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Abstract. It was recently shown that block-circulant preconditioners
applied to a conjugate gradient method used to solve structured sparse
linear systems arising from 2D or 3D elliptic problems have good numer-
ical properties and a potential for high parallel efficiency. In this note
parallel performance of a circulant block-factorization based precondi-
tioner applied to a 3D model problem is investigated. The aim of the
presentation is to report on the experimental data obtained on SUN En-
terprise 3000, SGI/Cray Origin 2000, Cray J-9x, Cray T3E computers
and on two PC clusters.

1 Introduction

Let us consider numerical solution of a self-adjoint second order 3D linear bound-
ary value problem of elliptic type. After discretization, such a problem results
in a linear system Ax = b, where A is a sparse symmetric positive definite ma-
trix. In the computational practice, large-scale problems of this class are most
often solved by Krylov subspace iterative (e.g. conjugate gradient) methods.
Each step of such a method requires only a single matrix-vector product and
allows exploitation of sparsity of A. The rate of convergence of these methods
depends on the condition number κ of the matrix A (smaller κ(A) results in
faster convergence). Unfortunately, for second order 3D elliptic problems, usu-
ally κ(A) = O(N2/3), where N is the size of the discrete problem, and hence it
grows rapidly with N . To alleviate this problem, iterative methods are almost
always used with a preconditioner M . The preconditioner is chosen with two
criteria in mind: to minimize κ(M−1A) and to allow efficient computation of the
product M−1v for any given vector v. These two goals are often in conflict and
a lot of research has been done devising preconditioners that strike a balance be-
tween them. Recently, a third aspect has been added to the above two, namely,
the parallel efficiency of the iterative method (and thus the preconditioner).

One of the most popular and the most successful preconditioners are the in-
complete LU (ILU) factorizations. Unfortunately, standard ILU preconditioners
have limited degree of parallelism. Some attempts to modify them and introduce
more parallelism often result in a deterioration of the convergence rate. R. Chan
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and T. F. Chan [2] proposed another class of preconditioners based on averaging
coefficients of A to form a block-circulant approximation. The block-circulant
preconditioners are highly parallelizable but they are very sensitive to a possible
high variation of the coefficients of the elliptic operator. To reduce this sensitivity
a new class of circulant block-factorization (CBF) preconditioners [5] was intro-
duced by Lirkov, Margenov and Vassilevski. Recently a new CBF preconditioner
for 3D problems was introduced in [3,4].

The main goal of this note is to report on the parallel performance of the
PCG method with a circulant block-factorization preconditioner applied to a
model 3D linear PDE of elliptic type. Results of experiments performed on Sun
Ultra-Enterprise, Crays J-9x and T3E, SGI/Cray Origin 2000 high performance
computers and on two PC clusters are presented and analyzed.

We proceed as follows. In Section 2 we sketch the algorithm of the parallel
preconditioner (for more details see [3,4]). Section 3 contains the theoretical
estimate of its arithmetical complexity. Finally, in Section 4 we report the results
of our experiments.

2 Circulant Block-Factorization

Let us recall that a circulant matrix C has the form (Ck,j) =
(
c(j−k) mod m

)
,

where m is the dimension of C. Let us also denote by C = (c0, c1, . . . , cm−1)
the circulant matrix with the first row (c0, c1, . . . , cm−1). Any circulant matrix
can be factorized as C = FΛF ∗ where Λ is a diagonal matrix containing the
eigenvalues of C, and F is the Fourier matrix of the form

Fjk =
1√
m

e2π jk
m i, (1)

where F ∗ = F
T

denotes the adjoint matrix of F .
The CBF preconditioning technique incorporates the circulant approxima-

tions into the framework of LU block-factorization. Let us consider a 3D elliptic
problem (see also [3]) on the unit cube with Dirichlet boundary conditions. If
the domain is discretized on a uniform grid with n1, n2 and n3 grid points along
the coordinate directions, and if a standard (for such a problem) seven-point
FDM (FEM) approximation is used, then the stiffness matrix A admits a block-
tridiagonal structure. The matrix A can be written in the form

A = tridiag(−Ai,i−1, Ai,i,−Ai,i+1) i = 1, 2, . . . , n1,

where Ai,i are block-tridiagonal matrices which correspond to the x1-plane and
the off-diagonal blocks are diagonal matrices. In this case the general CBF pre-
conditioning approach is applied to construct the preconditioner MCBF in the
form

MCBF = tridiag(−Ci,i−1, Ci,i,−Ci,i+1) i = 1, 2, . . . n1, (2)

where Ci,j = Block-Circulant(Ai,j) is a block-circulant approximation of the
corresponding block Ai,j . The stiffness matrix A and the preconditioner MCBF
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are N × N matrices where N = n1n2n3. The relative condition number of the
CBF preconditioner for the model (Laplace) 3D problem for n1 = n2 = n3 = n
is (for derivation see [3]):

κ(M−1
0 A0) ≤ 4n. (3)

2.1 Parallel Circulant Block-Factorization Preconditioner

The basic advantage of circulant preconditioners is their inherent parallelism.
Let us now describe how to implement in parallel an application of the inverse
of the preconditioner to a given vector. Using the standard LU factorization
procedure, we can first split M = D−L−U into its block-diagonal and strictly
block-triangular parts respectively. Then the exact block-factorization of M can
be written in the form

M = (X − L)(I − X−1U),

where X = diag(X1, X2, . . . , Xn) and the blocks Xi are determined by the re-
cursion

X1 = C1,1, and Xi = Ci,i − Ci,i−1X
−1
i−1Ci−1,i, i = 2, . . . , n1. (4)

It is easy to observe here that Xi are also block-circulant matrices.
In order to compute M−1v we rewrite the block-circulant blocks of the pre-

conditioner as
Ci,j = (F ⊗ F )Λi,j(F ∗ ⊗ F ∗).

Here ⊗ denotes the Kronecker product. It can be observed that for Xi we have

Xi = (F ⊗ F )D−1
i (F ∗ ⊗ F ∗)

and the latter yields

D−1
1 = Λ1,1,

D−1
i = Λi,i − Λi,i−1Di−1Λi−1,i.

Let Λ = tridiag(Λi,i−1, Λi,i, Λi,i+1). Then the following relation holds

Mu = v ⇐⇒ (I ⊗ F ⊗ F )Λ(I ⊗ F ∗ ⊗ F ∗)u = v.

The above system can be rewritten as
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We can distinguish three stages in computing u = M−1v:

1) v̂ = (I ⊗ F ∗ ⊗ F ∗)v
2) Λû = v̂ (5)
3) u = (I ⊗ F ⊗ F )û.

Due to the special form of F (see (1) above), we can use a fast Fourier
transform to perform the first and third stages of the algorithm. Namely, we use
a standard two-dimensional block-FFT which is easily parallelizable (see [6]).
The second stage consist of solving two recurrence equations

∣∣∣∣
ŵ1 = D1v̂1

ŵi = Di(v̂i − Λi,i−1ŵi−1)
i = 2, 3, . . . n1

∣∣∣∣
ûn = ŵn

ûi = ŵi − DiΛi,i+1ûi+1

i = n1 − 1, n1 − 2, . . . 1
(6)

Since blocks Di and Λi,j in the recurrences (6) are diagonal the solution of n2n3

independent linear systems can be calculated in parallel.

3 Parallel Complexity

Let us present the theoretical estimate of the total execution time TPCG for one
PCG iteration for the proposed circulant block-factorization preconditioner on a
parallel system with p processors (detailed analysis of parallel complexity can be
found in [4]). Each iteration consists of one matrix vector multiplication involving
matrix A, one multiplication involving the inverse of the preconditioner MCBF

(solving a system of equations with matrix M), two inner products and three
linked triads (a vector updated by a vector multiplied by a scalar). Consequently

TPCG(p) = Tmult + Tprec + 2Tinn prod + 3Ttriads.

For simplicity we assume that the mesh dimensions are equal and they are
equal to an exact power of two, i.e., n1 = n2 = n3 = n = 2l. We also assume
that the time to execute K arithmetic operations on one processor is Ta =
K ∗ ta, where ta is an average time of one arithmetic operation. In addition, the
communication time of a transfer of K words between two neighbor processors
is Tlocal = ts + K ∗ tc, where ts is the start-up time and tc is the time for each
word to be sent/received. Finally, let us assume that a 2-radix algorithm is used
to calculate the FFT’s and thus the cost per processor is TFFT (n) = 5n log nta.
Then the formula for computational complexity has the form

TPCG(p) = 5 (7 + 4 log n)
n3

p
ta + 4

(
ts + n2tc

)
+ 2g(

n3

p
, p) + 2g(p, p) + 2b(p),

where b(p) denotes time to broadcast a single value from one processor to all
other processors and g(K, p) denotes time to gather K

p words from all processors
into one processor. It can be shown that, for instance, when only the leading
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terms are taken into consideration, for the shared memory parallel computer the
above function simplifies to

TPCG(p) ≈ 2pts + 2(1 − 1
p

)
n3

p
tc + 5(7 + 4 log n)

n3

p
ta. (7)

Next we analyze the relative speedup Sp and the relative efficiency Ep, where
Sp = T (1)

T (p) ≤ p and Ep = Sp

p ≤ 1. Thus the formula for the speedup becomes

Sp ≈ 5(7 + 4 log n)

2 p2

n3
ts

ta
+ 2(1 − 1

p ) tc

ta
+ 5(7 + 4 log n)

p. (8)

Obviously, limn→∞ Sp = p and limn→∞ Ep = 1, i.e., the algorithm is asymp-
totically optimal. More precisely, if log n � p2

n3
ts

ta
+ tc

ta
, then Ep approaches 1.

Unfortunately, the start-up time ts is usually much larger than ta, and for rela-
tively small n the first term of the denominators in (8) is significant, in this case
the efficiency is much smaller than 1.

4 Experimental Results

In this section we report the results of the experiments executed on Sun Ultra-
Enterprise 3000, Cray J-9x and T3E, SGI Origin 2000 computers and on two PC
clusters. The code has been implemented in C and the parallelization has been
facilitated using the MPI [7] library. In all cases the manufacturer provided MPI
kernels have been used. No machine-dependent optimization has been applied
to the code itself. Instead, in all cases, the most aggressive optimization options
of the compiler have been turned on. Times have been collected using the MPI
provided timer and, as verification, the clock Unix timer. Results reported by
both timers were very close to each other. In all cases we report the best results
from multiple runs in interactive and batch modes. In Table 1 we report results
obtained on the Sun, the vector-Cray and the SGI computers for n1 = n2 = n3 =
64, 96, 128, 144, 160 and for the number of processors p that exactly divides the
dimensions of the problem (a temporary limitation of the experimental code).
The Sun has 8 processors. On the Cray J-9x and the SGI Origin we could
effectively use only up to 16 processors. On the Cray, for larger problems, due
to the memory limitation, we could not even use these 16 processors. We report
time T (p), speedup Sp (calculated as time on one processor divided by the time
on p processors), and efficiency Ep.

A number of observations can be made. First, the proposed implementation,
which in a natural way follows the algorithm description, is clearly not appropri-
ate for the vector computer. To be able to achieve a respectable performance on
the Cray a vector-oriented implementation would be necessary. Second, for small
problems, the proposed approach parallelizes rather well on both shared memory
(Sun) and dynamic shared (SMP) machines (SGI). However, as the problem size
increases parallel efficiency of the Sun decreases. It can be assumed that this
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Table 1. Parallel performance on the SUN Enterprise 3000 superserver, the
Cray J-9x vector-computer and the SGI Origin 2000 dynamic shared memory
parallel computer

SUN Cray J-9x SGI
n p T (p) Sp Ep T (p) Sp Ep T (p) Sp Ep

64 1 2.39 14.07 0.92
2 1.16 2.06 1.03 7.32 1.92 0.96 0.46 2.00 1.00
4 0.60 3.99 1.00 3.87 3.63 0.91 0.23 4.00 1.00
8 0.31 7.66 0.96 2.21 6.36 0.80 0.12 7.66 0.96

16 1.86 7.56 0.47 0.09 9.38 0.64
96 1 18.38 44.81 5.56

2 9.02 2.04 1.02 23.10 1.93 0.97 2.75 2.02 1.01
3 6.08 3.02 1.01 16.14 2.77 0.93 1.96 2.83 0.95
4 4.68 3.93 0.98 12.04 3.72 0.93 1.38 4.02 1.01
6 3.19 5.76 0.96 8.76 5.11 0.85 0.96 5.67 0.97
8 2.90 6.34 0.79 6.79 6.59 0.82 0.74 7.51 0.94

12 5.38 8.32 0.69 0.54 10.29 0.86
16 5.61 7.98 0.50 0.47 11.82 0.74

128 1 27.67 130.75 10.64
2 12.85 2.15 1.08 69.12 1.89 0.95 5.41 1.96 0.98
4 9.33 2.97 0.74 35.36 3.69 0.92 3.11 3.42 0.86
8 6.17 4.49 0.56 20.09 6.50 0.81 1.33 8.00 1.00

16 12.85 10.17 0.64 0.78 13.64 0.85
144 1 70.19 167.55 20.92

2 35.21 1.99 1.00 96.23 1.74 0.87 10.64 1.96 0.98
3 23.79 2.95 0.98 58.32 2.87 0.96 7.05 2.96 0.99
4 21.52 3.26 0.82 47.37 3.53 0.88 5.57 3.75 0.94
6 21.45 3.27 0.55 36.55 4.58 0.76 3.55 5.89 0.98
8 15.39 4.56 0.57 34.76 4.82 0.60 2.67 7.83 0.98

12 31.82 5.26 0.44 1.84 11.36 0.95
16 1.46 14.32 0.90

160 1 112.66 223.03 31.85
2 46.63 2.42 1.21 116.43 1.87 0.96 14.74 2.16 1.08
4 24.39 4.62 1.15 61.60 3.77 0.91 7.34 4.33 1.08
5 28.06 4.01 0.80 50.96 4.65 0.88 6.01 5.29 1.06
8 21.36 5.27 0.66 36.48 6.83 0.76 3.84 8.29 1.04

10 32.51 8.43 0.69 2.99 10.65 1.07
16 2.01 15.84 0.99

is due to the communication overhead which saturates the memory-processor
pathways. In addition, the single processor performance follows the same pat-
tern. While for n = 64 it takes the Sun twice as long to solve the problem, this
ratio increases to almost four times longer for n = 160. This observation should
also be related to the appearance of super-linear speedup. This effect is visible
not only on the Sun, but also, for the largest problem, on the SGI. This effect
has a relatively simple explanation. It has been observed many times that, on
the RISC based hierarchical memory computers, as the problem size increases
their efficiency rapidly decreases (see for instance [1]).
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In Table 2 we present the results of our experiments on the Cray T3E and
the two PC clusters: the Beowulf cluster of 16 233 MHz PII processors and the
Scali cluster of 16 450 MHz PIII processors. The reason for this combination

Table 2. Parallel performance on the Cray T3E and the PC clusters

Cray T3E Beowulf cluster Scali cluster
n p T (p) Sp Ep T (p) Sp Ep T (p) Sp Ep

64 1 1.39 2.81 0.90
2 0.68 2.04 1.02 1.84 1.52 0.76 0.48 1.88 0.94
4 0.35 3.97 0.99 1.01 2.78 0.70 0.25 3.60 0.90
8 0.20 6.95 0.87 0.70 4.01 0.50 0.12 7.50 0.94

16 0.11 12.63 0.79 0.49 5.73 0.36 0.06 15.00 0.94

96 1 7.46 17.06 5.34
2 3.74 1.99 1.00 10.14 1.68 0.84 2.75 1.94 0.96
3 2.54 2.94 0.98 6.99 2.44 0.81 1.90 2.83 0.94
4 1.90 3.92 0.98 5.31 3.21 0.80 1.42 3.76 0.93
6 1.31 5.69 0.95 4.06 4.20 0.70 0.97 5.57 0.93
8 0.98 7.61 0.95 3.26 5.23 0.65 0.73 7.31 0.91

12 0.67 11.13 0.93 2.35 7.25 0.60 0.49 10.96 0.91
16 0.52 14.34 0.90 1.98 8.61 0.54 0.37 14.43 0.89

is that the Cray in the NERSC center has only 256 Mbytes of memory per
processor (which is exactly the same amount of memory as we had per node in
both clusters) and thus we were able to run on them only the smaller problems.
In addition, all three machines represent pure message passing environments.

The results are rather surprising. The Cray is only 3-4 times faster that the
233 MHz PII cluster and slower than the 450 MHz PIII cluster. It should be
also added here, that the code on the Beowulf was compiled using the GNU
compiler, while the code on the Scali cluster was compiled using the Portland
Group compiler and thus the Beowulf results could have been somewhat better
if the better quality compiler was used. Observe also that for n = 96 the Beowulf
cluster has a performance comparable to the Sun (see Table 1). Interestingly, the
Scali cluster slightly outperforms the SGI supercomputer. It is a pity that the
distributed memory machines did not have more memory per node as it would
be very interesting to find out if this relationship holds also for larger problems.

5 Concluding Remarks

In this note we have reported on the parallel performance of a new precondi-
tioner applied to the conjugate gradient method used to solve a sparse linear
system arising from a 3D elliptic model problem. We have shown that the code
parallelizes well on a number of machines representing shared memory, dynamic
shared memory (SMP) and message passing environments. In the near future
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Fig. 1. Parallel efficiency Ep for n=96

we plan, first, to complete the performance studies by running our code on a
number of additional machines (e.g. IBM SP2, HP SPP 1000, Compaq Alpha
Cluster etc.). Second, we will extend our work to non-uniformly shaped domains,
non-uniform discretizations as well as situations when the proposed approach is
embedded in a solver for non-linear problems.
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