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A shared memory parallel implementation of
block-circulant preconditioners ∗

I. Lirkov† S. Margenov† R. Owens‡ M. Paprzycki§

Abstract

The parallel numerical solution of large scale elliptic boundary value problems is dis-
cussed. We analyze the parallel complexity of two block-circulant preconditioners when
the conjugate gradient method is used to solve the sparse linear systems arising from such
problems. A simple general model of the parallel performance is applied to the considered
shared memory parallel architecture. Estimates for the parallel times, the speed-up and the
parallel efficiency are derived. The numerical tests have been executed on SGI PC 8 000 and
SGI PC 10 000 as well as on Sun Ultra-Enterprise 168 MHz and 250 MHz computers.
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1 Introduction
In this paper we are concerned with algorithms for numerical solution of linear systems arising
from the discretization of elliptic boundary value problems. The finite difference method, as
well as the finite element method, reduce the continuous problem to a discrete one described by
a linear system Ax = b, where A is a symmetric positive definite sparse matrix. The projection
iterative methods of the conjugate gradient (CG) type are the most cost-efficient way to solve
large problems of this class. To accelerate the convergence of the iterative process, the CG
methods are almost always used with a preconditioner C. The theory of the preconditioned
conjugate gradient (PCG) method leads to the following criteria for constructing preconditioners:
to minimize κ(C−1A) and to allow efficient computation of the product C−1v for a given vector
v.

The present study is focussed on preconditioners based on a block-wise average of the coef-
ficients of A. The first attempts to use this approach have been motivated by the attractive ability
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to exploit the fast inversion of circulant blocks by Fast Fourier Transform (FFT) (see [?]). In
addition, the recent research on circulant preconditioners for Toeplitz systems [?, ?, ?] shows
promising results for favorable clustering of eigenvalues of the preconditioned system.

We consider two preconditioners that are constructed by circulant approximation of the initial
matrix A. The block-circulant preconditioner was proposed by R.H.Chan and T.F.Chan in [?]. It
preserves the block structure of the matrix A and can be written in a tensor product form. The
circulant block-factorization preconditioner introduced by Lirkov, Margenov and Vassilevski in
[?] is based on a circulant approximation of the blocks of A (considered in its block-tridiagonal
form). The circulant approximation is thus stabilized with respect to varying coefficients along
one of the coordinate directions.

The relative condition number of the preconditioned system for a model Poisson problem for
both BC and CBF preconditioners is estimated by O(

√
N), where N is the number of unknowns,

i.e., the same result as for certain ILU type preconditioners holds. The advantage of the block-
circulant preconditioners is their parallel efficiency.

Results of parallel implementation of PCG algorithms with various preconditioners have been
already published in a number of papers (see, e.g., in [?, ?, ?, ?, ?]). The implementation and
parallel performance characteristics of block circulant preconditioners on distributed memory
systems (a network of transputers) was considered in [?]. The goal of this paper is to analyze
the parallel performance of such preconditioners on shared memory computers. We derive the-
oretical estimates of the parallel times, the speed-up and the parallel efficiency of the proposed
algorithms.

The paper is arranged as follows. The structure of the BC and CBF preconditioners is briefly
described in §2. The parallel performance model of the PCG methods with circulant precondi-
tioners is derived in §3 and §4. In §5 we report preliminary experimental results collected on SGI
Power Challenge as well as on Sun Ultra-Enterprise shared memory computers. The summary
of future research concludes the paper.

2 Circulant preconditioners

As a model problem we consider a 2D second order elliptic PDE in the unit square Ω = (0, 1)×
(0, 1) with homogeneous Dirichlet boundary conditions. Let the domain Ω be triangulated by
a rectangular uniform grid with n grid points in each coordinate direction. Consider the usual
five-point stencil finite difference approximation. This discretization leads to a system of linear
algebraic equations Ax = b. It is well known that if the grid points are ordered along, e.g.,
the y-direction first, then the matrix A becomes block-tridiagonal where the diagonal blocks are
tridiagonal matrices and the off-diagonal blocks are diagonal matrices. Consequently, the matrix
A can be written in the form A = tridiag(−Ai,i−1, Ai,i,−Ai,i+1), i = 1, 2, . . . , n.

Let us remind that C is called circulant if (Ck,j) =
(
c(j−k) mod m

)
, where C is an m × m

matrix. We denote by C = (c0, c1, . . . cm−1) the circulant matrix with first row (c0, c1, . . . cm−1).
The efficient application of the circulant matrices in the large scale scientific computations is
based on the following important property.
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For any circulant matrix there exist the following factorization

C = FΛF ∗. (1)

Here Λ is a diagonal matrix containing the eigenvalues of C, and F is the Fourier matrix

F =
1√
m

{
e2π

jk
m

i
}
0≤j,k≤m−1

,

where i denotes the imaginary unit.
Let us introduce the following notations:

ā =
1

n2

n−1∑
i=1

in∑
j=(i−1)n+1

aj,j+n b̄ =
1

n2

n∑
i=1

in−1∑
j=(i−1)n+1

aj,j+1

C0 = (2ā+ 2b̄+ 2ρn−2,−b̄, 0, . . . 0,−b̄) C1 = −āI = (−ā, 0, . . . 0)

where ρ is a positive constant independent of n. Then the block-circulant preconditioner CBC ,
proposed by R. Chan and T. Chan in [?], can be written in the form

CBC = (C0, C1, 0, . . . 0, C1). (2)

The circulant block-factorization preconditioner introduced by Lirkov, Margenov and Vassilevski
in [?] is defined by

CCBF = tridiag(−Ci,i−1, Ci,i,−Ci,i+1) i = 1, 2, . . . , n, (3)

where Ci,j = Circulant(Ai,j) is a proper circulant approximation of the corresponding block
Ai,j .

3 Model of the computation and communication times
It has been shown that the convergence rate of these preconditioners is asymptotically the same
[?, ?]. Based on this fact, to analyze the parallel complexity, we can estimate the parallel execu-
tion time for a single PCG iteration only.

To establish the theoretical performance characteristics of the preconditioners in question we
apply a simple standard general model for the arithmetic and the communication times [?]. We
will assume that the computations and communications are not overlapped, and therefore, the
parallel execution time is the sum of the computation and communication times. We will also
assume that the execution of M arithmetic operations on one processor takes time Ta = M ∗ ta,
where ta is the average unit time to perform one arithmetic operation on one processor (no
vectorization). We model the shared memory architecture by assuming that all the processors
in the system can be considered as neighbors. Therefore the communication time to transfer M
data elements from one processor to another can be approximated by Tcom = ts +M ∗ tc, where
ts is the start-up time and tc is the incremental time necessary for each of M elements to be sent.

The times of the following two global operations will be considered:
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• b(p) - the time for broadcasting a data element from one processor to all others, where
there are p processors in the computer system;

• g(M, p) - the time for gathering p data packets from all processors into one (there are M/p
data elements per packet)

The estimates of b(p) and g(M, p) represent the capabilities of the parallel architecture. Our
assumptions lead to the following simple relations:

b(p) = ⌈log p⌉(ts + tc)

g(M, p) = (p− 1)(ts +
M

p
tc)

To achieve a good load balance as well as a low communication cost, we partition the unit
square into p rectangles so that each rectangle contains n/p y-grid lines. We map all grid points
from a given rectangle onto one processor. In this way, the matrix-vector multiplication requires
communication of only n values from one grid line between the corresponding “neighbor pro-
cessors”.

4 Analysis of the parallel complexity
We can now estimate the total execution time TPCG for one PCG iteration for the considered two
circulant preconditioners on a shared memory parallel system with p processors. Each iteration
consists of one matrix vector multiplication with the matrix A, one multiplication with the inverse
of the preconditioner C (solving a system of equation with matrix C), two inner products and
three linked triads (a vector updated by a vector multiplied by a scalar). Consequently

TPCG(p) = Tmult + Tprec + 2Tinn prod + 3Ttriads,

where

Tmult = 9
n2

p
ta + 4(ts + ntc),

Tinn prod =

(
2
n2

p
− 1

)
ta + ⌈log p⌉(ts + tc + ta),

Ttriads = 2
n2

p
ta,

and where for the BC and CBF preconditioners, respectively

TBC
prec = 4

n

p
TFFT (n) + 2

n2

p
ta + 2(p− 1)(ts +

n2

p2
tc),

TCBF
prec = 2

n

p
TFFT (n) + 12

n2

p
ta + 2(p− 1)(ts +

n2

p2
tc),
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and where TFFT (n) is the time for execution of FFT on a given n-vector on one processor. If the
factorization of n in prime numbers is n = n1n2 . . . nl, then TFFT (n) = 4n(n1+n2+ . . .+nl)ta.
If n is equal to an exact power of two, then we use 2-radix algorithm and then TFFT (n) =
5n log nta.

Combining these results we obtain the following estimates of the execution times for the
studied preconditioners

TBC
PCG(p) = 2 (p+ ⌈log p⌉+ 1) ts + 2

[
(p− 1)

n2

p2
+ 2n+ ⌈log p⌉

]
tc

+

(
21

n2

p
+ 2⌈log p⌉ − 2

)
ta + 4

n

p
TFFT (n)

TCBF
PCG (p) = 2 (p+ ⌈log p⌉+ 1) ts + 2

[
(p− 1)

n2

p2
+ 2n+ ⌈log p⌉

]
tc

+

(
31

n2

p
+ 2⌈log p⌉ − 2

)
ta + 2

n

p
TFFT (n)

For simplicity we assume that the mesh size n is an exact power of two, i.e., n = 2l. Then,
the leading terms of the parallel time complexity functions are:

TBC
PCG(p) ≈ 2pts + 2(1− 1

p
)
n2

p
tc + (21 + 20 log n)

n2

p
ta, (4)

TCBF
PCG (p) ≈ 2pts + 2(1− 1

p
)
n2

p
tc + (31 + 10 log n)

n2

p
ta. (5)

It can be observed that for large n TBC
PCG(p) ≈ 2TCBF

PCG . Our next goal is to analyze the relative
speed-up Sp and the relative efficiency Ep, where

Sp =
T (1)

T (p)
≤ p and Ep =

Sp

p
≤ 1.

We apply now (??–??) and obtain:

SBC
p ≈ 21 + 20 log n

2 p2

n2
ts
ta
+ 2(1− 1

p
) tc
ta
+ 21 + 20 log n

p, (6)

SCBF
p ≈ 31 + 10 log n

2 p2

n2
ts
ta
+ 2(1− 1

p
) tc
ta
+ 31 + 10 log n

p. (7)

Obviously, for both preconditioners,

lim
n→∞

Sp = p and lim
n→∞

Ep = 1,

i.e., the algorithms are asymptotically optimal. More precisely, if

log n ≫ p2

n2

ts
ta

+
tc
ta
,

then Ep is approximately 1. Unfortunately, the start-up time ts is usually much larger than ta,
and for relatively small n the first term of the denominators in (?? - ?? ) is significant, in this
case the efficiency is much smaller than 1.
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5 Experimental results

5.1 Silicon Graphics Power Challenge

In this section we present experimental results collected when running a PVM-based code on
SGI Power Challenge 8000 (SGI PC 8000) and SGI Power Challenge 10000 (SGI PC 10000)
shared memory computers. Times have been collected using the mclock utility. All data has
been collected in benchmarking mode or on lightly loaded systems. In the latter case the best
results (out of multiple runs) are reported. The parallel time T (p), the relative speed-up Sp and

Table 1: Parallel time, speed-up and efficiency for the BC preconditioner.

SGI PC 8 000 SGI PC 10 000
n T (1) p T (p) Sp Ep T (1) p T (p) Sp Ep

62 0.13 1 0.07 1
124 0.55 2 0.31 1.77 0.89 0.29 2 0.16 1.81 0.90
186 1.31 3 0.49 2.67 0.89 0.72 3 0.38 1.89 0.63
248 2.29 4 0.67 3.42 0.85 1.21 4 0.51 2.37 0.59
310 3.82 5 1.00 3.82 0.76 2.13 5 0.69 3.09 0.62
372 5.38 6 1.26 4.26 0.71 3.07 6 0.85 3.61 0.60
434 7.97 7 1.62 4.92 0.70 5.30 7 1.33 3.98 0.57
496 9.50 8 1.77 5.37 0.67 5.50 8 1.45 3.79 0.47
558 13.18 9 2.16 6.10 0.68 7.62 9 1.79 4.26 0.47
620 15.88 10 2.41 6.59 0.66 9.22 10 1.92 4.80 0.48
682 21.48 11 2.94 7.31 0.66 12.33 11 2.23 5.53 0.50
744 23.23 12 3.58 6.49 0.54 13.91 12 2.46 5.65 0.47
806 31.53 13 4.41 7.15 0.55 17.93 13 2.69 6.66 0.51
868 36.03 14 4.58 7.87 0.56 22.36 14 2.77 8.07 0.58
930 39.39 15 5.07 7.77 0.52 22.82 15 3.08 7.41 0.49

the relative efficiency Ep for the block-circulant preconditioner BC are given in Table ??. The
similar results for the circulant block-factorization CBF are presented in Table ??. The mesh-
size parameter n and the number of processors p are simultaneously increased following the rule
n
p
= 62. The CBF preconditioner is faster than the BC confirming the theoretical estimates from

§4. What is more interesting, the speed-up and the efficiency are also better for the CBF even
for these relatively small values of n. The speed-up and the efficiency decrease for the faster
machine SGI PC 10000 as a result of its relatively slow communication.

The behavior of the relative efficiency obtained on the SGI PC 8000, varying p for n = 300,
is shown in Figure ??. The decrease of Ep with p is clearly visible. Some fluctuations of the
reported timings can be observed. It can be explained by the fact that in the reported cases n
is not an exact power of two that causes a non-smooth (even non-monotonic) behavior of the
computational complexity of the Fourier transforms.
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Table 2: Parallel time, speed-up and efficiency for the CBF preconditioner.

SGI PC 8 000 SGI PC 10 000
n T (1) p T (p) Sp Ep T (1) p T (p) Sp Ep

62 0.06 0.03
124 0.28 2 0.16 1.75 0.87 0.15 2 0.09 1.66 0.83
186 0.67 3 0.27 2.48 0.82 0.39 3 0.17 2.29 0.76
248 1.18 4 0.37 3.19 0.78 0.66 4 0.21 3.14 0.78
310 1.98 5 0.49 4.04 0.81 1.16 5 0.30 3.87 0.77
372 2.81 6 0.58 4.84 0.81 1.62 6 0.36 4.50 0.75
434 4.11 7 0.75 5.48 0.78 2.41 7 0.63 3.82 0.55
496 5.00 8 0.89 5.62 0.70 2.78 8 0.74 3.75 0.47
558 6.86 9 1.00 6.86 0.76 4.00 9 0.89 4.49 0.50
620 8.46 10 1.49 5.67 0.57 4.74 10 1.01 4.69 0.43
682 11.22 11 1.50 7.41 0.68 6.36 11 1.16 5.71 0.50
744 11.96 12 1.35 8.86 0.74 7.23 12 1.20 6.02 0.50
806 16.25 13 1.85 8.78 0.68 6.75 13 1.11 6.08 0.47
868 17.02 14 1.74 9.78 0.70 9.17 14 1.40 6.55 0.47
930 19.90 15 1.93 10.31 0.72 11.59 15 1.85 6.26 0.42

5.2 SUN Ultra-Enterprise Symmetric Multiprocessor

In this section we report the results of the experiments executed on SUN Ultra-Enterprise Sym-
metric Multiprocessor. The code has been implemented using the MPI (Message-Passing Inter-
face) library. Based on the results from the previous section (and similar results presented in [?]),
indicating the superior performance of the Circulant Block-Factorization, only the results for this
preconditioner are reported. The parallel time, the relative parallel speed-up and the relative ef-
ficiency obtained on systems consisting of 168 MHz and 250 MHz processors for the mesh-size
n ∈ {128, 256, 384, 420} are reported in Table ??. The general behavior is in a good agreement
with the theoretical estimates. We can observe that, similarly to the results from the previous
subsection, the efficiency is higher on the computer with the slower processors. In the case of the
faster processor the speed of the communication network is clearly inadequate. Comparing the
results obtained using PVM and MPI as the communication libraries it can be conjectured that
the MPI environment provides a better performance for the global communication operations.

6 Concluding remarks

The parallel implementation of two block-circulant preconditioners on a shared memory parallel
system was studied. Even though the convergence of the BC and the CBF preconditioners is of
the same order the results presented in [?, ?] indicate that, for problems with varying coefficients
or anisotropy, as well as for y-periodic problems, the CBF preconditioner has considerable ad-
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Figure 1: Parallel relative efficiency obtained on SGI PC 8000 for n = 300.

vantages. In addition, the results presented in this paper indicate that the parallel performance
characteristics are also better for the CBF preconditioner.

The experimental data collected so far is only preliminary. In the near future we plan to
expand our investigations in the following directions:

• Study the performance characteristics of the proposed preconditioners on the dynamic
shared memory machines (e.g. SGI Origin and Convex Exemplar).

• For the shared and dynamic shared memory machines compare the performance of the
message passing and the shared memory approaches to parallelization.

• Comparison of the PVM and MPI based implementations of the proposed preconditioners
on the shared, distributed and dynamic shared memory machines.

• Develop a more realistic theoretical models of parallel performance.

• Extend the study into 3D elliptic problems.
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