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Abstract. In this paper, an investigation of the influence of the popula-
tion size on the Genetic Algorithm (GA) and Ant Colony Optimization
(ACO) performance for a model parameter identification problem, is con-
sidered. The mathematical model of an E. coli fed-batch cultivation pro-
cess is studied. The three model parameters – maximum specific growth
rate (µmax), saturation constant (kS) and yield coefficient (YS/X) are es-
timated using different population sizes. Population sizes between 5 and
200 chromosomes and 5 and 100 ants in the population are tested with
constant number of generations. In order to obtain meaningful informa-
tion about the influence of the population size a considerable number of
independent runs of the GA are performed. The observed results show
that the optimal population size is 100 chromosomes for GA and 70 ants
for ACO for 200 generations. In this case accurate model parameters
values are obtained in reasonable computational time. Further increase
of the population size, above 100 chromosomes for GA and 70 ants for
ACO, does not improve the solution accuracy. Moreover, the computa-
tional time is increased significantly.

1 Introduction

Metaheuristics, such as genetic algorithms and ant colony optimization, are
widely used to solve various optimization problems [8, 13]. They are highly rel-
evant for industrial applications, because they are capable of handling prob-
lems with non-linear constraints, multiple objectives, and dynamic components
– properties that frequently appear in the real-world problems [16]. Since their
introduction and subsequent popularization [17], the GA and ACO have been
frequently used as an alternative optimization tool to the conventional methods
and have been successfully applied in a variety of areas, and still find increasing
acceptance, for example:



– modelling and control of cultivation processes [7, 27, 28];

– model identification [1, 3, 11, 23], etc.

The metaheuristic algorithms require setting of the values of several algo-
rithm components and parameters. These parameters values have great impact
on performance and efficacy of the algorithm [14, 15, 22, 29]. Therefore, it is im-
portant to investigate the algorithm parameters influence on the performance of
the developed metaheuristic algorithms. The aim is to find the optimal parame-
ters values for the considered optimization problem. The optimal values for the
parameters depend mainly on i) the problem; ii) the instance of the problem to
deal with and iii) the computational time that will be spend in solving the prob-
lem. Usually in the algorithm parameters tuning a compromise between solution
quality and search time should be done.

For the parameter setting of metaheuristics, several automated approaches
exist. These methods use i) a single step of parameter tuning (prior to the
practical use of the algorithm), or parameter control (self adaptation to the
problem being optimized) [?]. Parameter control is well suited when one wants
good average performances across diverse problems, but the needed computation
overhead leads to less efficiency on specific problems, compared to parameter
tuning [9]. Best known parameter tuning techniques are racing [?], sequential
parameter optimization [5] and meta-parameter setting (sometimes referred as
meta-algorithm [5]).

Population sizing has been one of the important topics to consider in evo-
lutionary computation [2, 12, 30]. Various results about the appropriate popula-
tion size can be found in the literature [25, 26]. Researchers usually argue that
a “small” population size could guide the algorithm to poor solutions [18, 24,
30] and that a “large” population size could make the algorithm expend more
computation time in finding a solution [18, 20, 21]. Due to significant influence
of population size to the solution quality and search time [26] a more thorough
research should be done for this GA parameter.

The main goal of this research is to carry out investigation of the influence of
one of the key GA parameters – population size (number of chromosomes) – on
the algorithm performance for identification of a cultivation process model. Pa-
rameter identification of non-linear cultivation process models is a hard combina-
torial optimization problem for which exact algorithms or traditional numerical
methods do not work efficiently. A non-linear mathematical model of fed-batch
cultivation process of the most important host organism for recombinant protein
production - bacteria Escherichia coli – is considered [26].

The paper is organized as follows. The problem formulation is given in Section
2. The GA and ACO algorithms are proposed in sections 3 and 4 respectively.
The numerical results and a discussion are presented in Section 5. Conclusion
remarks are done in Section 6.



2 Problem Formulation

2.1 E. coli Fed-batch Cultivation Model

Application of the general state space dynamical model [6] for the E. coli cul-
tivation fed-batch process leads to the following nonlinear differential equation
system [26]:

dX

dt
= µmax

S

kS + S
X − Fin

V
X (1)

dS
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= − 1

YS/X
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where X is the biomass concentration, [g/l]; S is the substrate concentration,
[g/l]; Fin is the feeding rate, [l/h]; V is the bioreactor volume, [l]; Sin is the
substrate concentration in the feeding solution, [g/l]; µmax is the maximum
value of the specific growth rate, [h−1]; kS is the saturation constant, [g/l]; YS/X
is the yield coefficient, [-].

The initial process conditions are [4]:

– t0 = 6.68 h,
– X(t0) = 1.25 g/l and S(t0) = 0.8 g/l,
– Sin = 100 g/l.

For the considered non-linear mathematical model of E. coli fed-batch culti-
vation process the parameters that should be identified are:

– maximum specific growth rate (µmax),
– saturation constant (kS),
– yield coefficient (YS/X).

2.2 Optimization Criterion

In practical view, modelling studies are performed to identify simple and easy-
to-use models that are suitable to support the engineering tasks of process op-
timization and, especially of control. The most appropriate model must satisfy
the following conditions:

(i) the model structure should be able to represent the measured data in a
proper manner;

(ii) the model structure should be as simple as possible compatible with the
first requirement.

The optimization criterion is a certain factor, whose value defines the quality
of an estimated set of parameters. To evaluate the mishmash between experi-
mental and model predicted data the Least Square Regression is used.



The objective consists of adjusting the parameters (µmax, kS and YS/X) of
the non-linear mathematical model function (Eq. (1) - Eq. (3)) to best fit a data
set. A simple data set consists of n points (data pairs) (xi, yi), i = 1, 2, . . . , n,
where xi is an independent variable and yi is a dependent variable whose value
is found by observation. The model function has the form f(x, β), where the m
adjustable parameters are held in the vector β, β = [µmax kS YS/X ]. The goal is
to find the parameter values for the model which ”best” fits the data. The least
squares method finds its optimum when the sum J of squared residuals:

J =

n∑
i=1

r2i

is a minimum. A residual is defined as the difference between the actual value of
the dependent variable and the value predicted by the model. A data point may
consist of more than one independent variable. For an example, when fitting a
plane to a set of height measurements, the plane is a function of two independent
variables, x and z, say. In the most general case there may be one or more
independent variables and one or more dependent variables at each data point.

ri = yi − f(xi, β).

3 Genetic Algorithm

GA was developed to model adaptation processes mainly operating on binary
strings and using a recombination operator with mutation as a background op-
erator. The GA maintains a population of chromosomes, P (t) = xt1, ..., x

t
n for

generation t. Each chromosome represents a potential solution to the problem
and is implemented as some data structure Ch. Each solution is evaluated to
give some measure of its “fitness”. Fitness of a chromosome is assigned propor-
tionally to the value of the objective function of the chromosomes. Then, a new
population (generation t + 1) is formed by selecting more fit chromosomes (se-
lection step). Some members of the new population undergo transformations by
means of ”genetic” operators to form new solution. There are unary transfor-
mations mi (mutation type), which create new chromosomes by a small change
in a single chromosome (mi : Ch → Ch), and higher order transformations cj
(crossover type), which create new chromosomes by combining parts from sev-
eral chromosomes (cj : Ch× . . .×Ch→ Ch). After some number of generations
the algorithm converges – it is expected that the best chromosome represents a
near-optimum (reasonable) solution. The combined effect of selection, crossover
and mutation gives so-called reproductive scheme growth equation [16]:

ξ (Ch, t+ 1) ≥

ξ (Ch, t) · eval (Ch, t) /F̄ (t)

[
1− pc ·

δ (Ch)

m− 1
− o (Ch) · pm

]



begin
i = 0
Initial population P (0)
Evaluate P (0)
while (not done) do
(test for termination criterion)
begin

i = i+ 1
Select P (i) from P (i− 1)
Recombine P (i)
Mutate P (i)
Evaluate P (i)

end
end

Fig. 1. Pseudocode for GA

The structure of the herewith used GA is shown by the pseudocode below
(Figure 1).

Three model parameters are represented in the chromosome – µmax, kS and
YS/X . The following upper and lower bounds of the model parameters are con-
sidered [28]:

0 < µmax < 0.7,

0 < kS < 1,

0 < YS/X < 30.

Roulette wheel, developed by Holland [17] is the herewith used selection
method. The probability, pi, for each chromosome is defined by:

p[Individual i is chosen] =
Fi

PopSize∑
j=1

Fj

, (4)

where Fi equals the fitness of chromosome i and PopSize is the population size.
To reproduce the chromosomes simple crossover and binary mutation accord-

ing to [28] are applied. In proposed genetic algorithm fitness-based reinsertion
(selection of offspring) is used.

For the considered here model parameter identification, the type of the basic
operators in GA are as follows [28]:

– encoding – binary,
– fitness function – linear ranking,
– selection function – roulette wheel selection,
– crossover function – simple crossover,
– mutation function – binary mutation,
– reinsertion – fitness-based.



The values of GA parameters are [28]:

– generation gap, ggap = 0.97,
– crossover probability, xovr = 0.75,
– mutation probability, mutr = 0.01,
– maximum number of generations, maxgen = 200.

4 Ant Colony Optimization (ACO)

The ACO is a stochastic optimization method that imitates the behavior of real
ants colonies. They manage to establish the shortest rout to nutrishment sources
and back. Real ants foraging for food lay down quantities of pheromone (chemical
cues) marking the path that they follow. An isolated ant moves essentially at
random but an ant encountering a previously laid pheromone will detect it and
decide to follow it with high probability and thereby reinforce it with a further
quantity of pheromone. Thus if more the ants follow a trail, the more attractive
that trail becomes. The original idea comes from observing the exploitation of
food resources among ants, in which ants’ individually limited cognitive abilities
have collectively been able to find the shortest path between a food source and
the nest.

The ACO is usually implemented as a team of intelligent agents, which sim-
ulate the ants behavior, walking around the graph representing the problem to
solve, using mechanisms of cooperation and adaptation. The requirements of the
ACO algorithm are as follows [8, 13]:

– The problem needs to be represented appropriately, which would allow the
ants to incrementally update the solutions through the use of a probabilistic
transition rules, based on the amount of pheromone in the trail and other
problem specific knowledge.

– A problem-dependent heuristic function, that measures the quality of com-
ponents that can be added to the current partial solution.

– A rule set for pheromone updating, which specifies how to modify the pheromone
value.

– A probabilistic transition rule based on the value of the heuristic function
and the pheromone value, that is used to iteratively construct a solution.

The structure of the ACO algorithm is shown by the pseudocode below (Fig-
ure 2).

The transition probability pi,j , to choose the node j when the current node
is i, is based on the heuristic information ηi,j and the pheromone trail level τi,j
of the move, where i, j = 1, . . . . , n.

pi,j =
τai,jη

b
i,j∑

k∈Unused

τai,kη
b
i,k

, (5)



Ant Colony Optimization
Initialize number of ants;
Initialize the ACO parameters;
while not end-condition do

for k = 0 to number of ants
ant k choses start node;
while solution is not constructed do

ant k selects higher probability node;
end while

end for
Update-pheromone-trails;

end while

Fig. 2. Pseudocode for ACO

where Unused is the set of unused nodes of the graph.
The higher the value of the pheromone and the heuristic information, the

more profitable it is to select this move and resume the search. In the beginning,
the initial pheromone level is set to a small positive constant value τ0; later,
the ants update this value after completing the construction stage. The ACO
algorithms adopt different criteria to update the pheromone level.

The pheromone trail update rule is given by:

τi,j ← ρτi,j +∆τi,j , (6)

where ρ models evaporation in the nature and ∆τi,j is new added pheromone
which is proportional to the quality of the solution. Thus better solutions will
receive more pheromone than others and will be more desirable in a next itera-
tion.

The values of ACO parameters in our application are :

– evaporation parameter ρ = 0.5,
– a = b = 1,
– number of generations = 200.

5 Numerical Results and Discussion

All computations are performed using a PC/Intel Core i5-2320 CPU @ 3.00GHz,
8 GB Memory (RAM), Windows 7 (64 bit) operating system and Matlab 7.5
environment.

A series of numerical experiments are performed to evaluate the influence
of the population size in GAs and ACO on the accuracy of the obtained solu-
tion. Using mathematical model of the E. coli cultivation process (Eq. (1) - Eq.
(3)) the model parameters – maximum specific growth rate (µmax), saturation
constant (kS) and yield coefficient (YS/X) – are estimated. For the identification
procedures consistently different population sizes (from 5 to 200 chromosomes in



the population for GA and from 5 to 100 ants for ACO) are used. The number
of generations is fixed to 200. Because of the stochastic characteristics of the
applied algorithms, series of 30 runs for each population size are performed.

In the Table 1 and 2, obtained average, best and worst objective function
values for considered population sizes of GA and ACO respectively, are pre-
sented. The results observed for computational time are listed in Table 3 and 4
respectively.

Table 1. GA algorithm performance for various population sizes - objective function

Population size Objective function J
Average Best Worst

5 6.1200 4.8325 9.2958

10 5.8000 4.8548 9.6175

20 4.7660 4.4753 5.3634

30 4.6519 4.4816 5.0094

40 4.6359 4.4437 4.9669

50 4.6070 4.4488 4.8636

60 4.5886 4.4625 4.8013

70 4.5648 4.4384 4.7357

80 4.5782 4.4474 4.7463

90 4.5711 4.4496 4.7211

100 4.5406 4.4252 4.7017

110 4.5455 4.4332 4.7319

150 4.5511 4.4575 4.6717

200 4.5453 4.4359 4.7206

The numerical experiments show that increasing the size of the population of
5 to 100 chromosomes significantly improves the resulting value of the objective
function (average results) – from 6.1200 to 4.5406 (see Table 1). The further
increase in the size of population (more than 100 chromosomes) does not lead to
more accurate results. The subsequent increase in the population size leads only
to an increase in computational time without improving the value of the objective
function (average results) – from 26.8644 s (100 chromosomes) to 52.4782 s (200
chromosomes) vs. J = 4.5406 to J = 4.5453 (see Table 3).

Similar conclusions can be made for ACO algorithm performance regarding
Tables 2 and 4. The numerical experiments show that increasing the population
size from 5 to 70 ants improve the accuracy of the achieved average result – from
J = 6.2523 to J = 5.1350. Further increase of the size of the population only
increases the computational time without significant improvement of the results.

The best value of the objective function achieved by GA is similar to this
achieved by ACO, but the average value achieved by GA is better. One gen-
eration performed by ACO is much slower than one generation performed by
GA, thus the GA computational time is less than ACO computational time. We



Table 2. ACO algorithm performance for various population sizes - objective function

Population size Objective function J
Average Best Worst

5 6.2523 5.0652 7.9011

10 6.0527 4.8083 8.0956

20 5.4330 4.9293 6.5924

30 5.2849 4.7408 6.2202

40 5.2853 4.8004 6.0784

50 5.2206 4.6598 4.1695

60 5.2184 4.8983 5.7759

70 5.1350 4.7739 5.6652

80 5.1324 4.8078 5.7891

90 5.1415 4.7856 5.6120

100 5.0885 4.8382 5.4866

Table 3. GA algorithm performance for various population sizes - computational time

Population size Computational time, s
Average Best Worst

5 4.9457 4.5552 5.6004

10 6.0039 5.6316 6.3648

20 7.6482 7.3008 7.9561

30 11.1115 10.8265 11.5129

40 12.9824 12.4957 13.3537

50 14.9087 14.3989 15.5377

60 17.2766 16.6141 20.3113

70 19.7601 19.1725 20.0617

80 22.1880 21.7153 22.6669

90 24.3414 23.9150 24.8198

100 26.8644 26.4890 27.8306

110 29.7057 29.1878 30.2642

150 39.7273 39.1407 40.3887

200 52.4782 51.3087 55.8952



Table 4. ACO algorithm performance for various population sizes - comput. time

Population size Computational time, s
Average Best Worst

5 16.8065 16.5673 17.0509

10 29.5950 29.3126 29.8274

20 55.0699 54.1323 56.7376

30 90.1941 88.9674 91.1202

40 111.2729 109.2163 116.0803

50 131.8193 131.0720 133.4745

60 151.7526 148.8406 159.7606

70 173.8225 172.5839 177.0143

80 197.8873 196.5457 199.5877

90 234.9069 232.1607 238.2759

100 260.4468 258.3689 268.0097

can conclude that GA performs better than ACO for this problem and the best
population size for GA is 100 chromozoms.

For better interpretation the obtained numerical results are graphically vi-
sualized in the next figures. On Figure 3 the objective function values, obtained
during the 30 GA runs for 5, 10, 20 and 30 chromosomes in the population,
are shown. The graphical results show that the GA could not find accurate so-
lution using small population size – 5 or 10 chromosomes. It needs at least 20
chromosomes in population for achieving a better solution. On Figure 4 the ob-
jective function values, obtained during the 30 algorithm runs for 100, 110, 150
and 200 chromosomes in the population, are shown. Here, it could be seen that
using large population size (110, 150 or 200 chromosomes) did not result in an
improvement of the objective function values.

The ANOVA test is applied and the values of the objective function for
population size equal and more than 100 are statistically equal. Moreover, as
can be seen from Figure 6 increasing the population size result in an acceleration
of computational time. When the population size increases it leads to increase
of the needed computational resources like time and memory which can be a
problem for large-scale tests. Therefore we can conclude that populations with
100 individuals is optimal with respect to the value of the objective function and
the needed computational resources.

All numerical experiments for the influence of the population size on the
objective function value and on the computational time are summarized in Figure
5 and Figure 6. It can be concluded that for the considered here non-linear
cultivation model parameter identification problem the optimal population size
is 100 chromosomes in the population (for 200 generations).

In Table 5 the best parameter values (µmax, kS and YS/X), obtained using
GA with 100 chromosomes in the population, are presented. According to [10, 19,
31] the values of the estimated model parameters are in admissible boundaries.
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Table 5. Best parameter values of the model (100 chromosomes)

Parameter Value

µmax, [1/h] 0.4881

kS , [g/l] 0.0120

YS/X , [-] 2.0193
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6 Conclusion

A good selection of the algorithm parameters improve both computation time
and solution accuracy. Finding good parameter values is not a trivial task and
requires human expertise as well as time. In this paper, the influence of one of the
key GA and ACO parameters (population size) on the algorithm performance,
is studied. As a test problem, the E. coli fed-batch cultivation model parame-
ter identification, is considered. The three model parameters (maximum specific
growth rate (µmax), saturation constant (kS) and yield coefficient (YS/X)) are
identified. For a fixed number of the generations (200) different population sizes
of the GA and ACO are explored. The numerical experiments are started with 5
chromosomes or ants in the population and consistently increased to 200 chromo-
somes for GA and 100 ants for ACO. The obtained results show that the optimal
population size, for the GA considered here case study, is 100 chromosomes and
70 ants for ACO. Thus, accurate model parameters values are obtained with
reasonable computational efforts. The use of smaller populations result in lower
accuracy of the solution, obtained for a smaller computational time. The further
increase of the population size increases the accuracy of solution. This effect is
observed to a population size of 100 chromosomes for GA and 70 ants for ACO.
The use of larger populations does not improve the solution accuracy and only
increase the needed computational resources. The GA algorithm performs better
than ACO for this application. It is faster and achieves better average value of
objective function.
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