
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/303513179

Experiments	with	Multiple	BDI	Agents	with
Dynamic	Learning	Capabilities

Chapter	·	June	2016

DOI:	10.1007/978-3-319-39387-2_23

CITATIONS

0

READS

59

5	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

H2020	INTER-IoT	Project	View	project

Amelia	Bădică
University	of	Craiova

18	PUBLICATIONS			41	CITATIONS			

SEE	PROFILE

Costin	Badica

University	of	Craiova

216	PUBLICATIONS			829	CITATIONS			

SEE	PROFILE

Maria	Ganzha

Polish	Academy	of	Sciences

170	PUBLICATIONS			728	CITATIONS			

SEE	PROFILE

Marcin	Paprzycki

Instytut	Badań	Systemowych	Polskiej	Akademi…

342	PUBLICATIONS			2,246	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Costin	Badica	on	19	August	2016.

The	user	has	requested	enhancement	of	the	downloaded	file.	All	in-text	references	underlined	in	blue	are	added	to	the	original	document

and	are	linked	to	publications	on	ResearchGate,	letting	you	access	and	read	them	immediately.

https://www.researchgate.net/publication/303513179_Experiments_with_Multiple_BDI_Agents_with_Dynamic_Learning_Capabilities?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303513179_Experiments_with_Multiple_BDI_Agents_with_Dynamic_Learning_Capabilities?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/H2020-INTER-IoT-Project?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amelia_Bdic?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amelia_Bdic?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Craiova?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Amelia_Bdic?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costin_Badica?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costin_Badica?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Craiova?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costin_Badica?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria_Ganzha?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria_Ganzha?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Polish_Academy_of_Sciences?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maria_Ganzha?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin_Paprzycki?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin_Paprzycki?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instytut_Badan_Systemowych_Polskiej_Akademii_Nauk?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcin_Paprzycki?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Costin_Badica?enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Experiments with Multiple BDI Agents with Dynamic
Learning Capabilities

Amelia Bădică1, Costin Bădică1, Maria Ganzha2, Mirjana Ivanović3, and Marcin
Paprzycki2

1 University of Craiova, A.I.Cuza 200530, Romania,
ameliabd@yahoo.com, cbadica@software.ucv.ro

2 Polish Academy of Sciences, Systems Research Institute, Warszawa, Poland
Maria.Ganzha@ibspan.waw.pl, paprzyck@ibspan.waw.pl

3 Faculty of Sciences, Novi Sad, Serbia
mira@dmi.uns.ac.rs

Abstract. In this paper we show how multiple BDI agents, enhanced with tem-
poral difference learning capabilities, learn their utility function, while they are
concurrently exploring an uncertain environment. We focus on the programming
aspects of the agents using the Jason agent-oriented programming language. We
also provide experimental results showing the behavior of multiple agents acting
in a Markovian grid environment. We consider agents with the perception func-
tion affected by the intermittent faults and Gaussian noise, as well as agents for
which their action function is not always successful.

Keywords: BDI agent, reinforcement learning, agent-oriented programming

1 Introduction

Our research is focused on narrowing the gap between agent-oriented programming and
learning. Agents, acting in an uncertain and dynamic environment, can use reinforce-
ment learning (RL, hereafter) to either learn their utility function in passive learning,
or an optimal policy that maximizes their utility in active learning. RL assumes that
an agent is using observed rewards (also known as reinforcements) that are perceived
from the environment to measure its welfare following its actions in an uncertain and
dynamic environment [11].

Agent-oriented programming (AOP, hereafter) is concerned with the development
of better programming models for the engineering of multi-agent systems (MAS, in
what follows). Currently AOP is a hot research topic that resulted in quite a large num-
ber of proposed AOP languages [1]. The AgentSpeak(L) programming language, rep-
resented by its Jason incarnation, based on the Java platform, can be considered as the
de facto standard of AOP [4].

Temporal Difference Learning (TDL, hereafter) is a passive RL method that can
be used by an agent to learn its utility function, while it is acting according to a given
policy in an uncertain and dynamic environment. In [2] we reported our initial approach
and results for modeling and implementation of the TDL using Jason. Here we expand
the research in the following directions:

https://www.researchgate.net/publication/263757661_Learning_to_Predict_by_the_Methods_of_Temporal_Differences?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==


– We consider multiple agents acting concurrently and asynchronously, Each agent
gets individualized percepts in the environment, while agent actions are processed
concurrently by the environment.

– We consider agents with the perception function affected by intermittent faults and
Gaussian noise.

2 Background

2.1 Agent-Oriented Programming

Brief Overview of AgentSpeak(L) The software agent paradigm was proposed about
two decades ago to capture the new model of a “computer system situated in some
environment that is capable of flexible autonomous action in order to meet its design
objectives” [7]. Historically, agent-oriented programming, here understood as computer
programming based on the agent paradigm, was firstly proposed more than 20 years
ago as “a new programming paradigm, one based on cognitive and societal view of
computation” [10].

AgentSpeak(L) is an abstract AOP language firstly introduced in [8]. Jason is a Java-
based implementation, as well as an extension of the AgentSpeak(L) [4, 6]. AgentS-
peak(L) follows the paradigm of practical reasoning, i.e. reasoning directed towards
actions, and it provides an implementation of the belief-desire-intention (BDI, here-
after) architecture of software agents [8]. According to this view, an agent is a software
module that (i) provides a software interface with the external world, and (ii) contains
three components: belief base, plan library and reasoning engine.

The agent’s external world consists of the physical environment, as well as pos-
sibly other agents. Consequently, the agent interface provides three elements: sensing
interface, actuation interface and communication interface. The agent uses its sensing
interface to get percepts from its physical environment. The agent uses its actuation
interface to perform actions on its physical environment. Finally, the agent uses its
communication interface to interact by exchanging messages with other agents.

The belief base defines what an agent “knows” or “believes” about its environment
at a certain time point. The BDI architecture does not impose a specific structuring of
the belief base other than as a generic container of beliefs.

The plan library defines the agent’s “know-how” and it is structured as a set of
behavioral elements called plans. A plan follows the general pattern of event-condition-
action rules and it is composed of three elements: triggering event, context and body.
The plan body specifies a sequence of agent activities. AgentSpeak(L) provides three
types of activities: actions, goals, and belief updates. Actions define primitive tasks
performed by the agent either on the environment (external actions) or internally (inter-
nal actions). Goals represent complex tasks. AgentSpeak(L) distinguishes between test
goals and achievement goals. Belief updates represent the assertion +b or the retraction
−b of a belief b from the belief base.

The plan context is represented by a conjunction of conditions that define the con-
text, in which a plan can be applied. The triggering event specifies the event that can
trigger the selection of the plan for execution. The plan is actually selected for execution
if and only if its context logically follows from the belief base.



Each Jason agent contains a component called a “reasoning engine” that controls
the agent execution by “interpreting” the Jason code. The reasoning engine performs a
reasoning cycle that consists of a fixed sequence of steps. Basically, each agent performs
the following sequence of steps during the reasoning cycle: the agent perceives the
environment, updates its belief base, receives communication from other agents, selects
an event, selects an applicable plan and adds it to its agenda, selects an item (called
intention) for execution (from the agenda) and, finally, executes the next step of the
partially instantiated plan that represents the top of the currently selected intention. We
can think of each intention as a stack of partially instantiated plans (somehow similar
to a call stack) that represents an agent execution thread. The agent agenda is organized
as a list of stacks representing the agent intentions. Each stack represents one focus of
attention of the agent. Using this approach an agent can execute concurrent activities to
manage multiple focuses of attention [4].

The behavior of the reasoning engine is parameterized according to several selec-
tion functions that represent nondeterministic choice points of the agent interpreter:
S M (message selection), S E (event selection), S O (option selection), and S I (intention
selection).

Engineering Jason agents Jason programming language and system [6] is an imple-
mentation, as well as an extension of the AgentSpeak(L) that allows programmers to
build experimental MAS. Jason is based on Java. The agent program is written in Jason,
while the environment, including the management of the environment state, the agent
percepts and the effect of agent actions must be programmed in Java. Additionally, the
programmer can customize the agent class, as well as the agent architecture to alter
the default behavior of selection and perception functions of the Jason interpreter. This
approach has the following advantages: i) the clean separation of the agent logic from
the environment logic; ii) the extensibility of the agent sets of percepts and actions to
match a specific environment that is the most suitable for the problem in hand; iii) the
customization of the agent interpreter to match more specific application requirements.

Agent Code The agents are programmed in Jason following the BDI metaphor. The
basic constructs of Jason are beliefs and plans, as has been described above.

Environment Code Environment implementation is realized in Java, by extending the
Environment class. Usually the programmer has to provide an implementation for the
init method, to initialize the environment, as well as the executeAction method, to up-
date the environment state after the execution of each agent action. Percepts are repre-
sented using a Literal class and they are added to the environment state using method
addPercept of class Environment. An agent action is a structured term represented using
the Structure class that provides methods for checking its functor and its arguments.

Agent Class and Architecture Code The agent class can be customized to overwrite the
default behavior of selection functions. This can be achieved by sub-classing the Agent
class of the Jason package to overwrite the definition of the selection Java methods.

The architecture of an agent is responsible with the agent interface with the middle-
ware layer. Basically this is concerned with the agent↔middleware software interfaces



for perceiving and acting, as well as for sending and receiving messages. These inter-
faces can be customized for example to simulate faults in the effector-sensorial and /

or communication subsystem of an agent. The update of the agent architecture can be
achieved sub-classing the AgArch class to overwrite perception, action, and communi-
cation Java methods.

2.2 Temporal Difference Learning in Markovian Environments

In RL, the agent is using the observed rewards (known also as reinforcements) which are
part of its percepts, to learn an optimal policy for acting in an uncertain and dynamic en-
vironment [11]. RL assumes that the agent environment is uncertain and dynamic, thus
leading to the nondeterminism of agent actions. Therefore, the RL adopts a Markovian
model of the environment.

Specifically, for a Markovian environment E, we denote with p(e′|e, a) the proba-
bility of the environment to transit into state e′ given its current state is e and the agent
executes action a. Obviously,

∑
e′∈E p(e′|e, a) = 1 for all e ∈ E and a ∈ Ac. In practice

many of the values p(e′|e, a) will be 0, as taking action a in the current state e possibly
reaches only few neighboring states of e from E.

In each state e of the environment the agent receives a reward R(e) represented by
a positive or negative real number. Thus, an agent percept is a pair (e,R(e)). The agent
must decide what to do for each perceived state e of the environment, using its private
strategy. This is called a policy and it is defined by a function π : E → Ac, with π(e)
denoting the action recommended by policy π to the agent in state e.

The agent utility depends on the sequence of rewards received on each state of the
environment history. Usually the agent horizon for decision making is considered infi-
nite, while the utility function is additive with discounted rewards: Uh([e0, e1, e2, . . .]) =∑

i≥0 γ
iR(ei), where γ ∈ (0, 1] is the discount factor.

While the environment is Markovian, many different environment histories are pos-
sible, starting from a given initial state e0 = e, for the same agent policy. Therefore, it
is natural to define the true utility of a state e as the expected utility of all environment
histories H(e) = [e0 = e, e1, e2, . . .] starting with e. Basically, each such environment
history H(e) can occur with a given probability that depends on the stochastic model
of the environment, so the utility Uπ(e) for the given agent policy π is the weighted
average of the utilities of each possible environment history, i.e. Uπ(e) = E[Uh(H(e))],
where E[·] denotes the expected utility.

It can be easily shown that Uπ satisfies a Bellman system of equations for a given
policy π, i.e. Uπ(e) = R(e) + γ

∑
e′∈E p(e′|e, π(e))Uπ(e′) for all e ∈ E. So, at least in

principle, Uπ(e) can be determined by solving the Bellman equations. However, in a
realistic agent system this is not possible, as the agent does not know the model of the
environment. In an extreme scenario, the agent does not even know the set E of states.
In fact, the agent discovers the elements of E while it explores the environment.

The agent can use a passive RL method to learn Uπ. Methods of passive RL include
direct utility estimation, adaptive dynamic programming and temporal difference learn-
ing – TDL [9]. In this paper we are considering TDL, due to its simplicity. Nevertheless,
the approach can also be extended to other RL methods, either passive or active.

https://www.researchgate.net/publication/263757661_Learning_to_Predict_by_the_Methods_of_Temporal_Differences?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/248725443_Prentice_Hall_Series_in_Artificial_Intelligence?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==


The idea of TDL is to use each observed transition e → e′ to adjust the value
of Uπ(e), so that it better approximates the Bellman equations. The updated value of
Uπ(e) is Uπ(e) +α(R(e) + γUπ(e′)−Uπ(e)). As can be noticed, TDL uses a very simple
mathematical equation and it does not need to estimate the stochastic model of the
environment (i.e. the probability distribution p(e′|e, a)).

3 Experiments

The starting point of our experiments was the initial implementation of the TDL, using
the Jason platform that was reported in [2]. Here, we consider only the updates that
were necessary to adapt the setup for running concurrently multiple agents with altered
perceptual functions.

3.1 Experimental Setup

We consider a MAS comprising a team of BDI agents that explore the 3× 4 rectangular
grid firstly introduced in [9], as shown in Figure 1, using a statically defined policy. The
goal of each agent is to compute the utility value of each state. The actions available
to agents are: up, down, le f t and right. When a trial is finalized, i.e. an agent reached
a goal state, a new trial must be prepared by generating a new initial state. For this
purpose we introduce a special agent action called null.

The effect of a normal agent action is uncertain. If the agent attempts to move in a
certain direction it will succeed with probability 0.8 or it will fail by changing direc-
tion to the left or to the right of the intended direction with probabilities equal to 0.1.
Grid squares are represented as pairs of integers (row, column) with row ∈ {1, 2, 3} and
column ∈ {1, 2, 3, 4}. The grey square from position (2, 2) defines an obstacle. Also the
grid walls are considered obstacles. An attempt of the agent to move in the direction of
an obstacle will fail, leaving the agent in the initial position. States (2, 4) and (3, 4) are
goal states such that (3, 4) is a successful goal state, where the agent receives a positive
reward of +1, while (2, 4) is a failure goal state, where the agent receives a negative
reward of −1. For each of the other states the agent receives a small negative reward of
−0.04 with the meaning of the small energy consumed to take an action. We consider
the agent policy specified in Figure 1. For example, in state (1, 1) the agent takes the
action up, while in state (3, 2) the agent takes the action right.

We are using the same application model as in [2]. The model was updated to ac-
commodate the execution of multiple concurrent and possibly different agents that are
sharing the same grid environment. In what follows we are only focusing on these up-
dates. For the other details concerning our experimental setup, the reader should con-
sult [2]. Basically the updates were:

i) Definition of multiple agents;
ii) Expanding the environment implementation to support the execution of multiple

concurrent agents with individualized perception;
iii) Altering the agent perception function to simulate agents sensing faulty percepts,

by updating the agent architecture.

https://www.researchgate.net/publication/248725443_Prentice_Hall_Series_in_Artificial_Intelligence?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==


Fig. 1. Sample environment and agent policy.

iv) Altering the agent action function to simulate agents performing unsuccessful ac-
tions, by updating the agent architecture.

The Jason platform provides facilities for developing software agents that act con-
currently in a shared environment programmed in Java. The Java code that defines the
environment, is based on introducing the class MDPEnvN, while the Java code that
defines the agent architecture is based on introducing the class TDLAgentArch. Us-
ing these definitions, the script that defines a MAS composed of 4 agents is shown in
Figure 2. Node that, according to this definition, the agents are using the JADE [3]
infrastructure for exchanging information.

MAS team {
infrastructure: Jade
environment: MDPEnvN
agents: tdlAgent agentArchClass TDLAgentArch #4;

}

Fig. 2. Script that defines a MAS composed of 4 agents of type tdlAgent.

We have updated the environment Java code introduced in [2] that defines the envi-
ronment MDPEnvN class, as follows:

i) We added two member variables that define the number of agents, as well as the
root of the name of our agents. By default, an agent member of our team MAS has
the name composed of the given name "tdlAgent" (see Figure 2) and a counter
(taking values from 1 to 4 for the MAS defined in Figure 2).

ii) We added a member variable representing the array of agent names.
iii) We added a member variable representing the map that associates each agent to its

current location on the grid. The association is using the agent name as key.
iv) We updated the updatePercepts and executeAction methods that perform individu-

alized perception and action, by adding a parameter to represent the agent name.
v) We added a constructor of the MDPEnvN class for initializing the array of agent

names and the mapping of agent names to their initial locations.
v) We updated the code of the init method to initialize the agents’ percepts.



The code that describes these updates is presented in Figure 3. Note that only a part
of the Java code of the executeAction method is presented. We have shown the fragment
that determines the current agent position and that sets the next agent position, after the
execution of the agent action.

3.2 Experiments with Agents with Faulty Perception

We considered two kind of faults in the agents’ perception function: (i) perception af-
fected by intermittent faults (IF faulty perception) and (ii) perception affected by Gaus-
sian noise (GN faulty perception). We ran an experiment with 4 agents such that the
first agent had IF faulty perception, the second agent had a GN faulty perception, while
the third and fourth agent were not faulty.

We followed the hints from [4] for the simulation of faulty perception, by over-
writing the perceive method of the agent architecture class. In order to simplify the
coding, we developed a single agent architecture class that was named TDLAgentArch.
This class provides different implementations of the perceive method, depending on the
agent type (here represented by the agent id). The code of the perceive method is shown
in Figure 4.

For the agent with IF faulty perception, we altered the reward perceived between
the 2000-th and the 2010-th perception by adding a value of 100. For the agent with
GN faulty perception we always added to the perceived reward a Gaussian signal with
mean 0 and standard deviation 1.0 (see Figure 4).

We have reused the experimental context from [2]. The Jason program was not
altered for the experiments with faulty perception. So basically we have reused the
static policy that defines agents’ actions in each state and the learning factor (the same
for all agents).

We ran 100000 iterations for each agent. Taking into account that the environment
is Markovian, this resulted in different numbers of trials for each agent: 18937 for agent
1, 18921 for agent 2, 18647 for agent 3, and 19071 for agent 4. Below, we only present
selected results obtained for agent 1 (with IF faulty perception) and agent 2 (with GN
faulty perception).

Figure 5 presents values of utilities u(1, 1) and u(2, 3) for the agent with IF faulty
perception. We can observe that sometime after the 2000-th iteration the utilities are
severely increased (comparing to their actual value). However this effect being inter-
mittent, it does not last too long. So, sometime before the 3000-th iteration the values
of the utilities appear to converge to their correct values. Note that at this time the effect
of the intermittent faulty perception was canceled. Actually (not shown on Figure 5)
u(1, 1) converges to a value close to 0.7, while u(2, 3) converges to a value close to
0.65. Note that Figure 5 displays the values of utilities only up to the 9000-th iteration,
although we ran in our experiment 100000 iterations, in order to better capture, in the
figure, the effect of the intermittent fault.

Figure 6 presents the values of utilities u(1, 1) and u(2, 3) for the agent with GN
faulty perception. The effect of the Gaussian noise is pretty obvious, being more accen-
tuated at the start of the exploration process. As agent 2 is progressing, the effect of the
noise is decreasing, and we can observe a convergence of the utilities to values that we
found similar to those obtained by the other agents, either faulty or non-faulty.



public class MDPEnvN extends Environment {
// ...
final int nAgents = 4;
final String agName = new String("tdlAgent");
String agentsNames[] = new String[nAgents];
Map<String,AgentPosition> agentsPositions =

Collections.synchronizedMap(new HashMap<String,AgentPosition>(1));

public MDPEnvN() {
// Initialize the array of agents names
for (int i=0;i<nAgents;i++) { agentsNames[i] = agName + (i+1); }
// Set initial position of each agent to (agentStartRow,agentStartColumn)
for (int i=0 ; i<nAgents ; i++) {

agentsPositions.put(agentsNames[i],
new AgentPosition(agentStartRow,agentStartColumn));

}
}

public void init(String[] args) {
for (int i=0;i<nAgents;i++) { updatePercepts(agentsNames[i]); }

}

private void updatePercepts(String agent) {
int agentRow,agentColumn;
// Remove previous percepts of the agent
clearPercepts(agent);
// Determine the agent’s current position
AgentPosition ap = agentsPositions.get(agent);
agentRow = ap.getRow();
agentColumn = ap.getColumn();
// Determine the literal percept and add it to the list of agent’s percepts
double r = rewards[agentRow][agentColumn];
String agentPos = new String("pos(");
agentPos += agentRow; agentPos += ",";
agentPos += agentColumn; agentPos += ",";
agentPos += r; agentPos += ",";
agentPos += (isExitState(agentRow,agentColumn) ? "t" : "n");
agentPos += ")";
addPercept(agent,Literal.parseLiteral(agentPos));

}

public boolean executeAction(String ag, Structure action) {
// ...
int agentNewRow,agentNewColumn;
int agentRow,agentColumn;
AgentPosition ap = agentsPositions.get(ag);
agentRow = ap.getRow(); agentColumn = ap.getColumn();
// ...
if (! walls[agentNewRow][agentNewColumn]) {

agentsPositions.replace(ag,new AgentPosition(agentNewRow,agentNewColumn));
}
updatePercepts(ag); // update the agent’s percepts for the new

// state of the world (after this action)
return true; // all actions succeed

}
}

Fig. 3. Updates of the environment Java code.



public class TDLAgentArch extends AgArch {
final String rootAgName = new String("tdlAgent");
final int nAgents = 4;
int[] perceptCount = new int[nAgents];
final double stdDev = 0.1;
final double mean = 0.0;
Random r = new Random();

// Agents’ names are tdlAgent1, tdlAgen2, ...
private int getAgId() {

String agName = getAgName();
String id = agName.replace(rootAgName,"");
return (new Integer(id)).intValue();

}

public TDLAgentArch () {
for (int i=0; i<nAgents; i++) {

perceptCount[i] = 0;
}

}

public List<Literal> perceive() {
// Get the default perception
List<Literal> per = super.perceive();
// Alter percept
int agId = getAgId();
double v3 = 0.0;
if (per != null) {

Iterator<Literal> ip = per.iterator();
if (ip.hasNext()) {

perceptCount[agId-1]++;
Literal l = ip.next();
// Third argument of the percept per(Row,Col,Reward,TorN) is the reward
NumberTerm t3 = (NumberTerm)(l.getTerm(2));
if ((agId == 1) && // Agent with IF faulty perception.
(perceptCount[agId-1] >= 2000) && (perceptCount[agId-1] <= 2010)) {
// Alter percepts received between 2000th and 2010th perception.
try { v3 = t3.solve(); }
catch (NoValueException e) {}
v3 = v3+100.0;

}
else if (agId == 2) { // Agent with GN faulty perception

double noise = r.nextGaussian()*stdDev + mean;
try { v3 = t3.solve(); }
catch (NoValueException e) {}
v3 = v3+noise;

}
t3 = new NumberTermImpl(v3);
l.setTerm(2,t3);

}
}

}
return per;

}

Fig. 4. Java code for simulating faulty perception.



Fig. 5. Results for agents with IF faulty perception.

Fig. 6. Results for agents with GF faulty perception.

3.3 Experiments with Agents with Faulty Action

We also performed experiments with agents experiencing unsuccessful actions. In order
to keep things simple, we have considered an agent for which the actions le f t, right, up,
and down (but not null !) can fail. Failure is understood here as: i) the action does not
produce any effect in the environment; ii) the result of the action reports failure to the
agent, causing the corresponding agent plan to fail. Simulation of unsuccessful actions
was achieved by overwriting method act of the AgArch class, as shown in Figure 7.

There are already proposed solutions, in the literature, for dealing with plan fail-
ure [5]. In our experiment we adopted a simple solution, by using contingency plans.

According to the model introduced in [2], TDL agents were defined as proactive
agents with the goal !keep move of continuously exploring the environment. Achieve-
ment of !keep move assumes to update the utility function based on the current per-
cept and to continue to explore the environment via goal !continue move. Then, for the
achievement of !continue move, if the exploration was not terminated by reaching the



public class TDLAgentArch extends AgArch { // ...
public void act(ActionExec action, List<ActionExec> feedback) {

int i = r.nextInt(2); // randomly set the flag to indicate faulty action
String afunctor = action.getActionTerm().getFunctor();
if (! afunctor.equals("null") && (i==0)) {

action.setResult(false);
feedback.add(action);

}
else { // calls the default implementation

super.act(action,feedback);
}

}
}

Fig. 7. Script that defines the architecture of an agent that can perform faulty actions.

upper bound of the number of iterations (i.e. when below limit(M) context condition in
Figure 8 is true), there are two cases:

i) a new trial was terminated by reaching a finals state (i.e. non terminal state(St)
context condition from Figure 8 is true); in this case the agent executes a null action
that, according to our assumptions, cannot fail;

ii) the last explored state is not terminal (i.e. terminal state(St) context condition from
Figure 8 is true); in this case the agent selects a move according to its static policy.
In this case the action can fail, producing a failure of the !continue move goal.

Therefore, we have updated the Jason plan library, introduced in [2] for the imple-
mentation of TDL agents, by adding a contingency plan using the blind commitment
strategy for the achievement of the !continue move goal. This simply restates the !con-
tinue move goal causing the failed action to be re-executed until it succeeds. The Jason
code is shown in Figure 8.

+!continue_move(M,St) : non_terminal_state(St) & below_limit(M) <-
!do_one_move(St);
!!keep_move.

+!continue_move(M,St) : below_limit(M) & terminal_state(St) <-
?last_trial(N); N1 = N+1; -+last_trial(N1);
?check_trial(N1);
null;
-+last_action(null);
!!keep_move.

+!continue_move(M,St) : not below_limit(M) <-
?last_trial(N);
.print("END OF RUN. TRIALS: ",N," ITERATIONS: ",M);
?print_results.

-!continue_move(M,St) : below_limit(M) <-
!continue_move(M,St).

Fig. 8. Plans associated to the !continue move goal.

We ran an experiment by allowing all the agents (either perception faulty or percep-
tion non-faulty) to execute actions that can fail according to this model. All the agents
were able to finalize the experiment with success producing appropriate utility values.



The only inconvenience that was added by introducing faulty actions (according to this
model) was the increase of the learning time. This was caused by the necessity to re-
execute failing actions until they were successful.

4 Conclusion

In this paper we show how multiple BDI agents enhanced with TDL capabilities learn
their utility function, while they are concurrently exploring an uncertain environment.
Our main results are related to the programming aspects of the agents using the Ja-
son agent-oriented programming language and Java. We provide experimental results
showing the behavior of different agents acting in a Markovian grid environment: agents
with the perception function affected by intermittent faults and Gaussian noise, as well
as agents for which their action function can fail. As future work we plan to expand
these results in at least two directions: i) by considering active learning strategies, for
example Q-learning; ii) by allowing teams of agents to cooperate by exchanging mes-
sages while they are exploring the environment, with the goal to either improve the
learning process or to exclude faulty and/or malicious agents from the team.

References
1. Bădică, C., Budimac, Z., Burkhard, H.-D., Ivanović, M.: Software agents: Languages, tools,

platforms. Comput. Sci. Inf. Syst. 8 (2): 255–298 (2011) doi: 10.2298/CSIS110214013B
2. Bădică, A., Bădică, C., Ivanović, M., Mitrović, D.: An Approach of Temporal Differ-

ence Learning Using Agent-Oriented Programming. In: Proc. 20th International Confer-
ence on Control Systems and Computer Science (CSCS’2015), 735–742, IEEE, (2015) doi:
10.1109/CSCS.2015.71

3. Bellifemine, F. L., Caire, G., Greenwood, D.:Developing Multi-Agent Systems with JADE,
ser. Wiley Series in Agent Technology. John Wiley & Sons Ltd, (2007)

4. Bordini, R. H., Hũbner, J. F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak using Jason, ser. Wiley Series in Agent Technology. John Wiley & Sons Ltd, (2007)

5. Hübner, J. F., Bordini, R. H., Wooldridge M.: Programming Declarative Goals Using Plan
Patterns. In: Baldoni, M., Endriss, U.: Declarative Agent Languages and Technologies IV.
Volume 4327 of the series Lecture Notes in Computer Science, 123–140, Springer, (2006)
doi: 10.1007/11961536 9

6. Jason: a Java-based interpreter for an extended version of AgentSpeak.
http://jason.sourceforge.net//. Accessed in February, 2016.

7. Jennings, N. R. Wooldridge, M.: Applications of Intelligent Agents. In: Jennings, N. R.,
Wooldridge, M. J. (eds.): Agent Technology. 3–28, Springer Berlin Heidelberg, 1998 doi:
http://dl.acm.org/citation.cfm?id=277789.277799

8. Rao, A. S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van
de Velde, Walter and Perram, J. W. (eds.): Agents Breaking Away. Lecture Notes in Computer
Science 1038, 42–55, Springer Berlin Heidelberg, (1996) doi: 10.1007/BFb0031845

9. Russell S., Norvig, P.: Artificial Intelligence: A Modern Approach (3rd ed.). ser. Prentice Hall
Series in Artificial Intelligence. Prentice Hall, (2010)

10. Shoham, Y.: Agent-Oriented Programming. Artificial Intelligence 60 (11): 51–92, 1993 doi:
10.1016/0004-3702(93)90034-9

11. Sutton, R. S.: Learning to predict by the methods of temporal differences. Machine Learning
3 (1): 9–44 (1998) doi: 10.1007/BF00115009

View publication statsView publication stats

https://www.researchgate.net/publication/222482819_Agent-Oriented_Programming?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/222482819_Agent-Oriented_Programming?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/238750304_1_Applications_of_Intelligent_Agents?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/238750304_1_Applications_of_Intelligent_Agents?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/238750304_1_Applications_of_Intelligent_Agents?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/245582402_AgentSpeak_L_BDI_Agents_speak_out_in_a_logical_computable_language?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/245582402_AgentSpeak_L_BDI_Agents_speak_out_in_a_logical_computable_language?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/245582402_AgentSpeak_L_BDI_Agents_speak_out_in_a_logical_computable_language?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/263757661_Learning_to_Predict_by_the_Methods_of_Temporal_Differences?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/263757661_Learning_to_Predict_by_the_Methods_of_Temporal_Differences?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/248725443_Prentice_Hall_Series_in_Artificial_Intelligence?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/248725443_Prentice_Hall_Series_in_Artificial_Intelligence?el=1_x_8&enrichId=rgreq-e2b1347556f32ae0a1576b122556c3ac-XXX&enrichSource=Y292ZXJQYWdlOzMwMzUxMzE3OTtBUzozOTY3NTE3NDA2NTM1NjhAMTQ3MTYwNDM5NDc2Ng==
https://www.researchgate.net/publication/303513179

