
GENERIC FRAMEWORK FOR AGENT ADAPTABILITY
AND UTILIZATION IN A VIRTUAL ORGANIZATION—

PRELIMINARY CONSIDERATIONS

Maria Ganzha, Maciej Gawinecki, Michal Szymczak, Grzegorz Frackowiak
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marcin Paprzycki
Systems Research Institute, Polish Academy of Sciences,
Warsaw Management Academy, Warsaw, Poland

{Maciej.Gawinecki,Maria.Ganzha,Marcin.Paprzycki}@ibspan.waw.pl

Myon-Woong Park, Yo-Sub Han, Y.T. Sohn
Korea Institute of Science and Technology, Seoul, Korea

myon@kist.re.kr
Keywords: virtual organization, generic adaptability framework, software agents, agent system

Abstract: In our work we consider resource management in a virtual organization. The proposed approach is based on
utilization of ontologies to represent structure of the organization and its domain of operations, and software
agents that support workers in fulfilling various roles within the organization. In this paper we consider
processes involved in a generic Virtual Organization Agent taking up / changing / adapting its functions to, a
specific role.

1 INTRODUCTION

Currently we are in the process of developing a
system with the main goal of supporting resource
(information in particular) management in a Virtual
Organization (VO, (Barnatt, 1995; Bleeker, 1998;
Dunbar, 2001; Goldman et al., 1995; Warner and
Witzel, 2005)). In such organization workers access
various resources to complete their tasks/projects.
Obviously, access to resources should be adaptive
(change with tasks, and evolve as tasks/projects
evolve) and personalized (individual workers require
access to different resources depending on their roles
in the project and/or the organization). For instance,
assume that two workers are a part of a team that is to
design an implement a knowledge management por-
tal. Obviously, worker who is designing and imple-
menting the back-end part of the system that is based
on an Oracle database, needs different resources than
her colleague preparing a Web-based front-end for the
Internet Explorer. However, a decision to extend the
front-end to support also Firefox and Opera browsers
will result in the second worker needing additional re-
sources to complete her job (e.g. she may need train-
ing modules on working with Firefox and Opera).
Separately, if a worker from being a “coder” is moved
to undertake a role of a “software tester,” she will
need different resources to fulfill her new role (e.g.
she may need to extend her knowledge about testing

tools used in the organization). Furthermore, she will
also send different reports to a different supervisor.

In this context, current trends in information man-
agement suggest that one of promising approaches
to develop a flexible and robust support for resource
management in an organization is through utilization
of ontologies and semantic reasoning on the one
hand (Fensel, 2003), and software agents on the
other (Jennings and Wooldridge, 2002). We have
decided to accept these assumptions and attempt at
developing a generic approach to adaptive resource
provisioning in a virtual organization. Obviously, we
acknowledge that these assumptions are not without
critics, but we believe that our work is also a step
toward establishing actual benefits and limitations of
the proposed approach. To this effect, in our initial
paper ((Ganzha et al., 2007b)) we have analyzed
processes involved when a project is introduced into
an organization. Next, in (Ganzha et al., 2007a), we
have considered roles played within an organization
by various entities (humans and agents) identified
in (Ganzha et al., 2007b). This allowed us to con-
ceptualize which roles can be played by (a) software
agents alone, (b) humans, and (c) by human-agent
teams. We have also discussed agent interactions and
introduced a sample application, a Duty Trip Support,
to illustrate how the proposed top level system design
can be utilized in practice. Proceeding further, in
(Szymczak et al., 2008) we have proposed a top level

overview of ontologies to be used in the system (with
the key concept of a generic resource). Further-
more, we have showed how these basic ontological
constructs can be integrated with travel ontologies
developed in the Travel Support System ((Gawinecki
et al., 2005)) to work together within the Duty Trip
Support application. Finally, in (Frackowiak et al.,
2008) we introduced our approach to the way that
resource closeness is going to be established (laying
ground for semantic reasoning that is to be one of
core functionalities of the system).

As already indicated, one of the key ideas behind
the proposed system is that each worker is supported
by her/his Personal Agent (PA). It should be obvi-
ous that to effectively support their Users, their PAs
have to be adaptable. For instance when Jill is to
lead a project (takes up a role of a Project Manager,
(Ganzha et al., 2007a)) her Personal Agent must be
able to support her in this new role (e.g. to facilitate
flow of documents / reports within the team that is re-
alizing a given project). Furthermore, as the project
(or the VO) evolves, Jill’s duties can change (e.g.
project grows considerably and a number of workers
and mid-managers are introduced to handle the size
of the job). In such situation her PA has to adapt itself
(or be adapted) to these changes. Obviously, we could
assume that each agent is created with a “complete
knowledge” to support user in any role, but this would
be a terrible waste of resources. Furthermore, this
would generate a security nightmare as agents would
be potentially capable of performing actions that are
not allowed for a given position in an organization
(e.g. human resource functions, which are located
under the umbrella of an Organization Provisioning
Manager role, allow access to data that should not
be accessible to most workers). Therefore, it is bet-
ter that a generic Personal Agent does not have such
capabilities. Finally, note that changes in the organi-
zational structure would still require agent adaptation.

Summarizing what has been said thus far, the aim
of this paper is to: (a) specify how an agent that is
to fulfill a given role is created, and (b) discuss how
agent adaptability can be achieved. To this effect we
proceed as follows. We start with an overview of the
system (including basic entities and their roles). Next,
we present a top level overview of processes involved
in creating an agent with a given role and adapting
role of an existing agent. We follow with a detailed
description of the infrastructure for agent adaptability.

2 PROPOSED SYSTEM

As noted above, it is often claimed that the best ap-
proach to resource representation and personalized in-
formation delivery is ontological demarcation and se-
mantic reasoning (Fensel, 2003). Furthermore, it can
be observed that representation and management of a
resource flow in an organization can be achieved as a
result of a two-step process. First, roles of members
of a real-world organization are specified, and sec-
ond represented as an agent-based Virtual Organiza-
tion, where each person is represented by her/his Per-
sonal Agent (PA), which can support different roles
in different situations. Additionally, auxiliary agents
facilitate functioning of the system. Note that this ap-
proach is grounded not only in general agent notions
(see, for instance, (Jennings and Wooldridge, 2002)),
but also in role-oriented agent system development
methodologies (e.g. Gaia (Wooldridge et al., 2000),
or Prometheus (pro,)). In the latter case the problem
space is defined in terms of (1) roles that are to be
fulfilled, and (2) interactions between entities playing
these roles. Next, each role is fulfilled by a single
agent, or is further divided into a number of cooper-
ating agents (see, also, (Jennings, 2001)). As it will
be seen, both situations materialize in our system. In
Figure 1 we represent high level view of the proposed
system through its project-oriented use case diagram.

This use case diagram allows us to discuss briefly
what happens when a new project is proposed, and
in this context to identify major roles within the or-
ganization. Note that in what follows we discuss the
use case through roles which may be fulfilled by any
number of agents and/or humans (unless explicitly
stated, entities identified here should not be under-
stood as agents). To handle the proposed project, a
Personal Agent (representing a selected User) under-
takes a role of a Project Manager(PM) and orders the
Analysis Manager (AM), to analyze the proposal and
create document(s) supporting the decision whether
to accept the job or not. If the job is accepted the
PM creates a Project Schedule (based on analysis of
available and needed resources; a resource itself). In
our work we assume that every PM has knowledge
about some resources in the VO. This knowledge is a
part of adaptation of a PA to the role of the PM, while
its extent varies and is established within the ontology
of the organization. As a result, available resources
are reserved (a Resource Reservation document is
created; a resource itself). If the project requires
additional resources (not known, by the PM, to be
available within an organization) the PM contacts
the Organization Provisioning Manager (OPM) and
requests them. The OPM knows all resources within

UseCase MG 2008/01/26

User

Searching for
resource

OPM

Registering
new resourceManaging

resources

<<extend>>

Removing unavailable
resource

<<extend>>

Editing resource
profile

<<extend>>

Evaluating
costs

<<extend>>

Managing User
Profile

Changing
resource
accessibility

<<extend>>Registration (1!)

Create/edit
profile

Contact

One-to-one
communication

Group
communication

Direct support of
master (HR)
needs

Assigning
resources

Requesting new
resource

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Personal Agent

<<extend>>

<<extend>>

Project Manager

Managing Task
Schedule

Requesting
unavailable
resource

RPU

Task
monitoring<<include>>

Project
resource
management

Assigning roles to
team members

<<include>>

Project
Analysis

AM

TMA

Outside Resources

Quality
assurance

<<extend>>

QoS

Figure 1: Project-focused use case of the system

the organization and can either find what is needed
internally, or request that appropriate resources be
found outside of the organization. This latter task is
the role of the Resource Procurement Unit (RPU).
In the use case we can see also the Task Monitoring
Agent, which is associated with each task specified
within the Project Schedule. Finally, the Quality of
Service role is responsible for checking quality of
each completed task. Let us now extract from the use
case presented in Figure 1 the Personal Agent and
roles it can undertake. This allows us to conceptualize
the system from a different perspective, resulting in
the use case diagram presented in Figure 2. Here,
we focus on the fact that each User (worker in the
organization) is represented in the system by her/his
Personal Agent (PA). In the simplest case, the PA is
only providing rudimentary support for the User (its
role is not extended). Note that such rudimentary
support could be also understood as support of some
(organization specific) core functionalities available
to all workers within the organization; e.g. meeting

Role Base UseCase Diagram 2008/01/26

User Personal Agent

User Support

PM

AM

QoS

RPU

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Fulfilling role

Figure 2: Role-focused use case of the system

scheduling, calendaring, e-mail sorting and filtering,
grant announcement reception, etc. (functions similar
to these have been described, by P. Maes in (Maes,
1994), as crucial for Personal Agents). However,
the PA has to be also extendable to support other

roles (see above and (Ganzha et al., 2007a)) that the
User has to fulfill. Note that we assume that in most
cases the role of the Task Monitoring Agent can be
fulfilled by a software agent alone (and thus such
an extension is not represented in Figure 2), while
the remaining roles may require involvement of a
human (whether this is the case or not depends on the
operation mode of the specific VO). Therefore, the
generic PA needs to be extendedable to support the
User in fulfilling roles of: Project Manager, Analysis
Manager, Organization Provisioning Manager,
Resource Provisioning Unit, and Quality of Service.
The aim of the remaining parts of this paper is to
present how functionalities of a generic agent can
be extended to support any role to be fulfilled in an
organization.

3 CONFIGURING GENERIC
AGENTS

3.1 Overview of agent adaptability

Let us now present the use case diagram of processes
involved in (re)configuring agents in the system. In
Figure 3 we introduce a new (auxiliary) agent, the In-
jector Agent, responsible for infusing a generic agent
created within an organization (a VO Agent) with ap-
propriate modules that allow it to facilitate the cor-
rect set of functionalities. For instance, in the case
of creation of a basic PA we have to fit it with mod-
ules supporting the above described core functions,
while in the case of a User represented by a given
PA being promoted to a role of a Project Manager,
with modules supporting that function. Here the no-
tion of a module is understood as a set of behaviors
and knowledge that support a given functionality. Be-
fore we proceed to describe the content of Figure 3
in more detail, let us note that our approach follows
ideas behind the proposal put forward by Tuan Tu and
collaborators in project DynamiCS (see, (dyn,)). For
instance in (Tu et al., 1999), Tu and colleagues have
discussed how e-commerce agents that are to partici-
pate in various forms of negotiations can be dynami-
cally assembled from separate modules (communica-
tion module, protocol module and strategy module).
While technical details of our approach differ, we
clearly follow the same general approach of dynam-
ically assembling agents and adapting their behavior
by reconfiguring the set of modules that a given agent
consists of. In Figure 3 we can see first, the Initial-
ization process through which the generic VO Agent
skeleton is created. In this way any agent in the orga-

Injector UseCase Diagram 2008/01/26

VO Agent

Injector Agent

Initialization

Accessing
Organization Module
Library

Reconfiguration

Injecting New Module
(Organization or
Personal)

<<extend>>

Updating Module
(Organization or
Personal)

<<extend>>

<<include>>

Accessing
Personal Module
Library

Accessing
Profile Base

Figure 3: Functionality of the Injector Agent

nization is instantiated (a Personal Agent, or an auxil-
iary agent) as an skeleton which has no “knowledge”
and/or behaviors associated with it. In the case of
Jade agents (Jade,), which is our platform of choice,
this can be viewed as the simplest instantiation of the
jade.core.Agent class. This skeleton agent is then “op-
erated on” by the Injector Agent, which has access to
(1) an Organization Module Library, (2) a Personal
Module Library, and (3) a Profile Base. The Orga-
nization Module Library stores modules (consisting
of knowledge and behaviors) related to specific roles
played in an organization (e.g. in the case of the
role of Analysis Manager modules providing access
to financial policies of an organization; these modules
allow the AM to correctly analyze and predict cost
of the proposed project). This library is to contain
also all modules necessary for functioning of auxil-
iary (not related directly to User support) agents (e.g.
the Task Monitoring Agent). The Personal Module Li-
brary contains modules that facilitate core functions
of all (User-supporting) agents, as well as their ex-
tended functionalities. For instance, calendar manag-
ing modules are most likely to be associated with all
PA’s (all workers can be expected to perform certain
functions on certain days), while modules supporting
intelligent search will not be necessary for janitors
and waiters in a restaurant (who do not have any rea-
son to search for data on the Internet). Finally, the
Profile Base contains information about all profiles
(associated with all roles identified within the orga-
nization) and is used to appropriately select modules
to configure the generic VO Agent; e.g. for a basic PA
a complete list of core modules that have to be com-
bined to assemble such agent.

Here, we can also observe that the Injector Agent
takes part not only in agent initialization, but also
in agent reconfiguration. Specifically, reconfigura-
tion (agent functionality adaptability) comes in two
forms: (a) adding a new module, and (b) updating

a module (this involves also complete removal of an
obsolete module that is no longer needed). As an
example, imagine a worker (User) who is a Seller.
His Personal Agent will have to support him in ful-
filling this role; thus let us call such agent a Seller
Agent. The organizational profile of the User contains
information about units in the organization to which
he belongs (including the Sales Unit, see (Szymczak
et al., 2008)). Knowledge about modules required for
an agent supporting a Seller is stored in the Profile
Base and is extracted by the Injector Agent. There-
fore, upon creation of a new PA (or when the worker
moves to the Sales Unit), Seller Modules will be in-
jected into either the skeleton VO Agent (agent initial-
ization), or into an existing PA (agent adaptation). In
the latter case it is also possible that some modules
will be removed from the PA. Assume, for instance,
that the User worked in the Accounting Unit and had
access to some financial data. Obviously such access
should not longer be allowed to the User who does
not work in Accounting and thus modules supporting
it should be removed from his PA. To envision an in-
stance of a module consider the fact that one of tasks
of a Seller is to report results of his activities to se-
lected entities within the organization (e.g. his direct
supervisor). Therefore, one of Seller Modules con-
tains information about specific report(s) and their re-
cipients. Within the same, or another module support
for report preparation may be included.

Since this description has been presented at a
rather high level of abstraction, let us now look into
more details as to how these processes can be realized
in practice.

3.2 Details of agent adaptability

To discuss how agent creation and adaptation is
achieved we have conceptualized it in the form of a
component diagram in Figure 4. This diagram com-
bines the generic framework, system artifacts which
are specific to the organization in which the system
is run, and the specific example of internal function-
alities of an organizations, which are realized by en-
tities with names starting with DT (for the Duty Trip
Support; see (Szymczak et al., 2008)) and GA (for the
Grant Announcement; this functionality allows the PA
to select which grant announcements should be pulled
from the repository and presented to its User). In
the context of this paper we are particularly interested
in what is happening within the dash-line rectangle,
which delineates the core of the proposed approach.

Let us start our description by noting that, as has
been implicitly suggested above, the OPM (Orga-
nization Provisioning Manager) is actually an um-

brella role that is fulfilled by a number of entities. In
(Ganzha et al., 2007a) we have argued that travel rec-
ommending functions belong to the OPM. Similarly,
searching the organization for a C++ coder available
between January 17th and August 23rd is also its role
(fulfilled by a different entity than that involved in
travel support; see, also (Ganzha et al., 2007b)). Here,
within the OPM we distinguish two entities directly
related to support of agent adaptability. First, the al-
ready mentioned Injector Agent (IA), which is respon-
sible for assembling an agent with appropriate mod-
ules that allow it to support its User. Together with
the IA we see also the Profile Monitor Agent (PMA).
The role of the PMA is to monitor changes in the
data model and to inform the IA that a particular pro-
file was updated. The IA communicates also with the
Class Localizer which has a role of associating mod-
ules with behaviors and thus classes that implement
them. Note also the VO Agent that is modified (the
Injection relation) by the IA in the case of agent ini-
tialization (in our system, it is achieved by extending
the JADE base agent class: jade.core.Agent). How-
ever, we can also assume that this agent is already a
Personal Agent that is to be adapted (also through the
Injection relation). Finally, we represent the Generic
Data Model and the Generic Query Model, which are
ontologies which define concepts universal for any or-
ganization in which we could wish to implement the
proposed system. These concepts include: human re-
source, non-human resource, profile, profile access
privileges, organization units, module configuration,
task, matching types and matching relations (see also
(Szymczak et al., 2008)). Both these generic ontolo-
gies can be reused and specified by organization spe-
cific data models and query models. They are also
used to generate classes that implement behaviors of
specific modules and that are supplied to the IA by
the Class Localizer. Let us stress here, again, that we
view all entities and their relations represented within
the dashed rectangle as a generic framework that will
materialize in any organization.

Considering the organization specific elements of
the system (elements that will differ between organi-
zations and are represented outside of the dashed bor-
der of the generic framework), crucial roles are played
by the Organization Specific Data Model and the Or-
ganization Specific Query Model. Both these ontolo-
gies reuse the Generic Ontology, which is a part of
the framework, in order to represent data structures
and matching scenarios which are pertinent to the or-
ganization. Based on the organization specific ontolo-
gies their instances can be created, stored and queried
through the Semantic Data Storage which is an in-
frastructure for manipulating and storing semantically

Component Diagram1 2008/01/29

Generic Ontology

Data Model

Query Rules

Data Access Objects

Transport Objects

DT PA Module

GA PA Module
DT OPM ModuleGA OPM Module

Semantic Data Storage

OPM

Module Update

Profile Monitor Agent

Class Localization

Injector Agent

VO Agent (Personal Agent)

Class Localizer

JADE extension (.jar)

Injection

Org Specific Ontology

Org Specific Data Model

Org Specific Query Model

Organization Specific Ontology
Instance

Figure 4: Component Diagram

demarcated data. For the time being we intend to uti-
lize the Jena (Jena—RDF persistency engine,) per-
sistence layer and one of the PostgreSQL or MySQL
database engines, however this part of the system may
need to be tuned or redesigned in the future (we are
well aware of the fact that currently existing seman-
tic data storage and querying software is far from be-
ing efficient). Modules, when approached from the
low-end of the software stack, are Java classes, which
might be composed of class properties which repre-
sent knowledge part of modules, and of JADE agent
behaviors which support module-specific communi-
cation model and functionalities. These Java classes
can be injected into VO Agents.

Module functionalities may require accessing or-
ganization specific data which is stored in the Organi-
zation Semantic Storage. Hence, the API for access-
ing semantically demarcated data is required. Let us
note that methods of accessing data are not the key is-
sue here, as it can be done in various ways (through a
Gateway Agent, for instance). Currently, we assume

that any system unit responsible for connecting with
the Semantic Storage will be utilizing Jastor based
(Jastor—Ontology Driven RDF Access from Java,)
Data Access Objects designed to be the system API
for accessing data in the Semantic Storage. There-
fore, we can focus our attention on the infrastructure
which allows agents to communicate “about” organi-
zation specific data. To this effect we plan to utilize
Transport Objects as a medium for communicating
data (including, but not limited to requesting and re-
turning data). TOs are Plain Old Java Object (POJO:
Wikipedia, ; POJO,) which represent data stored in
the Semantic Storage and can be passed in ACL mes-
sages between system agents. Developers who will
prepare agent modules can use such Transport Object
classes as an API.

Let us now combine what we have just described
utilizing the component diagram, with the informa-
tion depicted in Figure 3, and describe processes in-
volved in agent initialization and modification. Here,
we focus our attention on User-supporting Personal

Agents, but described processes remain the same also
for auxiliary agents. When the VO Agent is instanti-
ated, the Injector Agent accesses the Profile Library
and obtains information about role(s) of a given User
which is(are) to be supported by its PA, as well as a list
of modules that have to be associated with each of its
roles. Next it contacts the Class Localizer and obtains
a list of classes implementing particular modules. As
we described above, each module might be composed
of various properties and behaviors. Currently we as-
sume that each module will be implemented as a sin-
gle class, but it is also possible that module’s prop-
erties and behaviors could be scattered among more
than a single Java class. These classes are then in-
jected by the IA into the VO Agent skeleton; result-
ing in a creation of a Personal Agent. Now, let us
observe what happens when the User is moved from
one position (Researcher) to another position (Divi-
sion Head). As a result, the organization profile of the
User (human resource profile) is adjusted. This in-
formation becomes known to the Profile Monitoring
Agent, which in turn informs the IA. The IA accesses
the Profile Library and obtains information what is
the collection of modules that should constitute the
PA that can support the User in the role of Division
Head; and contacts the Class Localizer to obtain in-
formation which classes need to be injected/replaced
in the PA (this list may also include classes that have
to be removed). On the basis of thus obtained list,
the IA modifies the PA. Observe that, taking into ac-
count our current assessment of capabilities of the
JADE platform, we tend to believe that the simplest
approach to implement this process would be to in-
stantiate a completely new PA, with all the necessary
modules injected and then to remove the old PA. How-
ever, we will investigate this issue further. Note also
that thus far we have considered situation when the
change concerns a single PA that has to be adapted to
support its User in a new role. A different scenario
takes place when change occurs within the organiza-
tion. For instance, let us assume that a new post of a
VP for Institutional Advancement is created changing
a number of interdependencies between individuals
and organizational units. These changes materialize
in the ontology of the organization and are propagated
across appropriate classes, behaviors, modules and
profiles. The PMA catches information about these
changes and informs the IA. As a result the IA has to
perform all necessary updates (of all affected agents).
Note that, as indicated above, the OPM (and thus the
PMA) has knowledge of all resources in the organi-
zation. Thus it has access to profiles of all agents
(including all PAs). This being the case it is capa-
ble of providing the IA with a complete list of agents

that need to be modified, and even a list of specific
modifications. However, this approach puts a heavy
burden on the OPM. The other possibility of adapt-
ing multiple profiles is that the PMA prepares a list of
affected modules and the IA broadcasts this to agents
in the VO and asks these that require change iden-
tify themselves. Here the burden is put on the com-
munication infrastructure. We will investigate further
the efficiency of various possible means implement-
ing multi-agent adaptability.

3.3 Example

Let us now consider an extended example that will al-
low us to see how the proposed approach will work
in a somewhat more realistic environment. Let us as-
sume that the system is implemented in an East Asia
Science Institute and an employee of that institute, dr
Ha Yoong Cha, got promoted from the Researcher
to the Division Head Officer. As it was specified
above, as a result, not only does his profile change,
but also the range of duties and competences. Obvi-
ously, the initial profile change involves some human
action (someone issues a document specifying that dr
Cha got promoted and this document is then send to
Human Resources of the Institute to be processed).
However, we assume that as soon as the decision to
promote dr Ha Yoong Cha is inserted into the com-
puter system of the Institute, the remaining processes
should be done automatically. As obvious from the
above, the PA of dr Cha has to be updated to support
his actions as the Head of the Division. For exam-
ple, such update may involve adding capabilities for
preview, and acceptance or rejection of all Duty Trip
applications of division employees (see also (Ganzha
et al., 2007a) for the processes involved in Duty Trip
application and approval).

Obviously, regardless of his current position in
the Institute, dr Ha Yoong Cha has to be represented
within the system as a human resource (Szymczak
et al., 2008). In what follows we show a snippet of
his organizational profile, which specifies his position
in the organization:

: JD HumanResource a vo on to :HumanResource ;

v o o n t o : h a s P r o f i l e : J D H R P r o f i l e ,

J D O r g P r o f i l e .

: J D H R P r o f i l e a v o o n t o : H R P r o f i l e ;

v o o n t o : b e l o n g s T o :JD HumanResource ;

vo on to :name ‘ ‘ Ha Yoong Cha ’ ’ ˆ ˆ x s d : s t r i n g .

: J D O r g P r o f i l e a v o o n t o : O r g a n i z a t i o n P r o f i l e ;

v o o n t o : b e l o n g s T o :JD HumanResource ;

v o o n t o : i s I n O r g U n i t s

: IST Div i s ionMember NanoTechno logy ,

: I S T D i v i s i o n H e a d O f f i c e r s .

: IST Div i s ionMember NanoTechno logy a v o o n t o : O r g a n i z a t i o n U n i t ;

v o o n t o : a s s i g n e d M o d u l e s :AM ApplyForDutyTrip , :AM SubmitDTReport , :AM ViewIn te res t ingGAs .

: I S T D i v i s i o n H e a d O f f i c e r s a v o o n t o : O r g a n i z a t i o n U n i t ;

v o o n t o : a s s i g n e d M o d u l e s :AM ManageDTAppl icat ions , :AM Fi l t e rDTRepor t s .

:IST DT OPM a a v o o n t o : O r g a n i z a t i o n U n i t ;

v o o n t o : a s s i g n e d M o d u l e s :AM DT Support , :AM GA Support .

:AM ApplyForDutyTrip a vo on to :Agen tModu le ;

v o o n t o : m o d u l e L o c a t i o n ‘ ‘ o rg . i s t . a p i p . modules . d t . A p p i c a t i o n ’ ’ ˆ ˆ x s d : s t r i n g .

:AM SubmitDTReport a vo on to :Agen tModu le ;

v o o n t o : m o d u l e L o c a t i o n ‘ ‘ o rg . i s t . a p i p . modules . d t . R e p o r t S u b m i s s i o n ’ ’ ˆ ˆ x s d : s t r i n g .

:AM ManageDTAppl icat ions a vo on to :Agen tModu le ;

v o o n t o : m o d u l e L o c a t i o n ‘ ‘ o rg . i s t . a p i p . modules . d t . Appicat ionManagemen t ’ ’ ˆ ˆ x s d : s t r i n g .

:AM Fi l t e rDTRepor t s a vo on to :Agen tModu le ;

v o o n t o : m o d u l e L o c a t i o n ‘ ‘ o rg . i s t . a p i p . modules . d t . R e p o r t F i l t e r i n g ’ ’ ˆ ˆ x s d : s t r i n g .

:AM ViewIn te res t ingGAs a vo on to :Agen tModu le ;

v o o n t o : m o d u l e L o c a t i o n ‘ ‘ o rg . i s t . a p i p . modules . ga . ViewAnnouncements ’ ’ ˆ ˆ x s d : s t r i n g .

:AM DT Support a vo on to :Agen tModu le ;

v o o n t o : m o d u l e L o c a t i o n ‘ ‘ o rg . i s t . a p i p . modules . d t . OpmDtSupport ’ ’ ˆ ˆ x s d : s t r i n g .

:AM GA Support a vo on to :Agen tModu le ;

v o o n t o : m o d u l e L o c a t i o n ‘ ‘ o rg . i s t . a p i p . modules . ga . OpmGaSupport ’ ’ ˆ ˆ x s d : s t r i n g .

Figure 5: Sample configuration file

As we can see, dr Ha Yoong Cha is a member
of the Nano-Technology Division and is one of the
Division Head Officers in the Institute. Since he is
a Division Head Officer and a member of the Nano
Technology Division it follows that he is a Head of
that Division. Here, obviously we implicitly assume
a certain model of the organization, which is explic-
itly elaborated in its ontology. Knowing dr Cha’s new
role in the organization (Division Head) the IA can
infuse modules which allow the PA of dr Cha to per-
form certain actions. The listing in Figure 5 presents a
sample of a configuration of organization unit module
assignment and module class localization.

Specifically, we can learn here that all PAs of
members of the Nano Technology Division orga-
nization unit are infused with modules identified
as: AM ApplyForDutyTrip, AM SubmitDTReport,
AM ViewInterestingGAs. Analogically, PAs of Users
who play roles of Head Officers are infused with
the following modules: AM ManageDTApplications
and AM FilterDTReports. Also, in the snippet of
the configuration, the following OPM modules
are listed AM GA Support and AM DT Support.
Again, these modules are organization specific Java
classes composed of properties and behaviors which
support certain functionalities. For instance, the
AM ApplyForDutyTrip module includes behaviors
which enable to post a Duty Trip application. Natu-
rally, it may also cache previous Duty Trip Reports,
some user specific configuration of this module or
some draft applications. On the other hand, the
AM ManageDTApplications module consists of be-

haviors which allow to query the semantic storage for
all open Duty Trip applications and inform Division
workers about accepting or rejecting application
by Division Head Officers. Localization of each
module is described in the module definition. For
instance, class of the AM ApplyForDutyTrip mod-
ule is named org.ist.apip.modules.dt.Appication.
Modules AM ApplyForDutyTrip,
AM SubmitDTReport, AM ManageDTApplications
and AM FilterDTReports are all examples of the DT
PA Module in the component diagram, while the
AM ViewInterestingGAs module is an example of the
GA PA Module. Finally, the AM DT Support and
the AM GA Support are examples of the DT OPM
Module and the GA OPM Module.

After the organization profile of dr. Ha Yoong
Cha is updated due to the fact that he was promoted
(his profile as a human resource), the Profile Monitor
Agent, which is aware of all changes that take place
in the data model, informs the Injector Agent that
particular profile was updated and modules of dr.
Cha’s PA have to be updated with modules specific to
IST DivisionHeadOfficers organization unit. An im-
portant functionality of the IA is to recognize modules
which are necessary for supporting particular roles
(of members of a particular organization unit) and
locating these modules in Java libraries. In our exam-
ple, after all necessary modules are located and list of
appropriate Java class names is retrieved by the IA, it
infuses the appropriate PA with the modules located at
the org.ist.apip.modules.dt.AppicationManagement
and the org.ist.apip.modules.dt.ReportFiltering.

After the update procedure initialized by insert-
ing information to dr Cha’s profile is completed,
his PA provides not only duty trip support func-
tions allowed for Division Researchers, which are
realized by modules AM ApplyForDutyTrip and
AM SubmitDTReport and grant announcement
functions for Division Researchers delivered by the
AM ViewInterestingGAs module. In addition, his PA
is now capable of performing duty trip support actions
reserved for Division Head Officers, which are re-
alized by modules: AM ManageDTApplications and
AM FilterDTReports. Managing access rights to duty
trip applications and duty trip reports (also resources
with their own profiles; see (Szymczak et al., 2008))
will be realized through their profile privileges.

4 CONCLUDING REMARKS

The aim of this paper was to present our approach
to agent adaptation within a virtual organization. We
have started by summarizing our semantically driven
approach to resource management. This allowed us
to present use case based formalizations of processes
involved in a project being introduced into an organi-
zation, and of roles that are to be played by Personal
Agents that is to support Users/workers. Next we have
discussed (and represented in the form of use case and
component diagrams) how a generic agent is dynam-
ically assembled to support one of required roles, and
how it is further adapted to individual and organiza-
tional changes. Across the paper we have identified a
number of technical issues that need to be addressed.
Currently, we are in the process of implementing the
framework depicted in the component diagram and
will report on our progress in subsequent reports.

REFERENCES

Dynamics—dynamically configurable software.
http://vsis-www.informatik.uni-hamburg.
de/members/info.php/7.

The prometheus methodology. http://www.cs.rmit.
edu.au/agents/SAC2/methodology.html.

Barnatt, C. (1995). Journal of General Management,
20(4):78–92.

Bleeker, S. (1998). The Virtual Organization. Sage Thou-
sand Oaks (CA).

Dunbar, R. (2001). Virtual Organizing, pages 6709–6717.
Thomson Learning, London.

Fensel, D. (2003). Ontologies: A Silver Bullet for
Knowledge Management and Electronic Commerce.
Springer-Verlag, New York.

Frackowiak, G., Ganzha, M., Gawinecki, M., Paprzycki,
M., Szymczak, M., and Park, M.-W. (2008). On re-
source profiling and matching in an agent-based vir-
tual organization. In Proceedings of the 2008 ICAISC
Conference. submitted for publication.

Ganzha, M., Paprzycki, M., Gawinecki, M., Szymczak,
M., Frackowiak, G., Bădică, C., Popescu, E., and
Park, M. (2007a). Adaptive information provisioning
in an agent-based virtual organization—preliminary
considerations. In Proceedings of the SYNASC’2007
Conference, Los Alamitos, CA. IEEE CS Press. in
press.

Ganzha, M., Paprzycki, M., Gawinecki, M., Szymczak,
M., Frackowiak, G., and Park, M. (2007b). Resource
management in an agent-based virtual organization—
introducing a task into the system. In Proceedings
of the IAT Conference, Los Alamitos, CA. IEEE CS
Press.

Gawinecki, M., Gordon, M., Nguyen, N. T., Paprzycki, M.,
and Szymczak, M. (2005). Rdf demarcated resources
in an agent based travel support system. In et. al.,
M. G., editor, Informatics and Effectiveness of Sys-
tems, pages 303–310, Katowice. PTI Press.

Goldman, S., Nagel, R., and Preiss, K. (1995). pages 219–
240. Van Nostrand Reinhold, New York.

Jade. http://jade.tilab.com/.

Jastor—Ontology Driven RDF Access from Java. http:
//jastor.sourceforge.net/.

Jena—RDF persistency engine. http://jena.
sourceforge.net/.

Jennings, N. R. (2001). An agent-based approach for
building complex software systems. Commun. ACM,
44(4):35–41.

Jennings, N. R. and Wooldridge, M. J., editors (2002).
Agent Technology: Foundations, Applications, and
Markets. Springer.

Maes, P. (1994). Agents that reduce work and information
overload. Commun. ACM, 37(7):30–40.

POJO. http://www.martinfowler.com/bliki/POJO.
html.

POJO: Wikipedia. http://en.wikipedia.org/wiki/
POJO.

Szymczak, M., Frackowiak, G., Gawinecki, M., Ganzha,
M., Paprzycki, M., Park, M.-W., Han, Y.-S., and Sohn,
Y. (2008). Adaptive information provisioning in an
agent-based virtual organization—ontologies in the
system. In Proceedings of the 2008 AMSTA-KES Con-
ference. to appear.

Tu, M., Griffel, F., Merz, M., and Lamersdorf, W. (1999).
A plug-in architecture providing dynamic negotiation
capabilities for mobile agents. In Kurt Rothermel,
F. H., editor, Proceedings MA’98: Mobile Agents,
LNCS 1477, pages 222–236. Springer-Verlag.

Warner, M. and Witzel, M. (2005). Zarzadzanie organiza-
cja wirtualna. Oficyna Ekonomiczna.

Wooldridge, M., Jennings, N. R., and Kinny, D. (2000). The
gaia methodology for agent-oriented analysis and de-
sign. Autonomous Agents and Multi-Agent Systems,
3(3):285–312.

