .
p r i v a t e MMU(A, B , C : Mat r ix (n)){

r e t u r n ” vendor / i m p l e m e n t e r s p e c i f i c
r e a l i z a t i o n of MMU = C + A∗B where

+ / ∗ a r e from c l a s s s c a l a r S e m i r i n g ”}
. . .
}

Obviously, just defined class and interface allow us to write

codes in the suggested manner. Here, the matrix operations

(image manipulations) can be performed by calling very

simple functions, and hiding all implementation details from

the user.

V. CONCLUDING REMARKS

The aim of this paper was to reflect on current trends in

computational sciences. We have focused our attention on

selected trends in hardware and software design, to visualize

possible designs of future processors and ways they will be

combined to build scalable (super)computers. In this context,

the mesh-of-tori architecture is one of the more promising

concepts for design of large-scale computer systems. This

provided us with background, against which we have con-

sidered the role of generalized matrix multiplication. As a

result we proposed a novel library of routines, based on

generalized matrix multiplication that allows for data (matrix

/ image) manipulations. In the future we plan to implement

the proposed library on the virtual MoTor system.

ACKNOWLEDGMENT

Work of Marcin Paprzycki was completed while visiting the

University of Aizu.

REFERENCES

[1] K. Boland and A. Dollas, “Predicting and precluding problems with
memory latency,” IEEE Micro, vol. 14, no. 4, pp. 59–67, 1994.

[2] D. Burger, J. R. Goodman, and A. Kagi, “Memory bandwidth limitations
of future microprocessors,” in Proceedings of the 23rd Annual Interna-

tional Symposium on Computer Architecture. New York, NY, USA:
ACM, 1996, pp. 78–89, doi:http://doi.acm.org/10.1145/232973.232983.

[3] P. Machanick, “Approaches to addressing the memory wall,”
http://homes.cs.ru.ac.za/philip/Publications/Techreports/2002/Reports/
memory-wall-survey.pdf, 2002.

[4] R. van der Pas, “Memory hierarchy in cache-based systems,” http://www.
sun.com/blueprints/1102/817-0742.pdf, Sun Microsystems, Tech. Rep.,
2002.

[5] Wikipedia, “Flops,” http://en.wikipedia.org/wiki/FLOPS.
[6] P. Jacob, A. Zia, O. Erdogan, P. M. Belemjian, J.-W. Kim, M. Chu,

R. P. Kraft, J. F. McDonald, and K. Bernstein, “3D memory stacking;
mitigating memory wall effects in high-clock-rate and multicore CMOS
3-D processor memory stacks,” Proceedings of the IEEE, vol. 97, no. 1,
January 2009.

[7] F. Alted, “Why modern CPUs are starving and what can be done about
it,” Computing in Science and Engineering, vol. 12, pp. 68–71, 2010,
doi:http://doi.ieeecomputersociety.org/10.1109/MCSE.2010.51.

[8] A. Wegener, “Numerical encoding shatters exascale’s memory
wall,” http://www.hpcadvisorycouncil.com/events/2013/Stanford-
Workshop/pdf/Presentations/Day2013.

[9] F. G. Gustavson, “Cache blocking for linear algebra algorithms,” in
Parallel Processing and Applied Mathematics, ser. Lecture Notes in
Computer Science, R. Wyrzykowski, J. Dongarra, K. Karczewski, and
J. Waśniewski, Eds. Springer Berlin Heidelberg, 2012, vol. 7203, pp.
122–132.

[10] D. Fey and D. Schmidt, “Marching-pixels: a new organic computing
paradigm for smart sensor processor arrays,” in CF ’05: Proceedings

of the 2nd conference on Computing frontiers. New York, NY, USA:
ACM, 2005, pp. 1–9, doi:http://doi.acm.org/10.1145/1062261.1062264.

[11] “Canon EOS 5D,” http://www.usa.canon.com/cusa/consumer/products/
cameras/slr cameras/eos 5d mark iii, 2013.

[12] “Nikon D800,” http://www.nikonusa.com/en/Nikon-Products/Product/
Digital-SLR-Cameras/25480/D800.html, 2013.

[13] “Nokia 808 pureview,” http://reviews.cnet.com/smartphones/
nokia-808-pureview-unlocked/4505-6452 7-35151907.html, 2013.

[14] E. H. M. Heijne, “Gigasensors for an attoscope: Catching quanta in
CMOS,” IEEE Solid State Circuits Newsletter, vol. 13, no. 4, pp. 28–
34, 2008.

[15] S. Chai and D. Wills, “Systolic opportunities for multidimensional
data streams,” Parallel and Distributed Systems, IEEE Transactions on,
vol. 13, no. 4, pp. 388–398, 2002.

[16] S. Kyo, S. Okazaki, and T. Arai, “An integrated memory array processor
architecture for embedded image recognition systems,” in Computer Ar-

chitecture, 2005. ISCA ’05. Proceedings. 32nd International Symposium

on, June 2005, pp. 134–145.
[17] Á. Zarándy, Focal-Plane Sensor-Processor Chips. Springer, 2011. [On-

line]. Available: http://books.google.co.jp/books?id=wpCsjwEACAAJ
[18] S. G. Sedukhin and T. Miyazaki, “Rapid*closure: Algebraic extensions

of a scalar multiply-add operation,” in CATA, 2010, pp. 19–24.
[19] “Kalray multi-core processors,” http://www.kalray.eu/.
[20] P. Altevogt and A. Linke, “Parallelization of the two-dimensional ising

model on a cluster of ibm risc system/6000 workstations,” Parallel

Computing, vol. 19, no. 9, pp. 1041–1052, 1993. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0167819193900964

[21] S. Sedukhin, T. Miyazaki, K. Kuroda, H. Oi, and Y. Okuyama,
“Arithmetic Processing Unit, Patent Application,” Filled on
September 2007. [Online]. Available: {http://worldwide.espacenet.com/
publicationDetails/biblio?adjacent=true&locale=en EP&FT=D&date=
20070927&CC=JP&NR=2007249744A&KC=A}

[22] A. A. Ravankar and S. G. Sedukhin, “Mesh-of-tori: A novel interconnec-
tion network for frontal plane cellular processors,” 2013 International

Conference on Computing, Networking and Communications (ICNC),
pp. 281–284, 2010.

[23] A. A. Ravankar, “A new “mesh-of-tori” interconnection network and
matrix based algorithms,” Master’s thesis, University of Aizu, September
2011.

[24] A. Ravankar and S. Sedukhin, “Image scrambling based on a new
linear transform,” in Multimedia Technology (ICMT), 2011 International

Conference on, 2011, pp. 3105–3108.
[25] A. A. Ravankar and S. G. Sedukhin, “An O(n) time-complexity matrix

transpose on torus array processor,” in ICNC, 2011, pp. 242–247.
[26] J. L. Gustafson, “Algorithm leadership,” HPCwire, vol. Tabor

Communications, April 06, 2007. [Online]. Available: http://www.
hpcwire.com/features/17898659.html

[27] “Wikipedia pixel,” http://en.wikipedia.org/wiki/Pixel, March 2013.
[28] S. G. Sedukhin and M. Paprzycki, “Generalizing matrix multiplication

for efficient computations on modern computers,” in Parallel Processing

and Applied Mathematics, ser. Lecture Notes in Computer Science,
R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Eds.
Springer Berlin Heidelberg, 2012, vol. 7203, pp. 225–234.

[29] M. Paprzycki, “Parallel Gaussian elimination algorithms on a Cray Y-
MP,” Informatica, vol. 19, no. 2, pp. 235–240, 1995.

[30] S. G. Sedukhin, A. S. Zekri, and T. Myiazaki, “Orbital algorithms
and unified array processor for computing 2D separable transforms,”
in Parallel Processing Workshops, International Conference on. Los
Alamitos, CA, USA: IEEE Computer Society, 2010, pp. 127–134.

[31] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI-

The Complete Reference, Volume 1: The MPI Core, 2nd ed. Cambridge,
MA, USA: MIT Press, 1998.

462 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, 2013

