
Combining an JADE-agent-based Grid infrastructure with the Globus
middleware—Initial Solution

Mehrdad Senobari
Tabriat Modares University Tehran, Iran

senobari@modares.ac.ir

Michal Drozdowicz, Marcin Paprzycki
Wojciech Kuranowski, Maria Ganzha,

Systems Research Institute PAS,
Warsaw, Poland

marcin.paprzycki@ibspan.waw.pl

Richard Olejnik
University of Sciences and Technologies

of Lille, Lille, France

Ivan Lirkov
Institute for Parallel Processing,

Bulgarian Academy of Science Sofia, Bulgaria

Abstract

Currently, we are developing an agent based infrastruc-
ture for resource management in Grids. In the past our
attention was focused on high-level processes involved in
agents selecting a team to join or a team to execute a job. In
this note we consider how the proposed agent-based system
can interact with an actual Grid middleware. As our ini-
tial target we have selected the Globus middleware. Here,
we present a simple way of submitting a job and receiving
results and discuss implementation details.

1 Introduction

Since 1999 we are told that Grid computing will pro-
vide a new way to utilize heterogeneous, geographically
distributed, multi-domain computer resources [17]. Unfor-
tunately, the uptake of the Grid, while speeding-up recently,
is still unsatisfactory. Some important issues that need to
be solved are: (a) complicated resource brokering and man-
agement in existing Grid middlewares, (b) lack of interop-
erability between individual middlewares, and (c) too high
expectations put on potential users of the Grid (they have
to know / learn too much to be able to use it effectively,
especially in the early stages of Grid adoption). In this con-
text, it was suggested that software agents combined with
ontologies may provide the necessary infrastructure, by in-
fusing Grid with “intelligence.” Thus, we follow guidelines
put forward in [16, 24]. While arguments presented there
are not uncontroversial we accept them as a starting point,
and propose an approach based on agents working in teams.
Specifically, in [13] we presented an initial overview of the

proposed approach. In [12] we followed with a study ways
of implementing yellow-page based matchmaking services.
While in [11] we considered processes involved in agents
seeking teams to execute their jobs, in [21] we have dis-
cussed processes taking place when agents seek teams to
join, and in [20] we discussed how team is kept together
through mirroring and presence monitoring. Separately,
in [19] we have discussed trust-management-related issues.
Finally, in [14] we have contemplated how the proposed ap-
proach can be intermixed with work done within theADAJ
project (see, also [23]).

Except for the last paper, our work was focused on high-
level (intelligent resource brokering and management) func-
tions of the system. Overall, we have assumed that at a cer-
tain moment a job is going to be passed from the “agent
system” to the “work environment”, where it is going to
be executed. Next the results will be returned to the agent
system and delivered to the user by her/his representative
agent. How this process can be implemented is the focus
of this note. Obviously, a job could be executed on a sin-
gle “home PC” by an agent that represents it. However,
what is more interesting is the question of how a job can be
passed to an actual Grid infrastructure. Therefore, we have
selected Globus, as one of the most popular Grid middle-
wares ([15]), and established how an agent can pass a job
to the Globus infrastructure to be executed and then receive
the results back to be delivered to the user.

2 Overview of the proposed approach

Let us start from a brief description of the proposed uti-
lization of software agents in Grids. The main assumption
behind our system is that we consider the Grid as an “open

Figure 1. AML social diagram of the proposed system

environment” (consisting of computers connected to the In-
ternet [17]), rather than a “local grid” (consisting of ma-
chines in a closely monitored and managed environment).
To discuss main actors and processes in the system, in Fig-
ure 1 we present the AML social diagram ([8]), which com-
plements the UML use case diagram found in [10]).

In general, we have to consider two key functions of
the system: (a) helping the user to contribute its resources
to the Grid (and be paid for doing so), and (b) helping the
user to execute the job within the Grid. Let us start with the
first case (more details can be found in [21]). Each user is
represented in the system by an agent (theLAgent). This
agent provides an intelligent interface between the user
and theBrokering System and in this way can be viewed
as aPersonal Agent (following the concept proposed in
[22]). After the user specifies conditions of joining an
agent team, theLAgent contacts theClient Information
Center (CIC); represented in the system by aCICAgent) to
obtain a list of teams it can potentially join. TheCIC is a
central repository ofKnowledge about Teams. Specifically,
it contains information about teams that look for workers
(with specification of their expected characteristics), teams
offering to execute a job (including specification of avail-
able resources), and individual agents registered with the
system. Note that we assume that while all agents within
a platform are known to it, only agents registered with the
CIC can use services of our system.Utilization of theCIC
represents a “yellow page” based approach to matchmaking
(see, [25] for critical analysis of possible approaches to
implementing matchmaking in a distributed system).

Upon receiving a list of teams that can be interested in
its offers, theLAgent may remove some of them due to trust
considerations [19] (utilizing theLAgent knowledge. Next it
utilizes the FIPA Contract Net Protocol based negotiations
([1]) and multicriterial analysis [9] to decide which team
to join. Negotiations involve theLAgent and theLMasters
representing their teams.LMasters utilize theKnowledge
about team/jobs resource to prepare their offer ([11]). The

result of negotiations can be twofold: (1) theLAgent finds
a team to join, (2) no such team is found (in this case the
LAgent informs the user about it, and awaits further in-
structions, which may involve modification of constraints,
or an instruction to abandon the task completely). Upon
joining the organizational unit (Agent Team), theLAgent is
appropriately configured to undertake the role of aWorker.

Let us now concentrate on the second scenario—search
for a team to execute a task—as it provides the basis for
the remaining parts of this note. Here, the user communi-
cates to itsLAgent conditions of task execution (e.g. neces-
sary hardware requirements, or maximal price). TheLA-
gent queries theCIC to find which teams can execute it
task. Upon receiving a list of such teams, theLAgent re-
moves from it teams that cannot be trusted [19]. Next, it
communicates withLMasters of the remaining teams and
utilizes FIPA Contract Net Protocol and multicriterial anal-
ysis to find the best one to execute its job.LMasters utilize
theKnowledge about team/jobs resource to prepare their of-
fers ([21]). As in the previous scenario, if no team satisfies
imposed conditions theLAgent reports this situation to the
user and awaits further instructions. Note that in both cases
the decision making process implemented in the system is
fairly rudimentary, but it can be easily extended to involve
a large space of factors influencing the final outcome.

Finally, in Figure 1 we can see theLMirror agent, which
“mirrors”/”duplicates” theLMaster. Here, both agents store
information necessary to keep the team running. In the case
of failure of theLMaster (LMirror), theLMirror takes its
place (theLMaster “promotes” one of itsWorkers to be a
newLMirror); see [20] for more details.

3 Combining agents and Globus—
preliminary considerations

Let us now focus on in interfacing the above described
agent-based management infrastructure with an actual com-
putational infrastructure. One of overarching design guide-

lines for the system is an attempt to hide complexities of the
underlying environment from the end-user. For instance, it
is theWorker agent that has to know how to utilize the com-
putational infrastructure it represents. Thus, the user should
be asked mainly to point to files that the job consists of and
resources it utilizes (e.g. a binary executable file ready to
run on an Intel x86 processor and a data file). The remain-
ing actions should be undertaken autonomously “by the sys-
tem.” Taking into account assumed capabilities of software
agents ([27]), it is easy to see that to be able to interface with
multiple computational infrastructures it is enough to have
a Worker agent devoted to each one of them. For example,
oneWorker may know how to run a job on a “home PC,”
while anotherWorker may know how to run it within the
Globus-based Grid. Note that at this stage wedo not attempt
to completely bridge the heterogeneity gap and be able to
run a job, for instance, partially within the Unicore, and par-
tially within the EGEE middlewares, while finishing it on a
Cell-processor-based supercomputer. Thus far we consider
only a scenario when a single job is executed within a single
“infrastructure” represented by a singleWorker agent.

Taking this into account, theWorker agent should be in
part independent of the runtime environment. To achieve
this goal we propose that theWorker be comprised of two
parts. First, the agent system specific modules that allow
it to communicate with the user and theLMaster, receive
messages from theLMirror, etc. These modules are to be
the generic for allWorker agents in the system. Second, the
“computational-infrastructure-specific” functionalities, that
should be encapsulated into a separate module, content of
which depends on the infrastructure that the givenWorker
is to represent. In this way, the infrastructure-specific “part”
of theWorker allows utilization of various middlewares (or
even running the job directly on a PC/workstation it repre-
sents); depending on the way it has been configured. Mov-
ing in this direction, we have designed aJob Executor mod-
ule, which provides an abstract interface to execute the user
job. Note that in the system under development, we plan
to utilize the modular agent design introduced originally
by T. Tu and collaborators in the DynamiCS project (see,
[26] for more details). There, it was shown, how agents
can be composed on demand from specified components.
More recently, in [18] we have described how this idea can
be implemented in a JADE-based agent environment ([6]).
Therefore, one should envision, that when theLAgent be-
comes aWorker, then an appropriateJob Executor module
is loaded and it allows the resultingWorker agent to interact
with the specified computational infrastructure.

Let us now consider functionalities that are needed
within the Job Executor module in the case of executing
jobs within the Globus Toolkint 4 environment. Here, after
consulting the literature, we have considered two different
approaches:

• In the first approach, we simply used the standard
Globus Toolkint 4 job submission client, the GRAM4
globusrun-ws ([5]). In this case a special instance of
the Job Executor module calls GRAM4 commands
from within theWorker agent. The only requirement
is to provide the proper argument string for the job
submission command. The main advantage of this so-
lution is its simplicity. No knowledge of the internal
GT4 operations, except of basics of commands of the
GRAM4, is needed for job submission. The disadvan-
tage is that monitoring the job status requires “manual”
checking and interpreting output of the command. Fur-
thermore, the most natural implementation of this so-
lution is OS-dependent. Specifically, this solution may
directly utilize theRuntime.exec()method to run
the client command. However, as one can find (e.g.
see in [7]), this method “is not cross-platform.” Thus,
for instance, in Windows parameters are different than
in Linux. In turn, this would mean that we would
have to generate a separateJob Executor module for
each operating system that requires a unique parame-
ter string. Such solution, while feasible, is definitely
not appealing. Note that since Java 1.6, a newer utility
namedProcessBuilder was added to the JDK. It
provides some new features thatRuntime.exec()
does not have. However, both of them are similar since
they are not shell-command processors, they are only
a way to start a new process. Thus even utilization of
the ProcessBuilder would require writing sepa-
rate modules for different OS’s and thus its usability is
also restricted in the needed context.

• The second approach utilizes the GT4Java WS Core
[4]. In this approach we retain direct control over
the job execution, as well as monitoring its status.
This solution exploits capabilities offered by the GT4
Java WS Core, thus provides an OS-independent
implementation that runs on all platforms that the GT4
can potentially run on. TheGramJob API [2] within
the Java WS Core provides all the necessary meth-
ods to submit a job using GRAM4 and control its life-
time. The only “disadvantage” of this approach is that
the implementation is somewhat complicated (vis-a-
vis the first solution). However, much of the needed
code has been already written by the Globus team.

It should be stressed that the decision to use the GT4
Java WS Core provides us also with an easier control over
job execution, which is needed not only on the level of the
Worker agent (it needs to know what is happening with jobs
submitted to the Grid it represents), but also on the level of
the Agent Team. In the latter case, theLMaster has to be
able to know what is happening with jobs being executed
by its workers to be able to act proactively to assure ful-

fillment of theService Level Agreement. Obviously, both
approaches described above provide us with some possi-
bility of controlling the status of job execution. However,
in the first, to find out the job status one has to call the
globusrun-ws client, and then interpret the output of
the command. In the case of theJava WS Core, information
about the job status is provided by the environment (push
approach). Therefore, also from this perspective, theJava
WS Core-based approach seems to be more appropriate.

4 Combining agents and Globus—
implementation details

Job Executor is one of the key modules of theWorker
agent. It provides an abstract interface to execute the user
job within the infrastructure that theWorker represents.
We have designed two implementation of theJob Execu-
tor. First one runs the job as a normal process within the
worker machine (Simple Job Executor). Note that even in
this simple case it is also possible that theWorker repre-
sents multiple machines. Here, the technology provided by
the JADE agent environment can be used. In this case, the
JADE agent platform encompasses multiple (possibly het-
erogeneous) machines. It is theWorker that decides which
machine should be used to actually execute a given job.

The approach allows to run the job in a Globus node
(Globus Job Executor). This Job Executor enables the
Worker agent to submit a job to the local Grid resource man-
ager using the GRAM4Java WS Core, and track its lifetime.
Note that selection of the properJob Executor is done when
the Worker agent is configured to fulfill this role, and de-
pends on the infrastructure that it is supposed to represent.
Here, theLAgent, before becoming aWorker does not (need
to) have theJob Executor module installed. However, to be
able to manage the process of joining a team it has to know
what the computational infrastructure it represents is. This
is needed first, to be able to query theCIC, and second, to
negotiate withLMasters of selected teams. Furthermore,
if the process of joining a team is unsuccessful there is no
need for this module to be installed (there is no work com-
ing). Instead, acting on orders of its user, theLAgent may
become anLMaster of a new team and need a completely
different set of modules to fulfill this role.

4.1 Job execution scenario

Let us now assume that (a) a givenLAgent has identified
a specific team that is to execute its job, and (b) that the
selected team is a front end to the Globus Grid middleware.
In this case the sequence of actions leading to executing user
request is as follows.

• TheLAgent communicates with theLMaster of the se-
lected team and sends the job executable and its nec-

essary parameters. This is done by an ACL message
which contains an instance of theJobExecutionAction
in its action slot (all ACL messages exchanged be-
tween agents are carried by the JADE message trans-
port subsystem):

(REQUEST
: r e c e i v e r

(s e t
(agent− i d e n t i f i e r

: name masterA@MS−JADE
: a d d r e s s e s (sequence

h t t p : / / 1 9 2 . 1 6 8 . 2 4 2 . 6 6 : 7 7 7 8 / acc)))
: c o n t e n t

‘ ‘ ((ac t ion
(agent− i d e n t i f i e r

: name masterA@MS−JADE
: a d d r e s s e s (sequence

h t t p : / / 1 9 2 . 1 6 8 . 2 4 2 . 6 6 : 7 7 7 8 / acc))
(JobE xecu t ionAc t i on

: Execut ionParams
(JobExecut ionParam s

: E xecu tab le <b i n a r y r e p r e s e n t a t i o n
of t h e job>

: Arguments \ ‘ ‘ − s t a g e 1200\ ’ ’)))
) ’ ’

: l anguage f ipa−s l 0
: on to logy messag ing
: p r o t o c o l f i pa−r e q u e s t)

As theLAgent does not know whichWorker agent will
fulfill the request, it sets the selectedLMaster as the
actor of theJobExecutionAction. Another parameter
of this message is an instance of theJobExecutionAc-
tion, which has two inner arguments:Executable and
Arguments. TheExecutable contains the binary repre-
sentation of the job, andArguments are the necessary
arguments to run that job. Note that here we present
an example in which the job consists of an executable
and its parameters. This is also what has been imple-
mented. However, this approach generalizes naturally
to sending other forms of requests, e.g. source codes
and input data. We plan to extend functionality of the
system in this direction next.

• The LMaster selects one of itsWorker agents and re-
quests it to perform the job (criteria of selection can be
based, among others, on resource characteristics and
trust considerations, but this is out of scope of this
note). This is done by forwarding the content of the
above listed ACL message to the selectedWorker.

• Upon receiving the message, theWorker agent uses the
Globus Job Executor module to submit the job into
the Globus infrastructure. For this, it first extracts and
saves the job executable in its local directory and then
creates a job description, which is an XML file based
on the GRAM4 job description schema [3]; that could
look as follows:

<j ob>
<e x e c u t a b l e>

/ op t / a i g / shared / [jobID] / Job@userA
< / e x e c u t a b l e>
<argument>−s t a g e 1200< / a rgument>
<s t d o u t>

/ op t / a i g / shared / [jobID] / o u t p u t
< / s t d o u t>
<s t d e r r>

/ op t / a i g / shared / [jobID] / e r r o r
< / s t d e r r>

</ j ob>

Here, we can see that the job is assigned a unique ID
(jobID). Furthermore, specific directories are created
to save its outputs and, with the help of thestdout
and thestderr descriptors, outputs are redirected to
separate files.

The above job description is passed to theGlobus Job
Executor, which in turn uses theGramJob utility of
the GT4Java WS Core to submit a new job using the
WS-GRAM4 and then listens to changes in its state.
TheGramJob facilitates submitting a job, canceling it,
sending a signal command and registering and unreg-
istering job state change listeners. Job submission can
be done in the following way:

F i l e r s l F i l e = new F i l e (pa th to t h e xml f i l e) ;
GramJob job = new GramJob (r s l F i l e) ;
j ob . a d d L i s t e n e r (l i s t e n e r I n s t a n c e) ;
j ob . submi t (f a c t o r y E n d p o i n t ,

f a l s e , t r ue , submiss ionID) ;

Here, the GramJob class needs an instance of
Java File that points to the path of the job de-
scription file. TheaddListener method of the
GramJob, accepts an object that implements the
GramJobListener. Finally, the job is to be sub-
mitted using thesubmit method, which needs the
URL of the GRAM4 web-service, and the submission
ID (jobID, above) of the job.

The GRAM4 can interact with many GridLocal
Resource Managers (LRM) like LSF, PBS, Con-
dor, or can directly use the fork mechanism pro-
vided in UNIX. It is therefore possible to select the
desired LRM when submitting the job (using the
job.submit() method), or leave it to the GRAM4
to select the default one. In the sample job description
above we let the GRAM4 to select the defaultLRM.
Overall, the primary parameter that theWorker agent
should “know” to be able to submit a job to the Globus
is the URL of the GRAM4 service. Specifically, the
factoryEndpoint in the above snippet is an instance of
the EndpointReferenceType, which is used to point to
the GRAM4 web-service. The default contact string
is configured at theWorker configuration. The default
one is:

h t t p s : / / l o c a l h o s t : 8 4 4 3 / wsr f / s e r v i c e s /
ManagedJobFac to ryServ i ce

which is the address ofManagedExecutionJobService,
a service running within the Globus service container.

• Upon job termination, which corresponds to one of
DONE or FAILED states in theGramJob, the result
of execution, and its output(s) (if any) have to be sent
back to the correspondingLAgent (“owner” of that
job). Note that theWorker does not know theLAgent.
Thus all the information has to be passed through the
LMaster. Obviously, in the case of a large team work-
ing on relatively “small/short” jobs, this may gener-
ate a communicational bottleneck within theLMaster.
As a result theLMaster may not be able to properly
manage the team; e.g. respond to queries concerning
possibility of execution of further jobs. This is one of
the research issues that will be addressed both theoret-
ically and experimentally in the near future.

As one can see in the sample job description file
(above), the output of the job could be redirected to
one or more separate files. Note that theWorker agent
knows the content of the job description as it is its cre-
ator. Therefore, upon receiving theDONE or FAILED
information from theGramJob, it can collect the re-
sulting data, from where they have been send to, and
pack everything into an ACL message. This message is
then sent to theLMaster, which forwards it to theLA-
gent that submitted the job; thus completing the pro-
cess.

5 Concluding remarks

In this note we have considered how an agent infras-
tructure designed to provide “the brain” for the Grid, can
connect with “the brawn” to execute user requests within
it. For the case study we have selected the Globus Grid
middleware (GT4). We have described in some detail how
we have selected the solution and how it is to work. The
minimalistic version of the approach (dealing only with ex-
ecution of binary files) has been implemented and the code
can be found within the Sourceforge repository. Currently
we are proceeding to make the implementation more robust
and flexible and will report on our progress in subsequent
publications.

Acknowledgment

Work of the Polish team was in part supported from the
“Funds for Science” of the Polish Ministry for Science and
Higher Education for years 2008-2011, as a research project
(contract number N N516 382434). Collaboration of the

Polish and Bulgarian teams is partially supported by the
Parallel and Distributed Computing Practices grant. Col-
laboration of Polish and French teams is partially supported
by the PICS grantNew Methods for Balancing Loads and
Scheduling Jobs in the Grid and Dedicated Systems.

References

[1] Fipa contract net protocol specification.http://www.
fipa.org/specs/fipa00029/SC00029H.html.

[2] Globus toolkit 4.2.0 javadocs.http://www.globus.
org/api/javadoc-4.2.0/.

[3] Gt 4.2 gram4: Job description schema document.
http://www.globus.org/toolkit/docs/4.2/
4.2.0/execution/gram4/schemas/gram_job_
description.html.

[4] Gt 4.0: Java ws core. http://www.globus.
org/toolkit/docs/4.2/4.2.0/common/
javawscore/, 2008.

[5] Gt 4.2.0 gram4: Developer’s guide. http:
//www.globus.org/toolkit/docs/4.2/
4.2.0/execution/gram4/developer/
gram4DeveloperGuide.pdf, 2008.

[6] Jade—java agent development framework.http://
jade.tilab.com/, 2008.

[7] When runtime.exec() wont.http://www.javaworld.
com/javaworld/jw-12-2000/jw-1229-traps.
html?page=3, 2008.

[8] R. Cervenka and I. Trencansky.Agent Modeling Lan-
guage (AML): A Comprehensive Approach to Modeling
MAS. Whitestein Series in Software Agent Technologies
and Autonomic Computing. A Birkhauser book, 2007.

[9] J. Dodgson, M. Spackman, A. Pearman, and L. Phillips.
DTLR multi-criteria analysis manual. UK: National Eco-
nomic Research Associates, 2001.

[10] M. Dominiak, M. Ganzha, M. Gawinecki, W. Kuranowski,
M. Paprzycki, S. Margenov, and I. Lirkov. Utilizing agent
teams in grid resource brokering.International Transactions
on Systems Science and Applications, 3(4):296–306, 2008.

[11] M. Dominiak, M. Ganzha, and M. Paprzycki. Selecting grid-
agent-team to execute user-job—initial solution. InPro-
ceedings of the Conference on Complex, Intelligent and Soft-
ware Intensive Systems, pages 249–256. IEEE CS Press, Los
Alamitos, CA, 2007.

[12] M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha,
and M. Paprzycki. InProceedings of the International Mul-
ticonference on Computer Science and Information Technol-
ogy, pages 327–335. PTI Press, 2006.

[13] M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha,
and M. Paprzycki. Utilizing agent teams in grid resource
management—preliminary considerations. InProceedings
of the IEEE J. V. Atanasoff Conference, pages 46–51, Los
Alamitos, CA, 2006. IEEE CS Press.

[14] M. Drozdowicz, M. Ganzha, W. Kuranowski, M. Paprzycki,
I. Alshabani, R. Olejnik, and M. Taifour. Software agents
in ADAJ: Load balancing in a distributed environment. In
M. Todorov, editor,Applications of Mathematics in Engi-
neering and Economics’34, 2008. to appear.

[15] I. Foster. Globus toolkit version 4: Software for service-
oriented systems.Journal of Computer Science and Tech-
nology, 21(4):513–520, 2006.

[16] I. Foster, N. R. Jennings, and C. Kesselman. Brain meets
brawn: Why grid and agents need each other. InAAMAS
’04: Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pages
8–15, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[17] I. Foster and C. Kesselman. The grid: Blueprint for a new
computing infrastructure. 1999.

[18] M. Ganzha, M. Gawinecki, M. Szymczak, G. Frackowiak,
M. Paprzycki, M.-W. Park, Y.-S. Han, and Y. Sohn. Generic
framework for agent adaptability and utilization in a virtual
organization—preliminary considerations. In J. Cordeiro
et al., editors,Proceedings of the 2008 WEBIST conference,
pages IS–17–IS–25. INSTICC Press, 2008. to appear.

[19] M. Ganzha, M. Paprzycki, and I. Lirkov. Trust manage-
ment in an agent-based grid resource brokering system—
preliminary considerations.Applications of Mathematics
in Engineering and Economics’33, pages 35–46, 2007.
M. Todorov (ed.), American Institute of Physics, College
Park, MD.

[20] W. Kuranowski, M. Ganzha, M. Paprzycki, and I. Lirkov.
Supervising agent team an agent-based grid resource bro-
kering system—initial solution. In F. Xhafa and L. Barolli,
editors,Proceedings of the Conference on Complex, Intel-
ligent and Software Intensive Systems, pages 321–326, Los
Alamitos, CA, 2008. IEEE CS Press.

[21] W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawinecki,
I. Lirkov, and S. Margenov. Agents as resource brokers in
grids—forming agent teams. InProceedings of the LSSC
Meeting, LNCS. Springer, 2007.

[22] P. Maes. Agents that reduce work and information overload.
Commun. ACM, 37(7):30–40, 1994.

[23] R. Olejnik, F. Fortis, and B. Toursel. Webservices oriented
datamining in knowledge architecture.Future Generation
Computer System. to appear.

[24] H. Tianfield and R. Unland. Towards self-organization in
multi-agent systems and grid computing.Multiagent and
Grid Systems, 1(2):89–95, 2005.

[25] D. Trastour, C. Bartolini, and C. Preist. Semantic web sup-
port for the business-to-business e-commerce lifecycle. In
WWW ’02: Proceedings of the 11th international conference
on World Wide Web, pages 89–98, New York, NY, USA,
2002. ACM Press.

[26] M. Tu, F. Griffel, M. Merz, and W. Lamersdorf. A plug-
in architecture providing dynamic negotiation capabilities
for mobile agents. In K. Rothermel and F. Hohl, editors,
Proceedings MA’98: Mobile Agents, volume 1477 ofLNCS,
pages 222–236. Springer-Verlag, 1999.

[27] M. Wooldridge. An Introduction to MultiAgent Systems.
John Wiley & Sons, 2002.

