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Abstract: Wireless sensor networks monitor physical or environmental
conditions. One of the key objectives during their deployment is full
coverage of the monitoring region with a minimal number of sensors and
minimised energy consumption of the network. This problem is hard, from the
computational point of view. Thus, the most appropriate approach to solve it
is application of some metaheuristics. In this paper we apply multi-objective
ant colony optimisation to solve this important telecommunication problem.
The number of the agents (ants) is one of the important algorithm parameters
in the ant colony optimisation metaheuristics. The needed computational
resources for algorithm performance depends on number of ants. When the
number of ants increases the computational time and used memory increase
proportionally. Thus it is important to find the optimal number of agents
needed to achieve good solutions with minimal computational resources.
Therefore, the aim of the presented work is to study the influence of the
number of ants on the algorithm performance.
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1 Introduction

A sensor is a device, which can collect and transmit data. The sensors can sense any
various phenomena or materials, such as temperature, voltage, or chemical substances.
A wireless sensor network (WSN) allows automatic monitoring. Initial deployments of
WSNs were completed by the military, for reconnaissance and surveillance (Deb et al.,
2002). Examples of other possible applications of WSNs are: forest fire prevention,
volcano eruption study (Werner-Allen et al., 2006), health data monitoring (Yuce et al.,
2007), civil engineering (Paek et al., 2005) and others.

The energy for collecting data and its transmission comes from the battery of
a node. In battery-powered systems, higher data rates and more frequent radio use
consume more power. One of the nodes of the WSN has special role. It is a high
energy communication node (HECN), which collects data from across the network and
transmits it to the ‘main computer’ to be processed. The sensors transmit their data to the
HECN, either directly or via hops, using closest sensors as communication relays. When
deploying a WSN, the positioning of the sensor nodes becomes one of major concerns.
The coverage obtained with the network and the economic cost of the network depend
directly on it. Note that, the WSN can have large numbers of nodes, and therefore
the task of selecting the geographical positions of the nodes for an optimally designed
network can be very complex. Thus, it is unpractical to solve the problem directly,
with traditional numerical methods. Instead, one of the best choices is to apply some
metaheuristic method.

The problem of designing a WSN is multi-objective, with two objective functions.
These are

1 minimise the energy consumption of the nodes in the network
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2 minimise the number of nodes.

The full coverage of the network and connectivity are considered as constraints.
Observe that this is an NP-hard multi-objective problem. In our work we propose a
multi-objective ant [ant colony optimisation (ACO)] algorithm, which solves the WSN
layout problem. Our aim is to study the influence of the number of ants on the algorithm
performance and quality of the achieved solutions, and to find the minimal number of
ants which are enough to achieve good solutions.

In the past, Jourdan (2000) solved an instance of the WSN layout using a
multi-objective genetic algorithm. In their formulation, a fixed number of sensors had
to be placed in order to maximise the coverage. However, in some applications the
most important is the network energy. In this context, in Hernandes and Blum (2011) an
ACO algorithm was proposed, but it applicable to a special case when the sensors are
antennas and the work concerns only energy minimisation. In Wolf and Mezz (2008)
an evolutionary algorithm was applied to this variant of the problem. In Fidanova
et al. (2012) an ACO algorithm that took into account only the number of sensors
was investigated. In Molina et al. (2008) several evolutionary algorithms to solve the
problem were proposed. Finally, in Konstantinidis et al. (2010) a genetic algorithm,
which achieves similar solutions as the algorithms in Molina et al. (2008) was studied,
but tested only on small test problems.

In this paper we study the influence of the number of ants to the algorithm
performance and quality of the achieved solutions. The computational resources, which
the algorithm needs, are not negligible. The computational resources depends on the
size of the solved problem and on the number of ants. Our aim in this work is to find a
minimal number of ants which allow the algorithm to find good solution. Note that this
estimates the minimal number of computational resources needed to solve the problem.
We test our algorithm on problems with various sizes.

The paper is organised as follows. In Section 2 the WSN is introduced and the layout
problem is formulated. Section 3 presents the ACO algorithm. In Section 4 we present
and discuss the experimental results. Finally, Section 5 contains concluding remarks.

2 Problem formulation

A WSN consists of spatially distributed autonomous sensors that cooperatively monitor
physical or environmental conditions, such as temperature, sound, vibration, pressure,
motion, pollutants, movement, etc. The development of WSNs was motivated by
military applications, such as battlefield surveillance. Currently, they are used in many
industrial and civilian application areas, including industrial process monitoring and
control, machine health monitoring, environment and habitat monitoring, healthcare
applications, home automation, traffic control, and so on.

Each node in a sensor network is equipped with a wireless communications device
and an energy source, usually a battery. A sensor node might vary in size and cost.
Each sensor node senses an area around itself. The sensing radius (Rsens) determines
the sensing area of the node. The nodes communicate among themselves using wireless
communication links, determined by a communication radius (Rcom). The HECN is
responsible for the external access to the network. Therefore, every sensor node in the
network must be able to communicate with the HECN. Since the communication radius
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is often much smaller than the network size, direct links are not possible for most
peripheral nodes. A multi-hop communication path is then established for those nodes
that are far from the HECN. Overall, the quantity of the transmitted data defines the
energy usage. The nodes of the network are divided by levels. On the first level are the
nodes which can communicate directly with the HECN. Their distance to the HECN is
one unit. On the second level are the nodes which cannot communicate with the HECN,
but they communicate with at least one node from level 1. Their distance to HECN is
two units. On the level N are nodes which cannot communicate with nodes from level
N-2, but they can communicate with at least one node from the level N-1. Every node
transmits its own data and the data, received by other nodes that communicated with it,
which are far from the HECN. Furthermore, if the node communicates with more than
one node closer to the HECN, the information is divided between them (to reduce their
power consumption).

We indicate the quantity of own information collected by the node with 1. After
adding the information coming from other sensors, which are far from the HECN, we
calculate the quantity of the information passing through the node and respectively its
energy consumption. The node with the highest energy consumption defines the energy
of the network. Note that an unspecified number of sensor nodes has to be placed in
a terrain to provide full coverage. Therefore, the objectives are to construct a network,
with minimal number of sensors (cheapest for construction) and with minimal energy
consumption (cheapest for exploitation), while keeping the connectivity of the network
and full coverage of the sensing area. The problem has two opposing objective functions,
thus we have a set of optimal solutions (non-dominated). Normally the sensors close
to the HECN are most loaded and used more energy than others. Thus a possibility
to decrease energy consumption is to add additional sensors close to the most loaded
sensors, but in this way the number of sensors increases. Separately, every removal
of a sensor leads to an increase of the energy consumption, or to disconnection of
the network. The users decide, which of the solutions to use, by taking into account
additional criteria related to their use case. For example, if the sensors are expensive and
the batteries and their replacement is cheap, the user will prefer solution with a smaller
number of sensors. If the sensors are cheap, but the batteries and/or their replacement
are expensive (volcano or landslide monitoring), the user will prefer solution utilising
less energy.

3 Multi-objective ACO for WSN layout

Multi-objective optimisation (MOP) has its roots in the nineteenth century, in the work
in the area of economics, completed by Mathur (1991). The optimal solution for the
MOP is not a single solution, as for the mono-objective optimisation problems, but a
set of solutions defined as Pareto optimal solutions. A solution is Pareto optimal if it
is not possible to improve a given objective without deteriorating at least one other
objective. The main goal of the resolution of a multi-objective problem is to obtain the
Pareto optimal set, and consequently the Pareto front. One solution dominates another
if minimum one of its components is better than the same component of other solutions
and other components are not worse. The Pareto front is the set of non-dominated
solutions. When metaheuristics are applied, the goal becomes to obtain solutions close
to the Pareto front.
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We apply multi-objective ACO to solve the problem. The idea for the ant algorithm
comes from the real ant behaviour. When walking, they put on the ground chemical
substance called pheromone. The ants smell the pheromone and follow the path with
a stronger pheromone concentration. Thus they find shorter path between the nest and
the food. The ACO algorithm uses a colony of artificial ants that behave as cooperating
agents. With the help of the pheromone and the heuristic information they try to
construct better solutions and to find the optimal ones. The pheromone corresponds
to the global memory of the ants and the heuristic information is a some preliminary
knowledge of the problem. The problem is represented by a graph and the solution is
represented by a path in the graph or by tree in the graph. Ants start from random nodes
and construct feasible solutions. When all ants construct their solution the pheromone
is updated. The new, added, pheromone depends to the quality of the solution. The
elements of the graph, which belong to better solutions will receive more pheromone
and will be more desirable in the next iteration. To chose the next node to be included in
the solution, the ants compute a set of feasible moves and select the best one, according
to the transition probability rule. The transition probability pij , to chose the node j when
the current node is i, is based on the heuristic information ηij and on the pheromone
level τij of the move, where i, j = 1, . . . , n and n is the number of the nodes of the
graph, and has the form:

pij =
ταij η

β
ij∑

k∈{allowed}
ταik η

β
ik

(1)

The ant selects the move with the highest probability. The initial pheromone is set to a
small positive value τ0 and then ants update this value after completing the construction
stage (Bonabeau et al., 1999; Fidanova and Atanassov, 2009). In our implementation,
we use the MAX-MIN ant system (MMAS) (Dorigo and Stutzle, 2004), which is one
of the most successful ant approaches. The main feature of the MMAS is using a fixed
upper bound τmax and a lower bound τmin on the pheromone. Thus the accumulation
of big amounts of pheromone by part of the possible movements and repetition of the
same solutions is partially prevented.

In our case, the graph of the problem is represented by a square grid. The nodes
of the graph are enumerated. The ants will deposit their pheromone on the nodes
of the grid. We will deposit the sensors on the nodes of the grid too. The solution
is represented by tree. An ant starts to create a solution starting from random node,
which communicates with the HECN. Using transition probability [equation (1)], the ant
chooses the next node to be included in the solution. If there is more than one node with
the same probability, the ant chooses one of them randomly. An ant continues to include
nodes in its solution till all area is covered. Construction of the heuristic information
is a crucial point in the ant algorithms. Our heuristic information is a product of three
values [equation (2)].

ηij(t) = sij lij(1− bij), (2)

where sij is the number of the new points (nodes of the graph) which the new sensor
will cover, and which are not covered by other sensors, and

lij =

{
1 if communication exists ;
0 if there is not communication ,

(3)
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Here, bij is the solution matrix and the matrix element bij = 1 when there is sensor
on this position otherwise bij = 0. With sij we try to increase the number of points
covered by one sensor and thus to decrease the number of sensors we need. With lij
we guarantee that all sensors will be connected. With bij we guarantee that maximum
one sensor will be mapped on the same point. The search stops when pij = 0 for all
values of i and j. It means that there are no more free positions, or that all area is fully
covered.

At the end of every iteration the quantity of the pheromone is updated. The main
idea is the elements of better solutions to receive more pheromone than others and to
be more desirable in a next iteration. The quantity of the new added pheromone is
proportional to the quality of the solution. The problem is multi-objective, therefore we
need the fitness function, to assign new added pheromone. The pheromone trail update
rule is given by:

τij ← ρτij +∆τij , (4)

∆τij =

{
1/F (k) if (i, j) ∈ {non-dominated solution constructed by ant k},
0 otherwise .

We decrease the pheromone with a parameter ρ ∈ [0, 1]. This parameter models
evaporation in the nature and decreases the influence of old information on the search
process. After that, we add the new pheromone, which is proportional to the value of
the fitness function. If the pheromone of some node becomes less than the lower bound
of the pheromone, we put it to be equal to the lower bound and thus we prevent the
pheromone of some nodes to become very low (close to 0) and to be undesirable. It is a
kind of diversification of the search. As an upper bound is used the approximate upper
bound of the pheromone. The used lower bound is τmin = 0.085τmax. We add new
pheromone to the nodes, which belong to non-dominated solutions and thus we force
the ants to search around them for new non-dominated solutions. The fitness function
is constructed as follows:

F (k) =
f1(k)

maxi f1(i)
+

f2(k)

maxi f2(i)
(5)

where f1(k) is the number of sensors proposed by the k-th ant and f2(k) is the energy
of the solution of the k-th ant. These are also the objective functions of the WSN
layout problem. We normalise the values of two objective functions with their maximal
achieved values from the first iteration. We do this because the value of the number of
sensors is much larger than the value of the energy. However, when normalised, they
have similar influence in the fitness function.

4 Experimental results

As stated above, every ant starts to create its solution from random node of the graph.
In our case it is a node, which communicates with the HECN. Thus the ant algorithm
uses small number of agents (ants). Smaller number of ants means less memory, which
is important when large problems are to be solved. The aim of this work is to learn
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the influence of the number of the ants on the quality of the solution. Our purpose is
to find the minimal number of ants, which are enough to achieve ‘good’ solutions. It is
known that the ACO algorithm (Dorigo and Stutzle, 2004), can performs with only one
ant (because of the random start), but in this case the quality of the solutions is low.

We have implemented software, which realises our ant algorithm. Our software can
solve the problem at any rectangular area, the communication and the coverage radius
can be different and can have any positive value. We can have regions in the area
where is not possible, or forbidden, to place sensors. Using these regions, we can model
non-rectangular areas. The HECN can be fixed at any point in the area. The program
was written in C language, and the tests were run on computer with an Intel Pentium
2.8 GHz processor. In our tests we use an example where the area is square. The
coverage and communication radii cover 30 points. The HECN is fixed in the centre of
the area. For the tests we have used areas with three sizes: 350× 350 points, 500× 500
points and 700× 700 points. We use the example 500× 500 for comparison with other
algorithms, because other authors used one with the same size.

In our previous work (Fidanova et al., 2013), we showed that our ant algorithm
outperforms the existing algorithms for this problem. There, after several runs of the
algorithm we were able to specify the most appropriate values of its parameters. We
apply MAX-MIN ant algorithm with the following parameters: α = β = 1, ρ = 0.5,
τ0 = 0.5. In the ACO algorithms, if we fix the number of iterations and double the
number of ants the execution time will be doubled. Thus it is important to find the
minimal number of ants which find good solution. It means minimisation of required
computational resources, like time and memory, which we need to solve the problem.
We study the influence of the number of ants on the quality of the solutions. We fixed
the number of the iterations to be 60 (about three hours per ant) and the number of ants
to have following values {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

We run our ACO algorithm 30 times for each number of ants. We extract the Pareto
front from the solutions of these 30 runs. In Tables 1 to 3 we show the achieved
non-dominated solutions (approximate Pareto fronts) for case 350× 350, 500× 500 and
700× 700 respectively.

In the left column represents the number of sensors and in other columns we
present the energy corresponding to this number of sensors and the number of ants.
Non-dominated points are represented with bold font.

Analysing Table 1 (case 350× 350) we observe that the approximate Pareto front
achieved by 3 ants is dominated by other approximate Pareto fronts. The approximate
Pareto fronts achieved by 1, 2, 4, 5, 6 and 9 ants are part of the approximate Pareto
front achieved by 7, 8 and 10 ants. More ants leads to more computational time. Thus
the best algorithm performance in the case 350× 350 is achieved by 7 ants.

Analysing the Table 2 (case 500× 500) we observe that the approximate Pareto front
achieved by 6 ants dominates the approximate Pareto fronts achieved by 1, 2, 3, 4 and
5 ants. There is not dominance between approximate Pareto fronts achieved by 6, 7, 8,
9 and 10 ants and we cannot say which of them is better. More over the hyper-volumes
achieved by different number of ants are rather similar.
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Table 1 Approximate Pareto fronts, example 350× 350

Sensors Ants

1 2 3 4 5 6 7 8 9 10

111 30 30 30 30 30 30 30
112
113 28 35 28 28 28 28 28
114 26 26 26 26 26 26 26 26 26 26
115
116 25 25 25

Table 2 Approximate Pareto fronts, example 500× 500

Sensors Ants

1 2 3 4 5 6 7 8 9 10

223 89 81
224 61 88 65 61 59 57 71
225 58 60 58 57 58 57
226 59 95 73 57 59 57 56
227 57 57 57 56 57
228 54
229 58 55 56 56
230 57 52 54
231 55 55 53
232 55 51 54 50 52 51 48
233 51
234 53 48 53
235 54 50
236
237
238 53
239 56 50
240 53 53
241
242
243
244 52

Analysing the Table 3 (case 700× 700) we observe that the approximate Pareto front
achieved by 6 ants dominates the approximate Pareto fronts achieved by other number
of ants, except by 7 ants. Approximate Pareto fronts achieved by 6 and 7 ants are
non-dominated and we can not say which of them is better. In this case again the
hyper-volumes achieved by 6 and 7 ants are rather similar.
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Table 3 Approximate Pareto fronts, example 700× 700

Sensors Ants

1 2 3 4 5 6 7 8 9 10

437 118 168 172
438 112 117 260
439 140 112 110 115 131
440 115 93 114 111 162
441 122 111 110
442 114 112
443 150 123
444 124 112 112 106 107 102 105
445 117 108
446 105 105 105 107 104
447 105 102
448 115 111
449 102 99
450 113
451 109 97
452 99 104
453
454 105 96 96 96 96
455 106 106 97

We prepare a Pareto front achieved by all runs of the algorithm with any number of ants
(from 6 to 10) and we call it a common Pareto front. In the case 500× 500 the common
Pareto front is {(232, 48), (230, 52), (228, 54), (226, 56), (224, 57), (223, 81)}, for the
case 350× 350 it is {(111, 30), (113, 28), (114, 26), (116, 25)} and for case 700× 700
it is {(437, 118), (438, 112), (439, 110), (440, 93)}. The set of number of sensors is
from 223 to 244 for the case 500× 500, from 111 to 116 for the case 350× 350 and
from 437 to 454 for the case 700× 700 respectively. If for some number of sensors
there is not a corresponding energy in the common Pareto front, we put the energy to be
equal to the point of the front with lesser number of sensors. We can do this because, if
we take some solution and if we include a sensor close to the HECN it will not increase
the value of the energy and will increase by 1 only the number of the sensors. Thus,
there is a corresponding energy to any number of nodes. This front we will call the
extended front. In the case 500× 500 the extended front is {(234, 48), (233, 48), (232,
48), (231, 52), (230, 52), (229, 54), (228, 54), (227, 56), (226, 56), (225, 57), (224,
57), (223, 81)}. In the case 350× 350 the extended front is {(111, 30), (112, 30), (113,
28), (114, 26), (115, 26), (116, 25)}. In the case 700× 700 the extended front is {(437,
118), (438, 112), (439, 110), (440, 93), (441, 93), (442, 93), (443, 93), (444, 93), (445,
93), (446, 93), (447, 93), (448, 93), (449, 93), (450, 93), (451, 93), (452, 93), (453, 93),
(454, 93)}.

On Figure 1, with black line, we present the extended Pareto front achieved by
6 ants, with a dash line the extended Pareto front achieved by 7 ants and with dash-dot
line is the extended Pareto front achieved by 8 ants.
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Figure 1 ACO soluton case 500× 500
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Figure 1 ACO soluton case .

On Figure 2, with black line, we represent the extended Pareto front achieved by 6 ants
and with a dash line the extended Pareto front achieved by 7 ants.

Figure 2 ACO soluton case 700× 700
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We have included additional criteria to decide which approximate Pareto front is better
in the case when there is no dominance between approximate Pareto fronts and the
hyper-volumes are similar. We calculated the distance between a approximate Pareto
fronts and the extended front. To calculate the distance, we extend every element of the
approximate Pareto front in a similar way as the extended front. The distance between
the approximate Pareto front and the extended front is the sum of distances between the
points with a same number of sensors, or it is the difference between their energy. These
distances are always positive because the extended front dominates the approximate
Pareto fronts. Thus, by this criteria, the best approximate Pareto front will be the closest
to the extended front.

In Table 4 we show the distances between the extended front and the approximate
Pareto fronts achieved by 6, 7, 8, 9 and 10 ants. Analysing the Table 4 we conclude
that the distance between the extended front and the approximate Pareto front achieved
by 6 ants is the shortest. Thus, by our criteria, the approximate Pareto front (solutions)
achieved by 6 ants in the case 500× 500 is better.
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Table 4 Distances from extended front case 500× 500

Ants 6 7 8 9 10
Distance 20 23 21 22 29

In Table 5 we show the distances between the extended front and the approximate Pareto
fronts achieved by 6 and 7 ants. Analysing the Table 5 we conclude that the distance
between the extended front and the approximate Pareto front achieved by 6 ants is
shorter. Thus, by our criteria, the approximate Pareto front (solutions) achieved by 6
ants in the case 700× 700 is better.

Table 5 Distances from extended front case 700× 700

Ants 6 7
Distance 6 210

In all discussed cases the approximate Pareto fronts achieved by 6 and 7 ants outperform
others. Thus it is the best number of ants for our sensor layout problem.

Let us compare our results with results achieved by other authors. In Table 6 are
reported best found results (with respect to the sensors and with respect to the energy)
achieved by several metaheuristic methods for the case of 500× 500. We compare the
results of our ACO algorithm with the results obtained by the evolutionary algorithms
proposed in Molina et al. (2008). We observe that our algorithm achieves solution with
much less sensors and less energy than other algorithms. The solution with worst number
of sensors achieved by our algorithm consists of 247 sensors, which is less than the
number of sensors achieved by the best solution of other methods. According to the
energy criterion, our algorithm achieves solution with similar energy but with much less
number of sensors. Thus we can conclude that our algorithm performs better.

Table 6 Experimental results

Algorithm Min sensors Min energy

MOEA (260, 123) (291, 36)
NSGA-II (262, 83) (277, 41)
IBEAHD (265, 83) (275, 41)
ACO (223, 81) (232, 48)

In Figure 3 we show the approximate Pareto fronts achieved by our algorithm
(with dash line) and this achieved by the MOEA algorithm (with black line). We observe
that Pareto front of our algorithm dominates the one achieved by MOEA.

5 Conclusions

In this paper we have studied the influence of the number of ants on the performance
of the ACO algorithm, applied to the WSN. Smaller number of ants leads to the shorter
running time and minimises memory use, which is important for complex/large cases.
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We varied the number of ants, while fixing the number of iterations. Furthermore, we
included the concept of an extended front, as an additional tool to compare approximate
Pareto fronts that do not dominate each other. The best approximate Pareto front and
the best performance were achieved when the number of ants was equal to 6 in the
cases 700× 700 and 500× 500, and 7 in the case 350× 350. Finally, our algorithm
outperforms the results achieved by other methods.

Figure 3 Approximate Pareto fronts achieved by ACO (dash line) and MOEA (black line)
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