
Optimizing Nash Social Welfare in
Semi-Competitive Intermediation Networks

Amelia Bădică
University of Craiova
Craiova, Romania

ameliabd@yahoo.com

Costin Bădică
University of Craiova
Craiova, Romania

cbadica@software.ucv.ro

Ion Buligiu
University of Craiova
Craiova, Romania

buligiu.ion@gmail.com

Liviu Ion Ciora
University of Craiova
Craiova, Romania

liviuciora2004@yahoo.com

Maria Ganzha
Warsaw University of Technology

Warsaw, Poland
Maria.Ganzha@ibspan.waw.pl

Mirjana Ivanović
University of Novi Sad

Novi Sad, Serbia
mira@dmi.uns.ac.rs

Marcin Paprzycki
Polish Academy of Sciences

Warsaw, Poland
marcin.paprzycki@ibspan.waw.pl

Abstract—We have recently proposed a mathematical model
of collective profitability, in semi-competitive intermediation net-
works. In this work, we are interested in determining optimal
pricing strategies of network participants. The optimization
criterion is defined using the Nash social welfare function. We
provide theoretical results of existence of such strategies, as well
as computational experimental results, based on nonlinear convex
mathematical optimization.

Index Terms—semi-competitive intermediation, collective pro-
fitability, Nash social welfare, nonlinear convex optimization

I. INTRODUCTION

The context of this work is related to our recent research
efforts and results in the area of modeling and analysis of
semi-competitive intermediation networks that serve complex
business processes. They are motivated by current practices
in the management of distribution activities, by engaging in
multiple inter-related and concurrently operating distribution
channels.

Our preliminary results on this subject were initially presen-
ted in recent papers [4], [5]. The main reported achievement
was the proposal of a general process structure, based on
directed acyclic graphs (DAG hereafter) and the establishment
of necessary and sufficient conditions for the existence of
profitable pricing strategies of all process participants.

Let us consider a “society”, defined through all participants
in an intermediation business process. Social choice theory
postulates that a social choice can be defined using a social
welfare function that maps each tuple of individually preferred
outcomes of participants to the socially preferred outcome.

Authors of [8] formulated a set of four rationality conditions
that should be satisfied by a reasonable social welfare function.
Then they shown that there exists a unique social welfare
function that satisfies these conditions. It is called Nash social
welfare function, and it can be represented quantitatively using
the Nash social welfare index.

In this contribution we assume that participants choices are
represented by transaction prices and their social welfare can
be quantitatively captured by the Nash social welfare index.

The main achievement is the definition of optimal pricing
strategies of transaction participants as a nonlinear convex
optimization problem [6]. We provide theoretical results re-
garding the existence of optimal pricing strategies in a semi-
competitive intermediation networks, as well as experimental
results that support the feasibility of our approach.

II. SEMI-COMPETITIVE INTERMEDIATION NETWORKS

Let us start by reviewing the definition of collectively
profitable intermediation DAG, previously introduced in [4],
[5]. Nevertheless, we simplify the definition, by removing
DAG annotations with information about exchanged products
that is not relevant for the purpose of this paper.

Definition 1 (Intermediation DAG): Let S, B, and I be three
finite, nonempty and pairwise disjoint sets of seller, buyer and
intermediary agents. An intermediation DAG is defined by a
triple G = 〈V,A, π〉 such that:

i) The set of vertices is defined by V = S ∪ B ∪ I.
ii) There are no incoming arcs to S and no outgoing arcs

from B.
iii) π : S ∪ B ∪ A → [0,+∞) is the annotation function, to

attach pricing information to components of G as follows:
iii.1) If s ∈ S then π(s) = σs > 0.
iii.2) If b ∈ B then π(b) = βb > 0.
iii.3) If t = (u, v) ∈ A is a transaction, then π(t) =

πu,v > 0 represents the transaction price, for which
agent u sells some of its products to agent v.

Each seller/buyer of an intermediation DAG is responsible
with selling/buying a given set of products. We define the limit
price σs of seller s for selling its set of products, meaning
that s will agree to sell its products only at price p ≥ σS .
Similarly, we define the limit price βb of buyer b for buying
its set of products, meaning that b will agree to purchase its
set of products only at price p ≤ βb.

Figure 1 presents an example of intermediation DAG. Note
that in this example S = {1, 2}, B = {5, 7, 8}, π(1) = σ1,
π(5) = β5, and π((3, 6)) = π3,6.

1 2

3 4 5

6

7 8

Fig. 1. DAG-based intermediation process.

A participant v ∈ V is profitable if and only if it gains a
positive utility, i.e. u(v) ≥ 0. Let us define functions in and
out using equations (1).

in : V → 2V defined as in(v) = {u|(u, v) ∈ A}
out : V → 2V defined as out(v) = {u|(v, u) ∈ A} (1)

We can now define the utility uv = u(v) of each node v
using equations (2), (3), and (4).

i) The utility of a seller s ∈ S is defined by:

u(s) = −σs +
∑

v∈out(s)

πs,v (2)

ii) The utility of a buyer b ∈ B is defined by:

u(b) = βb −
∑

v∈in(b)

πv,b (3)

iii) The utility of an intermediary i ∈ I is defined by:

u(i) =
∑

v∈out(i)

πi,v −
∑

v∈in(i)

πv,i (4)

An intermediation DAG is collectively profitable if and
only it can be annotated with positive transaction prices, such
that for each v ∈ V we have u(v) ≥ 0. In paper [5],
we formulated necessary and sufficient collective profitability
conditions that must be satisfied by limit prices σ and β. In
this paper, assuming that these conditions hold, i.e. our DAG
is collectively profitable, we are interested in formulating the
maximization of social welfare as a mathematical optimization
problem.

III. OPTIMIZING NASH SOCIAL WELFARE

Let us consider a collectively profitable intermediation DAG
G, i.e. uv ≥ 0 for each participant v. In what follows we
denote with n ≥ 1 the number of participants (i.e. number
of elements of V) and with e ≥ 1 the number of tran-
sactions (i.e. number of elements of A). Hence, participants
are 1, 2, . . . , n and transactions (numbered in lexicographical
order) are 1, 2, . . . , e.

The Nash social welfare function for G is defined by
equation (5).

U(π) =

n∑
i=1

log ui (5)

Note that if the intermediation DAG is collectively profitable
then U is well defined by equation (5), as ui ≥ 0 for all
1 ≤ i ≤ n (we assume that log 0 = −∞). Let us consider a
vector b ∈ Rn×1 defined by equation (6).

bi =

 −σi i ∈ S
βi i ∈ B
0 i ∈ I

(6)

Let also denote with D ∈ Rn×e the incidence matrix [1] of
the intermediation DAG, defined according to equation (7).

Di,j =

 1 if node i is the head of arc j
−1 if node i is the tail of arc j
0 otherwise

(7)

Then, the vector u of participants’ utilities can be defined
using equation (8).

u = Dπ + b (8)

Now, coupling collective profitability condition u � 0, with
positivity condition of transaction prices π � 0, produces
inequalities (9) that define the domain of the social welfare
function U .

−Dπ � b
−π � 0

(9)

Note that inequalities (9) define a finite intersection of half-
spaces, i.e. a polyhedron. Moreover, positivity conditions of π
define a lower bound. Finally, moving up in the intermediation
DAG, starting from the bottom vertices denoting buyers (see
also Figure 1), we can recursively define finite upper bounds
for each transaction price. Thus, it easily follows that the
domain of U is a bounded polyhedron, i.e. a polytope [10].

We now study the convexity of U . First observe that:

∂U

∂πi,j
=

1

ui
− 1

uj

∂2U

∂π2
i,j

= −(
1

u2i
+

1

u2j
)

∂2U

∂πi,j∂πi,k
=

∂2U

∂πj,i∂πk,i
= − 1

u2i
∂2U

∂πi,j∂πj,k
=

∂2U

∂πj,k∂πi,j
=

1

u2j

(10)

According to equations (10), the Jacobian and Hessian
matrices of U are 1×e and, respectively, e×e matrices defined
by equations (11).

JU (π) =

[
1

u

]T
D

HU (π) = DT diag

([
−1

u2

])
D

(11)

b =

−σ1

−σ2

0
0
β5
0
β7
β8

(12)

Matrices b and D, for the example intermediation DAG
from Figure 1, are defined by equations (12) and (13). Mo-
reover, Jacobian and Hessian matrices of the intermediation
DAG, from Figure 1, are defined by equations (14).

D =

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0

−1 0 0 0 1 0 0 0
0 −1 −1 0 0 1 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 −1 1 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

(13)

Note that the Hessian matrix is useful for understanding
why the social welfare function U is a concave function, while
both matrices will be also useful for the implementation of the
nonlinear convex optimization problem.

JU (π) =
[

1
u1

− 1
u3

1
u1

− 1
u4

1
u2

− 1
u4

1
u2

− 1
u5

1
u3

− 1
u6

1
u4

− 1
u6

1
u6

− 1
u7

1
u6

− 1
u8

]

HU (π) =

− 1
u2
1
− 1

u2
3

− 1
u2
1

0 0 1
u2
3

0 0 0

− 1
u2
1

− 1
u2
1
− 1

u2
4

− 1
u2
4

0 0 1
u2
4

0 0

0 − 1
u2
4

− 1
u2
2
− 1

u2
4

− 1
u2
2

0 1
u2
4

0 0

0 0 − 1
u2
2

− 1
u2
2
− 1

u2
5

0 0 0 0
1
u2
3

0 0 0 − 1
u2
3
− 1

u2
6

− 1
u2
6

1
u2
6

0

0 1
u2
4

1
u2
4

0 − 1
u2
6

− 1
u2
4
− 1

u2
6

1
u2
6

0

0 0 0 0 1
u2
6

1
u2
6

− 1
u2
6
− 1

u2
7

1
u2
7

0 0 0 0 0 0 1
u2
7

− 1
u2
7
− 1

u2
8

(14)

We analyze the convexity of U by using an adaptation of
Sylvester’s criterion for semi-definite positive/negative matri-
ces. Basically, we show that the Hessian matrix of U , i.e.
HU (π), is negative semi-definite by showing that all its
principal minors of order k have sign (−1)k [9]. This means
that function U is concave.

Let us consider a principal minor ∆i1,i2,...,ik , of the Hessian
matrix HU (π), such that 1 ≤ i1 < i2 < · · · < ik ≤ n are k
arbitrary arcs of the intermediation DAG G. Let us consider the
undirected subgraph G′, obtained by discarding arc orientation
of the subgraph of G, induced by the subset of {i1, i2, . . . , ik}
of arcs. Let V ′ be the set of vertices of G′.

If G′ does contain cycles, then it is not difficult to observe
that ∆i1,i2,...,ik = 0. If we consider a cycle (together with
its orientation), we can assign an arbitrary orientation to each
of its arcs. Then, the algebraic sum of the Hessian columns
corresponding to the arcs of this cycle, signed according to the
arc orientation with respect to the cycle orientation, will be
obviously zero, as the arcs determine a cycle in the graph. For
example, let us consider the cycle (1, 3), (3, 6), (6, 4), (4, 1) of
the DAG from Figure 1. Using arc indices, and assigning +
or − to each arc according to its orientation with respect to
the cycle orientation, we obtain the cycle 1, 5,−6,−2. Now it
is very easy to check that adding columns 1, and 5 and then
subtracting columns 2 and 6, of HU (π), we obtain zero.

If G′ does not contain any cycles, then let us consider the
connected components G′j of G′, 1 ≤ j ≤ p, such that G′j
contains kj arcs,

∑p
j=1 ki = k and has vertices V ′j . Then,

minor ∆i1,i2,...,ik is defined by equation (15).

∆i1,i2,...,ik = (−1)k
p∏
j=1

∑
Sj⊆V ′

j

|Sj |=kj

∏
i∈Sj

1

u2i (15)

Equation (15) clearly shows that (−1)k∆i1,i2,...,ik > 0.
So, finally, we can conclude that social welfare function U is
concave. As U is defined on a polytope domain, i.e. a bounded
convex set, U has a local maximum and the local maximum
is also a global maximum, thus proving the existence of
an optimal pricing strategy of the network participants that
maximizes the Nash social welfare.

We close this section with an example, showing the value
of minor ∆1,3,4 of the intermediation DAG from Figure 1.
Note that arc 1 is (1, 3), arc 3 is (2, 4), and arc 4 is (2, 5),
so graph G′ has 5 vertices {1, 2, 3, 4, 5} and p = 2 connected
components defined by subsets of vertices {1, 3} and {2, 4, 5}.
Moreover k1 = 1 and k2 = 2. Graph G′ does not contain
cycles, so ∆1,3,4 is defined by equation (16).

∆1,3,4 = −(
1

u21
+

1

u23
)(

1

u22u
2
4

+
1

u22u
2
5

+
1

u24u
2
5

) (16)

IV. COMPUTATIONAL EXPERIMENTS

A. Experimental Setting

We have performed computational experiments, for asses-
sing the correctness and feasibility of our approach using the
CVXOPT package for convex optimization [3]. We have used

the 64-bit (AMD64) version of Python 3.7.3 on an x64-based
PC with a 2 cores/4 threads Intel© Core™i7-5500U CPU at
2.40 GHz, running Windows 10.

Our problem was formulated as a nonlinear convex optimi-
zation problem, suitable CVXOPT. We introduce the matrices
G of size (e + n) × e and h of size (n + e) × 1 using
equations (17).

G =

[
−D
−Ie

]
h =

[
b
0

] (17)

Now, the nonlinear convex optimization problem, prepared
for CVXOPT, can be described using equations (18).

minimize −U(π) = −
∑n
i=1 log(Dπ + b)i

subject to Gπ � h (18)

The implementation using CVXOPT using solver
cvxopt.solvers.cp assumes the following steps [3]:

i) Definition of a Python function U that evaluates the
objective and the constraint functions.

ii) Implementation of Python function U makes use of the
Jacobian and Hessian matrices of the objective function.
They must be implemented using the CVXOPT-specific
data type cvxopt.matrix.

iii) Function U also makes use of a point x0, inside the
domain of the objective function, so we had to compute
this point before calling the solver. More details are given
below.

iv) Prepare a series of data sets such that one data set
represents a single problem defined by a specific inter-
mediation DAG. More details about these data sets are
provided below.

v) Define a main Python script that loads data sets, con-
figures CVXOPT parameters, calls the solver function
cvxopt.solvers.cp, and then extracts the solution.

We analyzed two options to determine one point inside the
polytope domain:

i) To convert the polytope from halfspace to vertex re-
presentation [10], and then sample its interior using a
uniform probability distribution.

ii) To directly chose one point using the halfspace represen-
tation. For that purpose we could its Chebyshev center
representing the deepest point inside the polytope [6].

We performed some tests with both approaches, using the
PYPOMAN package for polyhedral manipulations [7]. The
first approach was not usable, because the vertex computation
took too much computing time, probably because of the high
number of generated polytope vertices. For example, for an
intermediation DAG with 15 vertices and 35 arcs (i.e. 35
dimensions of our polytope), the resulting polytope had 58795
vertices. So we used the second approach in our experiments.
Nevertheless, it was good to have two different methods
to generate points inside the polytope, at least for smaller
problem sizes, to be able to check the convergence of the
method with initial points generated by distinct methods.

B. Data Sets

We randomly generated a number of DAGs of increasing
sizes, representing intermediation networks. We used the fol-
lowing parameters:

i) Number n of graph nodes, an element of the set
{5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50}.

ii) The density factor f of the graph. The higher is this factor
the more arcs are in the graph. Value of f is given as a
percentage in the set {10, 20, 30, 40, 50, 60, 70, 80, 90}.

iii) Number ng of generated graphs for each value of n and
f . We have chosen ng = 10.

It follows that a total number of 11× 9× 10 = 990 DAGs
were generated. Each DAG is represented by its adjacency ma-
trix A defined according to equation (19), and then converted
into its incidence matrix representation D for the optimization
purpose.

Ai,j =

{
1 if there is an arc from node i to node j
0 otherwise

(19)
The adjacency matrix of each DAG was stored into a

separate text file. The name of this file included the generating
parameters. For example, the 5-th DAG with 15 vertices
and density factor 40% is stored into a text file with name
graf-15-40-5.txt. This information is used in descrip-
tion of experimental results.

Before closing this section, we follow with two remarks
regarding the random DAGs generating process:

i) The first problem that had to be solved, during the gene-
ration process, was to assure that the resulting directed
graph is a DAG. Simply generating random graphs with a
pre-imposed density factor is not enough. This constraint
was fulfilled by generating only adjacency matrices in
upper triangular form. On the one hand, this assures that
the resulting directed graph is a DAG. Conversely, the
process is not restrictive, as the adjacency matrix of any
DAG can be converted into upper triangular form by
renumbering the graph nodes according to the topological
sorting of the graph.

ii) During the generation process, we had to ignore (as
not relevant) those DAGs that contain “singular” nodes,
i.e. nodes without incoming and outgoing arcs, as these
graphs do not satisfy the requirements set for intermedi-
ation DAGs.

Finally, we had to choose values for the limit prices of
buyers and sellers. Note that, according to the results from [5],
a necessary condition for the collective profitability of an
intermediation DAG is defined by equation (20).∑

b∈B

βb ≥
∑
s∈S

σs (20)

Let nb = |B| and ns = |S|. We have chosen σ and β
according to equations (21). Note that this choice automa-
tically assures that condition (20) is fulfilled. Nevertheless,
this condition is only necessary, but not sufficient. This means
that for few data sets, the optimization procedure might fail

to produce a solution, as such a solution does not exist (this
will be highlighted by the experimental results presented in
the next section).

σs = σ = 100 for all s ∈ S
βb = β = σ × (dnb

ns
e+ 1) for all b ∈ B (21)

For example, using equations (21), if there are 3 buyers
and 2 sellers we obtain limit price 100 of each seller and limit
price 300 of each buyer.

C. Results and Discussion

We present, in Table I, information about the size of our data
sets. We have evaluated the minimum and maximum number
of arcs for each DAG in the subset of DAGs with the same
number of nodes. Moreover, we have compared the maximum
number of arcs, in our data sets, with the maximum number of
arcs of a DAG with a given number n of nodes. Note that this
value is obtained when the adjacency matrix has only values
in the upper triangle, i.e. the total number of arcs is n(n−1)

2 .

TABLE I
SIZE OF DATA SETS

nodes # arcs e

n Min. (data set) Max. (data set) Max. n(n−1)
2

5 3 15 15
6 3 15 15
7 4 21 21
8 4 28 28
9 5 36 36
10 7 45 45
15 12 99 105
20 19 177 190
30 39 401 435
40 67 721 780
50 107 1111 1225

We can observe that for smaller number of nodes n ∈
{5, 6, 7, 8, 9, 10} our data sets contain graphs with maximum
number of arcs. However, for larger values of n this is not true.
For example, for graphs with n = 40 nodes, the maximum
number of arcs in our data set is 721.

Note that the number of nodes and arcs of the DAG provides
a useful information about the “size” of the optimization
problem. Here, n gives the number of network participants and
it also represents the number of terms of the sum that defines
the Nash social welfare utility function (see equation (5)). The
e is the number of transaction prices, and also represents the
number of decision variables of our optimization problem.
According to Table I, our largest optimization problem had
1111 decision variables. However, the largest problem that we
were able to solve successfully, was graph-50-90-2 of size
1102.

We have developed a Python script for running the convex
optimization solver on each DAG in our data set. The solver
was configured as follows:
• ’maxiters’ parameter, denoting the maximum num-

ber of iterations, was set to 30.

• ’refinement’ parameter, denoting the number of
iterative refinement steps when solving KKT equations,
was set to 2.

• ’show_progress’ parameter, for turning on the out-
put of the optimization progress, was set to True.

• ’abstol’, ’reltol’, and ’feastol’ parameters,
were set to their default values 1e-7, 1e-6, and 1e-7.

Note that the maximum number of iterations for success-
fully solving an optimization problem was 29 and it was
achieved for data set graph-40-10-8.

We also recorded the execution times required for running
the optimization solver, for each set of graphs with a given
number of nodes. The results are recorded in Table II. Note
that the time required for running the solver, for the problems
with 50 nodes, was significantly larger than for the rest of the
problems. This was also partly influenced by the fact that we
did not obtain convergence for 13 problems in total, all of
them for graphs with 50 nodes.

TABLE II
COMPUTATION TIME

nodes n Time [sec.]
5 1.875
6 1.875
7 1.953
8 2.062
9 2.906
10 3.437
15 6.390
20 9.890
30 38.843
40 134.109
50 1578.890

Total 1782.230

Before discussing the results of the optimization process,
first note that, as we already pointed out in our previous pa-
per [4], the sum of utilities of all the nodes of an intermediation
DAG is constant, i.e. equality (22) holds.

n∑
i=1

ui =
∑
b∈B

βb −
∑
s∈S

σs (22)

So, denoting with uδ the increment utility defined by
equation (23), we can immediately apply the classic inequa-
lity between arithmetic and geometric means, to obtain the
upper bound of the Nash social utility function given by
equation (24).

uδ = (
∑
b∈B

βb −
∑
s∈S

σs)/n (23)

U(π) ≤ n log uδ (24)

Note, however that the upper bound stated by equation (24),
is achieved if and only if the system of linear equations (25)
has positive solutions.

(Dπ + b)i = uδ for all i = 1, . . . , n (25)

Based on this observation, we can distinguish between two
situations, when our solver returns an optimal solution:

• The problem has an optimal solution for which utilities
of all participants are equal. In this case the solution can
be obtained by solving linear system (25), to produce
positive values representing feasible transaction prices
that determine equal utilities for all participants. In what
follows we will call this case “trivial” (for obvious
reasons).

• Linear system (25) does not have positive solutions. In
this case we must run the optimization solver to produce
a solution that maximizes that Nash social welfare, but
utilities of participants are not equal. In what follows we
will call this case “non-trivial” (for obvious reasons).

Moreover, there are two situations when the optimization
process does not produce solutions:

• The optimization process terminates after reaching the
maximum number of iterations, without reaching conver-
gence. This situation is labeled “unknown”, meaning that
the optimality status of the solution is not known.

• The optimization process terminates abruptly when the
solver raises an exception. This situation is labeled “ex-
ception”. One possible cause for this could be that the
intermediation DAG is not collectively profitable. Recall
that we generated our data sets by assuring only the
necessary condition of collective profitability, so it is
possible that our data sets contains intermediation DAGs,
which are not collectively profitable.

Table III presents the optimization results, for each set of
graphs with a given number of nodes, by distinguishing each
of the four possible optimization outcomes: “trivial”, “non-
trivial”, “exception”, and “unknown”. Note that in most cases,
the solver obtained the trivial solution. This is not a surprise.
However, for a significant number of cases between 17.5%
(for n = 40) and 44.2% (for n = 7), the solver obtained a
non-trivial solution. Actually these values clearly depend both
on the DAG structure, as well as on the values of limit prices
σ and β. An example of non-trivial solution is obtained for
problem graph-50-20-9. The problem has 50 nodes, 216
arcs, and the convergence was obtained after 22 iterations.

TABLE III
OPTIMIZATION RESULTS

nodes # arcs e # arcs e
n Trivial Non-trivial Exception Unknown
5 68 22 0 0
6 68 22 0 0
7 61 27 2 0
8 72 15 3 0
9 65 20 5 0
10 68 21 1 0
15 72 14 4 0
20 61 27 2 0
30 80 9 1 0
40 82 7 1 0
50 67 9 1 13

Note also that the solver terminated for at least one case
with exception (most probably meaning that the DAG is not
collectively profitable), for all the values on n between 7 and
50. A closer analysis revealed that in all these situations (there
are 20 in total, see column labeled Exception of Table III) the
density factor of the graph was at most 40%, while in 17 of
these cases the density factor of the graph was at most 20%
– i.e. the graph was sparse.

Finally, note that for 9 problems of 50 nodes the opti-
mization solver terminated neither with exception, nor with
convergence (see column labeled Unknown of Table III). These
situations were probably caused by the internal functionality
of the solver. It is interesting to observe that this happened
only for dense graphs, with density factor at least 70%.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we formulated the problem of determining
optimal pricing strategies, for maximizing the Nash social
welfare of participants to an intermediation network in semi-
competitive environments, as a nonlinear convex optimization
problem. We have theoretically proven that, if the network is
collectively profitable, then there exists a globally optimal pri-
cing strategy of the participants that maximizes their the Nash
social welfare. We have also presented results of computational
experiments using a nonlinear convex optimization package, to
support our conclusions, and illustrate the feasibility of model.

ACKNOWLEDGMENT

This paper is a part of the Serbia-Romania-Poland collabo-
ration within multilateral agreement on “Agent systems and
applications” and Romania-Poland collaboration within bila-
teral project “Novel methods for development of distributed
systems”.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows: Theory,
Algorithms, and Applications, Pearson, 1993.

[2] M. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe, “Interior-point met-
hods for large-scale cone programming,” in Optimization for Machine
Learning. S. Sra, S. Nowozin, and S. J. Wright, Eds. MIT Press, 2011,
pp. 1–26.

[3] M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT User’s Guide,”
Release 1.2.3 – February 5, 2019. https://cvxopt.org/.

[4] A. Bădică, C. Bădică, M. Ivanović, and I. Buligiu, “Collective Pro-
fitability and Welfare in Selling-Buying Intermediation Processes,” in
Computational Collective Intelligence. ICCCI 2016. Part II. N. Nguyen,
L. Iliadis, Y. Manolopoulos, and B. Trawiński, Eds. Lecture Notes in
Computer Science, 9876, Springer, Cham, 2016, pp. 14–24.

[5] A. Bădică, C. Bădică, M. Ivanović, and D. Logofătu, “Collective
Profitability of DAG-Based Selling-Buying Intermediation Processes,”
in Intelligent Distributed Computing XII. J. Del Ser, E. Osaba, M. N.
Bilbao, J. J. Sánchez-Medina, M. Vecchio, and X.-S. Yang, Eds. Studies
in Computational Intelligence, 798, Springer, Cham, 2018, pp. 414–424.

[6] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, 2004.

[7] S. Caron, “PYthon module for POlyhedral MANipulations – PYPO-
MAN,”, version 0.5.4, 2018. https://scaron.info/doc/pypoman/

[8] M. Kaneko and K. Nakamura, “The Nash Social Welfare Function,”
Econometrica, vol. 47, no. 2, 1979, pp. 423–435.

[9] J. E. Prussing, “The Principal Minor Test for Semidefinite Matrices”,
Journal of Guidance, Control, and Dynamics, vol. 9, no. 1, 1986, pp.
121—122.

[10] R. R. Thomas, Lectures in Geometric Combinatorics, American Mathe-
matical Society, 2006.

