
Implementing rule-based mechanisms for agent-based
price negotiations

Costin Bădică
Software Engineering

Department
University of Craiova

Bvd.Decebal 107, Craiova,
200440, Romania

badica costin@software.ucv.ro

Adriana Bădiţă
Software Engineering

Department
University of Craiova

Bvd.Decebal 107, Craiova,
200440, Romania

badita adriana@yahoo.com

Maria Ganzha
Department of Informatics

Elbląg University of
Humanities and Economy

ul. Lotnicza 2, 82-300 Elbląg,
Poland

ganzha@euh-e.edu.pl

ABSTRACT
This note describes a sample implementation of automated
negotiations in an e-commerce modeling multi-agent system.
A specific set of rules is used for enforcing negotiation mech-
anisms. Discussion of system design and implementation
using JADE and JESS is provided. Finally, an experiment
involving multiple English auctions performed in parallel is
discussed.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
automated negotiations, software agents, auctions, rule-based
systems

1. INTRODUCTION
The goal of developing and experimenting with a multi-

agent e-commerce system was recently specified in ([2, 10]).
One of challenges is to illustrate that it is possible to use
autonomous agents to completely substitute for humans to
automate basic e-commerce activities such as: product bro-
kering, merchant brokering, negotiations, payment etc., in
a complete e-commerce scenario, rather than in isolation
([1]). Currently, focus of our work is on efficiently providing
agents with flexibility necessary for engaging in automated
price negotiations governed by mechanisms unknown in ad-
vance ([4]). This paper describes software components used
in a rule-based framework for automated negotiation and
their implementation using JADE ([12]) and JESS ([13]).

Rule-based approaches have been indicated as a very pro-
mising technique for parameterizing the negotiation design
space in multi-agent systems ([5, 6, 8, 15, 17, 20, 21, 11]).
In addition, proposals have been put forward to use rules
for describing both strategies ([8, 17]) and mechanisms ([5,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06April 23-27, 2006, Dijon, France
Copyright 2006 ACM 1-59593-108-2/06/0004 ...$5.00.

4]) of automated negotiations. In particular, a special at-
tention has been devoted to auctions, as one of the most
popular and best understood forms of automated negotia-
tions ([20]). Here we understand negotiations as a process
by which a group of agents communicates with each other to
come to a mutually acceptable agreement on a price ([16]).
When conceptualizing automated negotiations negotiation
protocols (or mechanisms) and negotiation strategies have to
be distinguished. The protocol defines ”rules of encounter”
between negotiation participants by specifying the require-
ments that enable their interaction. The strategy defines
the behavior of participants aiming at achieving a desired
outcome. This behavior must be consistent with the nego-
tiation protocol, and usually aims at maximizing individual
”gains” of each of negotiation participants.

In this paper we focus our attention on the design and im-
plementation of a rule-based framework for enforcing specific
negotiation mechanisms. For this purpose we follow the con-
ceptual framework described in [5], where agent negotiations
were conceptualized as consisting of: (i) negotiation partic-
ipants and a host where the negotiations take place; (ii) a
generic negotiation protocol, and (iii) a taxonomy of rules
for enforcing a specific negotiation mechanism (see section
2 and [5] for more details). Here we extend work presented
there by providing implementation details using JADE ([12])
and JESS ([13]) and by presenting a scenario involving mul-
tiple English auctions performed in parallel. In particular,
in our implementation, the rule-based sub-agents of the ne-
gotiation host share a single JESS rule engine, rather than
having separate rule engines within each sub-agent.

We proceed as follows. In section 2 we summarize the
software framework for automated negotiations introduced
in [5] and show how it fits into our e-commerce model. We
follow with an outline of the system design and provide some
details of the proposed implementation. In particular we
highlight how rules are activated by the negotiation host in
response to messages received from the negotiation partici-
pants. The next section presents a simple experiment per-
formed with the sample implementation used to highlight
agent interactions.

2. CONCEPTUAL ARCHITECTURE
Authors of [5] analyzed the existing approaches to formal-

izing negotiations (including the FIPA approach [9]) and
argued that they do not provide enough structure for the
development of truly portable agent-based e-commerce sys-

tems. Consequently, they outlined a framework that is based
on an abstract negotiation process comprising: (1) negoti-
ation infrastructure, (2) generic negotiation protocol, and
(3) taxonomy of declarative rules. The negotiation infras-
tructure defines roles involved in the negotiation process:
participants and a host. Participants negotiate by exchang-
ing proposals within a negotiation locale that is managed by
the negotiation host. Depending on the type of negotiations,
the host can also play the role of a participant (for example
in an iterative bargaining scenario). The generic negotiation
protocol defines, in terms of messages exchanged between the
host and negotiation participants, the three main phases of
negotiations: (1) admission, (2) exchange of proposals and
(3) formation of an agreement. Negotiation rules are needed
for enforcing a specific negotiation mechanism. Rules are
organized into a taxonomy that contains the following cate-
gories: (a) rules for participants admission to negotiations,
(b) rules for checking the validity of negotiation proposals,
(c) rules for protocol enforcement, (d) rules for updating the
negotiation status and informing participants, (e) rules for
agreement formation and (f) rules for controlling the nego-
tiation termination.

Based on the categories of rules, in [5] it is suggested
to partition the negotiation host into a number of corre-
sponding sub-agents: Gatekeeper, Proposal Validator, Pro-
tocol Enforcer, Information Updater, Negotiation Termina-
tor and Agreement Maker. Each sub-agent is responsible
for enforcing a specific category of rules. Sub-agents inter-
act with each-other via a blackboard and with negotiation
participants by direct messaging.

The proposed e-commerce environment [10] acts as a dis-
tributed marketplace by hosting e-shops and allowing e-
buyers to visit them and purchase sought-after products
([1, 2, 10]). In the multi-agent environment, e-shops and e-
buyers are represented by shop and seller, and respectively
client and buyer agents. Here, let us consider a simplified
version of this scenario that involves a single shop agent S
and n client agents Ci, 1 ≤ i ≤ n (a scenario with multiple
shops involves a simple generalization but makes notation
somewhat more messy). The shop agent is selling m prod-
ucts P = {1, 2, . . . , m}. Note that we identify a product by
its index j, 1 ≤ j ≤ m. We assume that each client agent
Ci, 1 ≤ i ≤ n, is seeking a set Pi ⊆ P of products (i.e. we
restrict our attention to the case where all sought products
are available through the shop agent S). Note that, while in-
teresting on its own, we do not consider here the problem of
dependencies between sought-after products (see [6] and pa-
pers cited there for work in that direction). Shop agent S is
utilizing m seller agents Sj , 1 ≤ j ≤ m and each seller agent
Sj is responsible for selling single product j. Each client
agent Ci is using buyer agents Bik to purchase products
belonging to the set Pi. Each buyer agent Bik is responsi-
ble with negotiating and buying exactly one product k ∈ Pi,
1 ≤ i ≤ n. To attempt purchase buyer agents Bik migrate to
the shop agent S and engage in negotiations; a buyer agent
Bik, that was spawned by the client agent Ci, will engage
in negotiation with the seller Sk for purchasing product k.

This simple scenario is sufficient for the purpose of our
paper, i.e. to illustrate how multiple rule-based automated
negotiations can be performed in parallel. In this setting,
each seller agent Sj plays exactly the role of a negotiation
host defined in [5]. Therefore, in our system, we shall have
exactly m instances of the framework described in [5]. Each

instance is responsible for managing a separate negotiation
“locale” (where a single product is sold), while all instances
are linked to the shop agent S. For each instance we shall
have one separate set of rules that describes the negotiation
mechanism implemented by that host (seller agent). Note
that each seller may use a different negotiation mechanism
(different form of an auction, or an auction characterized by
different parameters).

3. DESIGN AND IMPLEMENTATION
In the design and implementation of the system we focus

our attention on negotiation agents (host/seller and partic-
ipant) and their associated infrastructure. Here, we show:
(i) how the negotiation host agent is structured into sub-
agents; (ii) how rules are executed by the negotiation host
in response to various messages received from negotiation
participants and how rule firing control is switched between
various sub-agents of the negotiation host, and (iii) how the
generic negotiation protocol was implemented using JADE
agent behaviors and ACL message exchanges.

3.1 The Negotiation Host / Seller
Host and negotiation participant agents are implemented

as ordinary JADE agents and thus they extend the
jade.core.Agent class. The host agent encapsulates a num-
ber of sub-agents that are implemented as ordinary Java
classes: Gatekeeper, Proposal Validator, Protocol Enforcer,
Information Updater, Negotiation Terminator and Agree-
ment Maker. Each sub-agent defines a handle() method
that is activated whenever the sub-agent must act to check
the category of rules it is responsible for. Note, again, that
these sub-agents are not full-blown JADE agents, but classes
within the host agent (we continue to use the name sub-
agent to stay in agreement with terminology firstly proposed
in [5]).

The seller agent encapsulates also two objects represent-
ing the negotiation locale and the blackboard: Negotiation
Locale and Blackboard “boxes”. The Negotiation Locale ob-
ject stores the negotiation template (a structure that defines
negotiation parameters; see [5]) and the list of participants
that were admitted to a given negotiation. The Blackboard
object is a JESS rule engine (class jess.Rete) that is initial-
ized with negotiation rules.

Finally, the negotiation host contains handler methods
that are activated by action() methods of agent behaviors
(see sub-section 3.4). Each handler method delegates the
call to the responsible sub-agent. Finally, the sub-agent ac-
tivates the rule engine via a member object that points to
the parent host agent.

3.2 Controlling Rule Execution
Rather then implementing each sub-agent of the negoti-

ation host as a separate rule engine, we are using a single
JESS rule engine that is shared by all sub-agents. This rule
engine is implemented using class jess.Rete. The advantage
is that we now have a single rule engine per negotiation host
rather than 6 engines as suggested in [5]. Furthermore, this
means that in the case of m products sold, we will utilize m
instances of the JESS rule engine, instead of 6m instances
necessary in [5].

Rules and facts managed by the rule engine are parti-
tioned into JESS modules. Currently we are using one JESS
module for storing the blackboard facts and a separate JESS

module for storing rules used by each sub-agent.
Blackboard facts are instances of JESS deftemplate state-

ments and they can represent: (1) the negotiation template;
(2) the active proposal that was validated by the Proposal
Validator and the Proposal Enforcer sub-agents; (3) a with-
drawn proposal, if the negotiation mechanism supports pro-
posals withdrawal; (4) seller reservation price (not visible to
participants); (5) negotiation participants; (6) the negotia-
tion agreement that is eventually generated at the end of
a negotiation; (7) the information digest that is visible to
the negotiation participants; (8) the maximum time interval
for submitting a new bid before the negotiation is declared
complete; or (9) the value of the current highest bid. Note
that these facts have been currently adapted to represent
English auctions (and will be appropriately modified to rep-
resent other price negotiation mechanisms).

Each category of rules for mechanism enforcement is stored
in a separate JESS module that is controlled by the corre-
sponding sub-agent of the negotiation host. Whenever the
sub-agent handles a message it activates the rules for enforc-
ing the negotiation mechanism. Taking into account that all
rules pertinent to a given host are stored internally in a sin-
gle JESS rule-base (attached to a single JESS rule engine),
the JESS focus statement is used to control the firing of rules
located only in the focus module. This way, the JESS facil-
ity for partitioning the rule-base into disjoint JESS modules
proves very useful to efficiently control the separate activa-
tion of each category of rules.

Note that JADE agent behaviors are scheduled for execu-
tion in a non-preemptive way and this implies that firings of
rule categories are correctly serialized and thus they do not
cause any synchronization problems. This fact also supports
our decision to utilize a single rule engine for each host.

3.3 English Auctions
In this paper we consider a particular negotiation scenario

involving English auctions. We consider English auctions
because they are one of the most common and easiest to
understand auction mechanism and they became so popular
because of the establishment of many online auction houses
like eBay.com.

Technically, English auctions are single-item, first-price,
open-cry, ascending auctions ([14],[18]). In an English auc-
tion there is a single item sold by a single seller and many
buyers bidding against each other for buying the item until
the auction terminates. Usually, there is a time limit for
ending the auction, a seller reservation price that must be
met by the winning bid for the item to be sold and a mini-
mum value of the bid increment. A new bid must be higher
than the currently highest bid plus at least the minimal bid
increment in order to be accepted. All the bids are visible
to all the auction participants and cannot be withdrawn.

3.4 Generic Negotiation Protocol and Agent
Behaviors

The generic negotiation protocol specifies a minimal set
of constraints on sequences of messages exchanged between
the host and participants. In [5], the allowed message ex-
changes between the host and participant agents, were de-
scribed. Let us start from the realization that the negotia-
tion process has three phases: (1) admission, (2) proposal
submission and (3) agreement formation. The admission
phase starts when a new participant requires admission to

the negotiation, by sending an ACL PROPOSE message to
the negotiation host. The host grants (or not) the admis-
sion of the participant to the negotiation and responds ac-
cordingly with either an ACL ACCEPT-PROPSAL or an
ACL REJECT-PROPOSAL message (currently admission
is granted by default). In the way that the system is cur-
rently implemented, the PROPOSE message is sent by the
participant agent immediately after its initialization stage,
just before its setup() method returns. The task of receiving
the admission proposal and issuing the response is imple-
mented as a separate behavior of the negotiation host.

When a participant is accepted to the negotiation, it also
receives from the host the negotiation template. In our im-
plementation the negotiation template was adapted to rep-
resent parameters of auctions: auction type, auctioned prod-
uct, minimum bid increment, termination time window, cur-
rently highest bid.

A participant will enter the phase of submitting proposals
immediately after it was accepted to the negotiation. This
event is signaled by the reception of an ACL ACCEPT-
PROPOSAL message together with the negotiation tem-
plate. The negotiation template contains also the currently
highest bid issued by one of the remaining participants.
Note that participants are allowed to join negotiation dy-
namically. As soon as they obtain the negotiation template
(and consequently the currently highest bid) they can start
bidding according to their strategy. Here, the current pro-
posal differs from that put forward in [10], where agents were
admitted to the negotiations in groups.

The generic negotiation protocol states also that a partic-
ipant will be notified by the negotiation host if its proposal
was either accepted (with an ACL ACCEPT-PROPOSAL)
or rejected (with an ACL REJECT-PROPOSAL). In the
case when a proposal was accepted, the protocol requires
that all the other participants will be notified accordingly
with ACL INFORM messages.

Strategies of participant agents must be defined in accor-
dance with the constraints stated by the generic negotiation
protocol. Basically, the strategy defines when a negotiation
participant will submit a proposal and what are the val-
ues of the proposal parameters. In our system, for the time
being, we opted for an extremely simple solution: the partic-
ipant will submit a first bid immediately after it was granted
admission to the negotiation and subsequently, whenever it
gets a notification that another participant issued a proposal
that was accepted by the host. The value of the bid is equal
to the sum of the currently highest bid and an increment
value that is private to the participant. Additionally, each
participant has its own valuation of the negotiated product
in terms of a reservation price. If the value of the new bid
exceeds this reservation price then the proposal submission
is canceled. The implementation of the participant agent
defines two JADE agent behaviors for dealing with situa-
tions stated above. Obviously, as the system matures, we
plan to develop, implement and experiment with a number
of negotiation strategies that can be found in the literature.

Finally, the agreement formation phase can be triggered
at any time. When the agreement formation rules signal
that an agreement was reached, the protocol states that
all the participants involved in the agreement will be no-
tified by the host with ACL INFORM messages. The agree-
ment formation check is implemented as a timer task (class
java.util.TimerTask) that is executed in the background

Figure 1: Negotiaton stage – part 1

thread of a java.util.Timer object.

4. EXPERIMENT
Let us consider that shop is selling 2 products using En-

glish auctions, both products have a reservation price of 50
and require a minimum bid increment of 5. We also consider
2 clients C1 and C2, each seeking both products. Client C1

has a reservation price of 52 for product 1, a reservation
price of 61 for product 2 and a bid increment of 9. Client
C2 has a reservation price of 54 for product 1, a reservation
price of 63 for product 2 and a bid increment of 11. Client
C1 is using 2 buyers B11 and B12, and client C2 is using 2
buyers B21 and B22. Messages exchanged between agents
are shown in figures 1 and 2. Note that only shop (here la-
beled as Shop), sellers and buyers are shown in these figures
(clients are not shown, as they only play the role of creating
and sending buyers to negotiations).

Figures 1 and 2 show messages exchanged between agents
during price negotiation. Unfortunately, in those figures,
only message types are shown, while message content is in-
visible. An explanation of message exchanges is provided
separately in table 1.

There are few interesting facts to note in table 1. First,
when buyer B21 is granted admission to the negotiation,
buyer B11 had already submitted a bid and that bid was ac-
cepted. Therefore B21 will get a value of 9 in the negotiation
template for the currently highest bid; note that this is an
example of a participant that dynamically joins negotiation
in progress. Second, the negotiation between S1 and agents
B11 and B21 ended without a winner. The highest accepted
bid was 49 from B11 but this value is lower than the reser-
vation price 50 of S1. According to their strategies, none of
the participants B11 and B21 is able to issue a higher bid
that is still lower than their own reservation prices. Third,
negotiation between S2 and agents B21 and B22 ended with
agent B22 becoming a winner and the highest bid 60. Fi-
nally, note that bid 11 of buyer B22 was rejected because at

Figure 2: Negotiaton stage – part 2

the time this bid was submitted there was already a highest
bid of 9 accepted, and thus, the rule saying that the mini-
mum value of the bid increment is 5 was violated. However,
by the time B22 submitted its bid, it wasn’t aware that the
other participant B12 also posted a bid and got it accepted.

5. CONCLUSIONS
In this paper we presented a multi-agent system that uti-

lizes rule-based approach to implement flexible automated
negotiations. System described here is under development
using JADE and JESS toolkits. The state of its current
implementation was described in some detail and experi-
mental results of running the prototype were discussed. As
future work we plan to: to complete the integration of the
rule-based framework into our e-commerce model; to asses
the generality of our implementation by extending it to in-
clude other price negotiation mechanisms; to allow the log-
ical specification of the rules in order to asses their correct-
ness; to investigate the effectiveness of describing and/or
publishing negotiation rules using rule markup languages;
to conceptualize representation and ways to efficiently im-
plement multiple strategy modules. We will report on our
progress in subsequent papers.

6. ACKNOWLEDGMENTS
We would like to use this opportunity to thank our col-

leagues authors of [5] for providing us their prototype im-
plementation. This was a valuable input for producing the
implementation and experiments described in our paper.

7. ADDITIONAL AUTHORS
Alin Iordache (Software Engineering Department, Univer-

sity of Craiova, Bvd.Decebal 107, Craiova, 200440, Roma-
nia, email: alin eestec@yahoo.com) and Marcin Paprzy-
cki (Computer Science Institute, SWPS, 03-815 Warsaw,
Poland, email: marcin.paprzycki@swps.edu.pl).

Table 1: Explanation of message exchanges shown in figures 1 and 2
B11 52 9 B21 54 11 B12 61 9 B22 63 11
request admission request admission request admission request admission
admission granted 0 admission granted 9 admission granted 0 admission granted 0
bid 9 bid 20 bid 9 bid 11
accept bid 9 accept bid 20 accept bid 9 inform 9
inform 20 inform 29 inform 20 bid 20
bid 29 bid 40 bid 29 reject bid 11
accept bid 29 accept bid 40 accept bid 29 accept bid 20
inform 40 inform 49 inform 40 inform 29
bid 49 bid 49 bid 40
accept bid 49 inform 60 accept bid 40

inform 49
bid 60
accept bid 60
win 60

8. REFERENCES
[1] Bădică, C., Ganzha, M., Paprzycki, M., P̂irvănescu, A.:

Combining Rule-Based and Plug-in Components in
Agents for Flexible Dynamic Negotiations. In:
Proceedings of CEEMAS’05, Budapest, Hungary.
LNAI, Springer Verlag (2005) 555–558.

[2] Bădică, C., Ganzha, M., Paprzycki, M., P̂irvănescu, A.:
Experimenting With a Multi-Agent E-Commerce
Environment. In: Proceedings of PaCT’2005,
Krasnoyarsk, Russia. LNCS 3606 Springer Verlag,
(2005) 393–401.

[3] Bădică, C., Ganzha, M., Paprzycki, M.: Mobile Agents
in a Multi-Agent E-Commerce System. In: Proceedings
of the SYNASC 2005 Conference (2005) (to appear)

[4] Bădică, C., Bădiţă, A., Ganzha, M., Iordache, A.,
Paprzycki, M.: Rule-Based Framework for Automated
Negotiation: Initial Implementation. Accepted for
presentation at RuleML’2005, Galway, Ireland. LNCS,
Springer Verlag (2005) 193–198.

[5] Bartolini, C., Preist, C., Jennings, N.R.: A Software
Framework for Automated Negotiation. In: Proceedings
of SELMAS’2004, LNCS 3390, Springer Verlag (2005)
213–235.

[6] Benyoucef, M., Alj, H., Levy, K., Keller, R.K.: A
Rule-Driven Approach for Defining the Behaviour of
Negotiating Software Agents. In: J.Plaice et al. (eds.):
Proceedings of DCW’2002, LNCS 2468, Springer verlag
(2002) 165–181.

[7] Chmiel, K., Tomiak, D., Gawinecki, M., Karczmarek,
P., Szymczak, Paprzycki, M.: Testing the Efficiency of
JADE Agent Platform. In: Proceedings of the 3rd

International Symposium on Parallel and Distributed
Computing, Cork, Ireland. IEEE Computer Society
Press, Los Alamitos, CA, USA, (2004), 49–57.

[8] Dumas, M., Governatori, G., ter Hofstede, A.H.M.,
Oaks, P.: A Formal Approach to Negotiating Agents
Development. In: Electronic Commerce Research and
Applications, Vol.1, Issue 2 Summer, Elsevier Science,
(2002) 193–207.

[9] FIPA: Foundation for Physical Agents. See
http://www.fipa.org.

[10] Ganzha, M., Paprzycki, M., P̂ırvănescu, A., Bădică,
C., Abraham, A.: JADE-based Multi-Agent
E-commerce Environment: Initial Implementation, In:
Analele Universităţii din Timişoara, Seria

Matematică-Informatică (2005) (to appear)
[11] Governatori, G., Dumas, M., ter Hofstede, A.H.M.,

and Oaks, P.: A formal approach to protocols and
strategies for (legal) negotiation. In: Henry Prakken,
editor, Procedings of the 8th International Conference
on Artificial Intelligence and Law, IAAIL, ACM Press,
(2001) 168–177.

[12] JADE: Java Agent Development Framework. See
http://jade.cselt.it.

[13] JESS: Java Expert System Shell. See
http://herzberg.ca.sandia.gov/jess/.

[14] Laudon, K.C., Traver, C.G.: E-commerce. business.
technology. society (2nd ed.). Pearson Addison-Wesley,
(2004).

[15] Lochner, K.M., Wellman, M.P.: Rule-Based
Specification of Auction Mechanisms. In: Proc.
AAMAS’04, ACM Press, New York, USA, (2004).

[16] Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: A
classification scheme for negotiation in electronic
commerce. In: F. Dignum, C. Sierra (Eds.): Agent
Mediated Electronic Commerce: The European
AgentLink Perspective, LNCS 1991, Springer Verlag
(2002) 19–33.

[17] Skylogiannis, T., Antoniou, G., Bassiliades, N.: A
System for Automated Agent Negotiation with
Defeasible Logic-Based Strategies - Preliminary Report.
In: Boley, H., Antoniou, G. (eds): Proceedings
RuleML’04, Hiroshima, Japan. LNCS 3323
Springer-Verlag (2004) 205–213.

[18] Wooldridge, M.: An Introduction to MultiAgent
Systems, John Wiley & Sons, (2002).

[19] Wurman, P.R., Wellman, M.P., Walsh, W.E.: The
Michigan Internet AcutionBot: A Configuarable
Auction Server for Human and Software Agents. In:
Proceedings of the second international conference on
Autonomous agents. Agents’98, Minneapolis, USA.
ACM Press, New York, USA, (1998), 301-308.

[20] Wurman, P.R., Wellman, M.P., Walsh, W.E.: A
Parameterization of the Auction Design Space. In:
Games and Economic Behavior, 35, Vol. 1/2 (2001),
271–303.

[21] Wurman, P.R., Wellman, M.P., Walsh, W.E.:
Specifying Rules for Electronic Auctions. In: AI
Magazine (2002), 23(3), 15–23.

