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Abstract—In this paper, a hybrid scheme, to solve optimization
problems, using a Genetic Algorithm (GA) and an Ant Colony
Optimization (ACO) is introduced. In the hybrid GA-ACO
approach, the GA is used to find a feasible solutions to the
considered optimization problem. Next, the ACO exploits the
information gathered by the GA. This process obtains a solution,
which is at least as good as—but usually better than—the best
solution devised by the GA. To demonstrate the usefulness of
the presented approach, the hybrid scheme is applied to the
parameter identification problem in the E. coli MC4110 fed-
batch fermentation process model. Moreover, a comparison with
both the conventional GA and the stand-alone ACO is presented.
The results show that the hybrid GA-ACO takes the advantages
of both the GA and the ACO, thus enhancing the overall search
ability and computational efficiency of the solution method.

Index Terms—Genetic Algorithm; Genetic algorithms; Ant
Colony Optimization; hybrid; model parameter identification;
E. coli; fed-batch fermentation process

I. INTRODUCTION

TO SOLVE different optimization problems we can ap-

ply various techniques and approaches, namely exact

algorithms (Branch-and-Bound, Dynamic Programming, local

search techniques) [1], [2], [3], heuristics [5], [6], and meta-

heuristics (Genetic Algorithms, Ant Colony Optimization, Par-

ticle Swarm Optimization, Simulated Annealin, Tabu Search,

etc.) [4], [7], [8]. Today, the use of meta-heuristics has received

more and more attention. These methods offer good solutions,

even global optima, within reasonable computing time [9].

An even more efficient behavior, and a higher flexibility

when dealing with real-world and large-scale problems, can

be achieved through a combination of a meta-heuristic with

other optimization techniques, the so-called hybrid metaheuris-

tic [7], [13], [12], [14], [20], [21], [19].
The main goal of all hybrid algorithms is to exploit the

advantages of different optimization strategies, while avoiding

their disadvantages. Choosing an adequate combination of

metaheuristic techniques one can achieve a better algorithm

performance in solving hard optimization problems. Develop-

ing such effective hybrid algorithm requires expertise from

different areas of optimization. There are many hybridization

techniques that have shown to be successful for different

applications [10], [11].

In this paper, we investigate a hybrid metaheuristic method

that combines the Genetic Algorithms (GA) and the Ant

Colony Optimization (ACO), named GA-ACO. There already

exist some applications of the ACO-GA hybrid for several

optimization problems. In [15], [16] a hybrid metaheuristic

ACO-GA, for the problem of sports competition scheduling is

presented. In the proposed algorithm first, the GA generates

activity lists, thus providing the initial population for the ACO.

Next, the ACO is executed. In the next step, the GA, based on

the crossover and mutation operations, generates a new popula-

tion. Authors of [17] presented a hybrid algorithm in which the

ACO and the GA search alternately and cooperatively in the

solution space. Test examples show that the hybrid algorithm

can be more efficient and robust than the traditional population

based heuristic methods. In [18], the problem of medical data

classification is discussed. Authors propose a hybrid GA-ACO

and show the usefulness of the proposed approach on a number

of benchmark real-world medical datasets. For solving NP-

hard combinatorial optimization problems, in [22], a novel

hybrid algorithm combining the search capabilities of the ACO

and the GA is introduced. As a result a faster and better search

algorithm capabilities is achieved.

Provoked by the promising results obtained from the use of

hybrid GA-ACO algorithms, we propose a hybrid algorithm,

i.e. collaborative combination of the GA and the ACO methods

for the model parameters optimization of the E. coli fermen-

tation process. The effectiveness of the GA and the ACO

have already been demonstrated for model parameter optimiza-

tion considering fed-batch fermentation processes (see, [24]).

Moreover, parameter identification of cellular dynamics mod-

els has especially become a research field of great interest.

Robust and efficient methods for parameter identification are

thus of key importance.

The paper is organized as follows. The problem formulation

is given in Section 2. The proposed hybrid GA-ACO technique

is described in Section 3. The numerical results and a discus-

sion are presented in Section 4. Conclusion remarks are done

in Section 5.
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II. PROBLEM FORMULATION

A. E. coli Fed-batch Fermentation Model

The mathematical model of the fed-batch fermentation

process of the E. coli is presented by the following non-linear

differential equation system [28]:

dX

dt
= µX −

Fin

V
X (1)

dS

dt
= −qSX +

Fin

V
(Sin − S) (2)

dV

dt
= Fin (3)

where

µ = µmax
S

kS + S
(4)

qS =
1

YS/X
µ (5)

• X is the biomass concentration, [g/l];

• S is the substrate concentration, [g/l];

• Fin is the feeding rate, [l/h];

• V is the bioreactor volume, [l];

• Sin is the substrate concentration in the feeding solution,

[g/l];

• µ and qS are the specific rate functions, [1/h];

• µmax is the maximum value of the specific growth rate,

[1/h];

• kS is the saturation constant, [g/l];

• YS/X is the yield coefficient, [-].

For the model parameters identification, experimental data

of an E. coli MC4110 fed-batch fermentation process can

be used. The experiments providing the real-world data were

performed in the Institute of Technical Chemistry, University

of Hannover, Germany. The detailed description of the fermen-

tation condition and experimental data can be found in [23],

[27].

The fed-batch process starts at time t = 6.68 h, after batch

phase. The initial liquid volume is 1350 ml. Before inoculation

a glucose concentration of 2.5 g/l was established in the

medium. Glucose concentration, in the feeding solution is

100 g/l. The temperature was controlled at 35 ◦C, the pH

at 6.9. The stirrer speed was initially set to 900 rpm and

later was increased to 1800 rpm, so that the dissolved oxygen

concentration was never below 30%. The aeration rate was

kept at 275 l/h and the carbon dioxide was measured in the

exhaust gas. The process was stopped at time t = 11.54 h.

The bioreactor, as well as the FIA measurement system is

shown in Figure 1. The feed rate profile and the dynamics

of the measured substrate concentration are presented, respec-

tively in Fgure 2 and Figure 3.

For the considered non-linear mathematical model of the

E. coli fed-batch fermentation process (Eq. (1) - Eq. (5)) the

parameters that should be identified are:

 

Fig. 1. E. coli MC4110 fed-batch fermentation process: bioreactor and FIA
measurement system
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Fig. 2. E. coli MC4110 fed-batch fermentation process: feed rate profile
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Fig. 3. E. coli MC4110 fed-batch fermentation process: measured substrate
concentration
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• maximum specific growth rate (µmax),

• saturation constant (kS),

• yield coefficient (YS/X ).

The following upper and lower bounds of the model param-

eters are considered [24]:

0 < µmax < 0.7,

0 < kS < 1,

0 < 1/YS/X < 30.

In the model identification procedures, measurements of

main process variables (biomass and glucose concentration)

are used. For the on-line glucose determination the FIA system

has been employed. For the biomass, an off-line analysis was

performed [27].

B. Optimization Criterion

The objective of the optimization consists of adjusting the

parameters (µmax, kS and YS/X ) of the non-linear mathemati-

cal model function (Eq. (1) - Eq. (5)) to best fit a data set. The

objective function is presented as a minimization of a distance

measure J between the experimental and the model predicted

values of the main state variables (biomass X and substrate

S):

J =

m
∑

i=1

(Xexp(i)−X mod (i))
2
+

+
m
∑

i=1

(Sexp(i)− S mod (i))
2
→ min

(6)

where m is the number of experimental data; Xexp and Sexp

is the known experimental data for biomass and substrate;

X mod and S mod are the model predictions for the biomass

and the substrate with a given set of parameters (µmax, kS
and YS/X ).

III. METHODOLOGY

A. Genetic Algorithm

Genetic Algorithm is a metaheuristic technique based on an

analogy with the genetic structure and behaviour of chromo-

somes within a population of individuals using the following

foundations [33]:

• chromosomes in a population compete for resources and

mates;

• those chromosomes most successful in each “competi-

tion” will produce more off-spring than those chromo-

somes that perform poorly;

• genes from “good” chromosomes propagate throughout

the population so that the two good parents will some-

times produce offspring that are better than either parent;

• thus, each successive generation will become more suited

to their environment (will move closer to an optimal

solution).

The structure of the GA, shown by the pseudocode, is

presented in Figure 4).

Genetic Algorithm

i = 0
Initial population Pop(0)
Evaluate Pop(0)
while (not done) do (test for termination criterion)

i = i+ 1
Select Pop(i) from Pop(i− 1)
Recombine Pop(i)
Mutate Pop(i)
Evaluate Pop(i)

end while

Final solution

Fig. 4. Pseudocode for GA

The GA, mainly operates on binary strings and using

a recombination operator with mutation. It is based on a

population of chromosomes, Pop(t) = xt
1, ..., x

t
n for gen-

eration t. Each chromosome introduces a potential solution

to the problem and is implemented as some data structure

S. Each solution is evaluated according its “fitness.” Fitness

of a chromosome is assigned proportionally to the value of

the objective function of the chromosomes. Then, a new

population (generation t + 1) is formed by selecting better

chromosomes (the selection step).
A roulette wheel, developed by Holland [30] is the most

often used selection method. The probability, Pi, for each

chromosome to be selected is defined by:

P [Individual i is chosen] =
Fi

PopSize
∑

j=1

Fj

, (7)

where Fi equals the fitness of the chromosome i and PopSize
is the population size.

Selected members of the new population have been sub-

jected to transformations by means of “genetic” operators

to form a new solution. There are unary transformations mi

(mutation type), which create new chromosomes by a small

change in a single chromosome (mi : S → S), and higher

order transformations cj (crossover type), which create new

chromosomes by combining parts from several chromosomes

(cj : S × . . . × S → S). The combined effect of selection,

crossover and mutation gives so-called reproductive scheme

growth equation (the schema theorem) [29]:

ξ (S, t+ 1) ≥

ξ (S, t) · eval (S, t) /F̄ (t)

[

1− pc ·
δ (S)

m− 1
− o (S) · pm

]

.

A good schemata receives an exponentially increasing number

of reproductive trials in successive generations.
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B. Ant Colony Optimization

The ACO is a stochastic optimization method that mimics

the social behavior of real ants colonies, which try to find

shortest rout to feeding sources and back. Real ants lay down

quantities of pheromone (chemical substance) marking the

path that they follow. An isolated ant moves essentially at

random but an ant encountering a previously laid pheromone

will detect it and decide to follow it with high probability

and reinforce it with a further quantity of pheromone. The

repetition of the above mechanism represents the auto-catalytic

behavior of a real ant colony, where the more ants follow

a given trail, the more attractive that trail becomes. Hence,

the overall idea of the optimization approach comes from

observing such behavior, in which ants are collectively able to

find the shortest path to the food.
The ACO is implemented by instantiating a team of software

agents, which simulate the ants behavior, walking around the

graph representing the problem to solve. The requirements of

the ACO algorithm are as follows [25], [26]:

• The problem needs to be represented appropriately, to

allow the ants to incrementally update the solutions

through the use of a probabilistic transition rules, based

on the amount of pheromone on the trail and other

problem specific knowledge.

• Existence of a problem-dependent heuristic function that

measures the quality of components that can be added to

the current partial solution.

• Explication of a set of rules for pheromone updates,

which specify how to modify the pheromone value in

specific situations.

• A probabilistic transition rule, based on the value of the

heuristic function and the pheromone value, that is used

to iteratively construct a solution needs to be provided.

The structure of the ACO algorithm, represented as a

pseudocode, is depicted in Figure 5. The transition probability

pi,j , to choose the node j, when the current node is i, is based

on the heuristic information ηi,j and the pheromone trail level

τi,j of the move, where i, j = 1, . . . . , n.

pi,j =
τai,jη

b
i,j

∑

k∈Unused

τai,kη
b
i,k

, (8)

where Unused is the set of unused nodes of the graph.
The higher the value of the pheromone and the heuristic

information, the more profitable it is to select this move and

to continue the search. In the beginning, the initial pheromone

level (across the graph) is set to a small positive constant

value τ0; later, the ants update this value after completing the

solution construction stage. Different ACO algorithms adopt

different criteria to update the pheromone level.

The pheromone trail update rule is given by:

τi,j ← ρτi,j +∆τi,j , (9)

where ρ models pheromone evaporation (a process that takes

place in the nature) and ∆τi,j is a new added pheromone,

Ant Colony Optimization

Initialize number of ants;

Initialize the ACO parameters;

while not end-condition do

for k = 0 to number of ants

ant k choses start node;

while solution is not constructed do

ant k selects higher probability node;

end while

end for

Update-pheromone-trails;

end while

Fig. 5. Pseudocode for ACO

which is proportional to the quality of the solution. Thus better

solutions will receive more pheromone than others and will be

more desirable in a next iteration.

IV. HYBRID GA-ACO ALGORITHM

We propose to combine two metaheuristics, namely the

GA [29], [30] and the ACO [31]. The GA is a population-

based method where initial population is randomly generated.

Thus the randomly generated initial solutions are further

genetically evaluated. As seen above, the ACO algorithm is

a population-based as well. The difference, as compared with

the GA, is that the ACO does not need initial population.

The ACO is a constructive method, in which the ants look for

good solutions guided by the parameter called the pheromone.

At the beginning the initial pheromone is the same for the

all arcs of the graph representing the problem. After every

iteration, the pheromone levels are updated (in all arcs; in

arcs traveled by the ant the pheromone level is increasing,

while in abandoned arcs it it evaporating). As the result, the

elements representing better solutions receive more pheromone

than others and become more desirable in a next iteration.

In our hybrid algorithm the solutions constructed (proposed)

by the GA are treated as solutions achieved by the ACO in

some previous iteration, and we use them to specify the initial

pheromone level in the solution graph. After that we search

for the solution using the ACO algorithm. The structure of the

proposed hybrid GA-ACO algorithm is shown by the pseudo-

code in Figure 6.

V. NUMERICAL RESULTS AND DISCUSSION

The theoretical background of the GA and the ACO is

presented in details[24]. For the considered here model prob-

lem of parameter identification, we used real-value coded GA

instead binary encoding. Therefore the basic operators in the

applied GA are as follows:

• encoding – real-value,

• fitness function – linear ranking,

• selection function – roulette wheel selection,

• crossover function – extended intermediate recombina-

tion,

• mutation function – real-value mutation,
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GA-ACO hybrid algorithm

i = 0
Initial population Pop(0)
Evaluate Pop(0)
while not end-condition do

i = i+ 1
Select Pop(i) from Pop(i− 1)
Recombine Pop(i)
Mutate Pop(i)
Evaluate Pop(i)

end while

Best GA solution for ACO

Initialize number of ants;

Initialize the ACO parameters;

Initialize the pheromone

while not end-condition do

for k = 0 to number of ants

ant k choses start node;

while solution is not constructed do

ant k selects higher probability node;

end while

end for

Update-pheromone-trails;

end while

Final solution

Fig. 6. Pseudocode for Hybrid GA-ACO

• reinsertion – fitness-based.

In the applied ACO algorithm, the problem is represented

by graph and the artificial ants try to construct the shortest

path (under specified conditions). In our case the graph of the

problem is represented by three partity graph. There are not

arcs inside a level and there are arcs between (three) levels.

Every level corresponds to one of the model parameters we

identify (µmax, kS and YS/X ). Every level consists of 1000

vertexes, which corresponds to 1000 uniformly distributed

points in the domain (interval) of every one of the considered

model parameters. The pheromone is positioned on the arcs.

The ants create a solution starting from random node from

the first level. They chose nodes from other levels applying

the probabilistic rule. In this application the probabilistic rule

uses only the pheromone value. We can think that the heuristic

information is constant. Thus the ants will prefer the nodes

with maximal quantity of the pheromone.

To set the optimal settings of the GA and the ACO al-

gorithms parameters, we performed several runs of the algo-

rithms with varying parameters, according to the considered

here optimization problem. The resulting optimal settings of

the GA and the ACO parameters are summarized in Table I

and in Table II.

The computer, used to run all identification procedures, was

an Intel Core i5-2329 3.0 GHz, with 8 GB Memory, Windows

7 (64bit) operating system and Matlab 7.5 environment.

TABLE I
PARAMETERS OF GA

Parameter Value

ggap 0.97

xovr 0.7

mutr 0.05

maxgen 200

individuals 100

nvar 3

inserted rate 100 %

TABLE II
PARAMETERS OF ACO ALGORITHM

Parameter Value

number of ants 20

initial pheromone 0.5

evaporation 0.1

generations 200

We performed 30 independent runs of the hybrid GA-

ACO. The hybrid algorithm started with population of 20

chromosomes. We used 40 generations to find the initial

solution. Next, we took the achieved best GA solution to

specify the ACO initial pheromones. Next, the ACO was used

to obtain the best model parameters vector using 20 ants for

100 generations (see, Table III).

For comparison of performance of the hybrid algorithm we

used the pure GA and the pure ACO. They were run (30 times)

with (optimized) parameters shown in Table I and in Table II.

The main numerical results, obtained when solving the

parameter identification problem, are summarized in Table IV.

In this table we show the best, worst and average values of

the objective function achieved by the pure ACO, the pure

GA and the hybrid GA-ACO algorithms after 30 run of every

one of them, as well as their running times. The obtained

average values of the model parameters (µmax, kS and YS/X )

are summarized in Table V.

As it can be seen, from Table IV, the hybrid GA-ACO

achieves values of the objective function that are similar to

these obtained by the pure GA and the pure ACO algorithms.

In the same time, the running time of the proposed hybrid

algorithm is about two times shorter. The pure ACO algorithm

starts with an equal initial pheromone distribution for all

problem elements. In the case of the hybrid GA-ACO we

use the best solution found by the GA to specify the initial

distribution of the pheromone (used by the ACO). Thus our

ACO algorithm uses the GA “experience” and starts from a

“better” pheromone distribution. This strategy helps the ants
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TABLE III
PARAMETERS OF GA-ACO ALGORITHM

Parameter Value

ggap 0.97

xovr 0.7

mutr 0.05

GA maxgen 40

individuals 20

nvar 3

inserted rate 100 %

number of ants 20

initial pheromone 0.5

evaporation 0.1

ACO generations 100

TABLE IV
RESULTS FROM MODEL PARAMETERS IDENTIFICATION PROCEDURES

Value Algorithm
Algorithm performance

T , [s] J

best

GA 67.5172 4.4396

ACO 67.3456 4.9190

GA-ACO 38.7812 4.3803

worst

GA 66.5968 4.6920

ACO 66.6280 6.6774

GA-ACO 41.4495 4.6949

average

GA 67.1370 4.5341

ACO 69.5379 5.5903

GA-ACO 39.4620 4.5706

to find “good solutions” using less computational resources

(e.g. like computer time and memory). As a matter of fact,

our hybrid algorithm uses more than three times less memory

than the pure ACO and the pure GA algorithms.

In Table VI we compare results achieved in current work

with results obtained in our earlier work [32]. There, we

had run the ACO algorithm for several iterations and used

it to generate an initial populations for the GA algorithm.

Thus the GA started from a population that was closer to the

good (optimal) solution than a randomly generated population.

We observe that the ACO-GA and the GA-ACO algorithms

achieve very similar results, and in a similar running time.

We run the ANOVA test to measure the relative difference be-

TABLE V
PARAMETERS’ ESTIMATIONS OF THE E. coli FED-BATCH FERMENTATION

PROCESS MODEL

Value Algorithm
Model parameters

µmax kS 1/YS/X

average

GA 0.4857 0.0115 2.0215

ACO 0.5154 0.0151 2.0220

GA-ACO 0.4946 0.0123 2.0204

tween the two algorithms. The two hybrid algorithms achieves

statistically equivalent results, but the GA-ACO algorithm uses

30% less memory. Thus we can conclude that hybrid GA-ACO

algorithm performs better than the ACO-GA hybrid algorithm.

TABLE VI
RESULTS FROM MODEL PARAMETERS IDENTIFICATION PROCEDURES:

ACO-GA

Value
ACO-GA performance

T , [s] J

best 35.5212 4.4903

worst 41.4495 4.6865

average 36.1313 4.5765

In Figure 7, the comparison of the dynamics of measured

and modeled biomass concentration is shown. With a solid

line we show the modeled biomass during the fermentation

process, while with stars we show the measured biomass

concentration. We put only several stars because the two line

are almost overlapped. In Figure 8 the comparison between the

time profiles of measured and modeled substrate concentration,

during the fermentation process, is shown. On both figures

we observe how close are the modeled and the measured

data. Thus we illustrate the quality of our hybrid GA-ACO

algorithm.

VI. CONCLUSION

In this paper we propose a hybrid GA-ACO algorithm for

parameter identification of the E. coli fed-batch fermentation

process. In the proposed approach, first, we start the GA for

several generations with a small population. Next, we use

the best solution found by the GA, to instantiate the initial

pheromone distribution for the ACO algorithm. We observe

that our hybrid GA-ACO algorithm achieves results similar to

the pure GA and the pure ACO algorithms, but it is using less

computational resources (time and memory). The used time

is two times smaller while the used memory is three times

smaller. With this algorithm we understand how important

is the pheromone distribution for good performance of the

ACO algorithm. We compare our hybrid GA-ACO approach,

with a hybrid ACO-GA algorithm. Both hybrid algorithms
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Fig. 7. E. coli fed-batch fermentation process: comparison between measured
and modeled biomass concentration

Fig. 8. E. coli fed-batch fermentation process: comparison between measured
and modeled substrate concentration

achieve statistically similar results for a similar running time,

but GA-ACO algorithm uses about 30% less memory, which

is important when one is to solve large problems.
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