
Warsaw University of Technology
Faculty of Mathematics
and Information Science

MAGISTERS’S THESIS
MATHEMATICS AND INFORMATION SCIENCE

TRAVEL SUPPORT SYSTEM

SYSTEM WSPOMAGANIA PODRÓŻNYCH

Author:
Mariusz Marek Mesjasz

Supervisor:
prof. dr hab. Marcin Paprzycki

Warsaw, April 2013

..

Supervisor’s signature

..

Author’s signature

1

Streszczenie

Obecnie najpopularniejszym źródłem informacji jest Internet. Codziennie, miliony ludzi wy-
raża swoje opinie na blogach, pisze recenzje w sklepach internetowych lub prowadzi serwisy
tematyczne. Ze względu na wykładniczy przyrost tych danych, problemem nie jest już bark
informacji, ale jej nadmiar. Rozwiązaniem tego problemu mogą być systemy skupione na
dostarczeniu informacji przystosowanej do użytkownika. Budowa takiego systemu jest po-
ważnym problemem badawczym. Z tego powodu, rozwiązanie prezentowane w ramach tej
pracy ogranicza się do informacji związanych z podróżą.

Obecnie istnieje wiele popularnych systemów wspierających osobę podróżującą. Niestety, już
wstępna analiza pokazuje ich największe wady – monotematyczność, mieszanie różnego ty-
pów informacji, zbyt mała personalizacja lub uzyskiwanie zbyt wielu poufnych informacji
(najprawdopodobniej w celach marketingowych). System zaproponowanych w ramach tej
pracy stara się przeciwdziałać tym ograniczeniom jednoczenie dostarczając użytkownikowi
informacje które są dostosowane do jego preferencji. Pomysły przedstawione przy definiowa-
niu założeń systemu zostały oparte o dokładną analizę poprzedniego systemu wspomagania
podróżnych zaprezentowanego w serii publikacji z lat 2000 – 2008.

Ze względu swój charakter, system został opracowany z użyciem agentów programowych. Z
najważniejszych czynników wpływających na tę decyzję należy wymienić, że agent podróż-
ny jest popularną metaforą agenta systemowego. Ponad to, agentowy system wspomagania
podróżnych jest klasycznym problemem dla systemów agentowych. Cechy agentów progra-
mowych – proaktywne zachowanie, umiejętność komunikacji, praca na korzyść zleceniodawcy
– naturalnie pasują do tego zagadnienia.

W celu znajdywanie spersonalizowanych wyników, system używa algorytmu Rhee-Ganzha,
który mierzy siłę relacji między dwoma obiektami. By prawidłowo przeprowadzić obliczenia,
algorytm używa ontologii zapisanej w formacie OWL lub RDF jako struktury danych. Z
tego powodu, system jest w stanie korzystać z zasobów umieszczanych w ramach Semantic
Web.

Częścią tej pracy jest również implementacja systemu na urządzeniach mobilnych. Ze względu
na coraz większe zainteresowanie i rozwój tych urządzeń, stanowią one idealną platformę do-
celową dla aplikacji podobnych do travel support system. Praca magisterska zawiera dokładny
opis implementacji oraz analizę wszystkich napotkanych problemów.

1

Abstract

Currently, the most popular source of information is the Internet. Every day, millions of people
express their opinions on blogs, write reviews at online stores or run thematic websites. Due to
the exponential growth of data, the problem is no longer a lack of information, but an excess of
information. The solution to this problem can be systems that focus on providing personalized
information. The construction of such systems is a major research problem. For this reason,
the solution presented in this work is limited to information related to travel.

There are many popular systems that support travel. However, a preliminary analysis shows
their greatest drawbacks - monothematicity, mixing different types of information, too little
personalized content or getting too much confidential information (most likely for marketing
purposes). The system proposed in this work tries to counteract these limitations, and at
the same time provide the user with information that is personalized to his preferences. The
proposed ideas and goals of the system are based on careful analysis of the previous travel
support system presented in a series of publications in 2000 – 2008.

Due to its nature, the system was developed using software agents. Among the most important
factors influencing the decision it should be mentioned that the travel agent is a common
metaphor for the agent system. Moreover, an agent-based system that supports travellers
is a classic problem in the field of software agents. Features of software agents - proactive
behaviour, communication skills, work for the benefit of the customer - naturally fit into this
issue.

In order to find personalized results, the system utilizes the Rhee-Ganzha algorithm, which
measures the strength of the relationship between two objects. To properly perform calcula-
tions, the algorithm uses an ontology stored in RDF or OWL format as a data structure. For
this reason, the system is able to use the resources contained in the Semantic Web.

Part of this thesis is the implementation of the system for mobile devices. Due to the growing
interest in and development of these devices, they are an ideal target platform for applications
similar to the travel support system. This master thesis contains a detailed description of the
implementation and analysis of all related problems.

Contents

1. Introduction 5
1.1. Existing travel-related systems . 6
1.2. Proposed System . 8

2. Software agents in the Travel Support System 15
2.1. Software Agents . 15
2.2. Software agents and the new Travel Support System 16
2.3. JADE agent platform . 17
2.4. JADE on mobile devices . 18

2.4.1. Android Operating System . 19
2.4.2. Analysis of JADEAndroid . 24
2.4.3. JADEAndroid – Proposed Solutions 25
2.4.4. Proposed implementation of the JADEAndroid in the Travel Support

System . 26

3. The Recommender System 29
3.1. Introduction to the Recommender Systems 29
3.2. Common Pitfalls concerning Recommender System 30
3.3. The algorithm proposed for the Travel Support System 30

3.3.1. Additional algorithms and data structures 35
3.4. Implementation of the Rhee-Ganzha algorithm 39

3.4.1. RDF Ontology . 39
3.4.2. Implementation of the Matching Engine 39

4. Implementation of the Travel Support System 41
4.1. User profile . 41
4.2. Reading a structure of an ontology . 43
4.3. Travel Support System – putting it all together 44

4.3.1. Matching Process Example . 45
4.3.2. Relevance Calculation Example . 47

5. Test scenarios 51
5.1. Making proactive recommendations . 51
5.2. Context monitoring . 51
5.3. Test results and summary . 52

Bibliography 53

3

Chapter 1

Introduction

With the development of technology, people are able to solve a variety of problems. One
of the interesting areas is the “world of travel”. Here, the fundamental questions concern
destination and means of transport:

• Where do I want to go?

• How do I get there?

Depending on the situation, the answers to these questions can be very difficult to find. For
example, from the perspective of a person living in a small town who goes to a near-by
store, the answers are trivial. However, a hungry tourist, who is in a foreign city, may have
a big problem with finding the “correct” answers. First of all, he is only able to give a very
abstract description of his destination – a place where he can order something to eat. He
knows neither the exact address nor the name of the place. Thus, the answer to the first
question is inaccurate / incomplete. Furthermore, no one knows his food preferences. A place
recommended to him by encountered people may not suit him well (sometimes at all). Second,
he is able to select a variety of means of transport (car, subway, go on foot); i.e. there is no
single answer to the second question. Therefore he has to find out what would be the most
appropriate means of transport.

Nowadays, he can find answers to these questions through the use of modern technology. For
example, he can use his smart-phone’s built-in 3G modems (not to mention the emergence
of 4G infrastructures) to find suitable restaurants in the nearby area. Then, based on the
ranking published on a website, he can choose the one that is the most recommended by
other users and matches his food preferences. Similarly, he can use other web-based services
to find the most appropriate means of transport to the selected restaurant.

Unfortunately, this approach is not without flaws. First of all, it forces him to visit several
websites to gather the necessary information. Second, he has to spend time comparing the
results and choosing the best one. Due to the amount of necessary work, this approach may be
counterproductive. Namely, a tourist may choose a simpler but inferior (or even contradictory
to his actual preferences) result, instead of looking for the most suitable one. For example,
a hungry tourist may decide to choose a well-known and widely-accessible fast food chain
(even though he does not like to eat there) over restaurants that serve his favourite type of
food, because he does not know where to find one. The problem remains unsolved also in
the scenarios where a tourist is in his room with a computer that has internet access and
has spare time to plan everything. He should enjoy his vacation instead of spending time

5

6 1. Introduction

working on the computer. This shows the need for a travel support system that will be able
to perform some of the repetitive work for the user. For example, a tourist should be able
to choose the best possible result from a limited set of candidates (containing results that
match his preferences, while gathering and filtering should be done by the system).

This thesis focuses on modern applications that support travellers. The following section will
carefully analyse the existing solutions to find their limitations. Next, a new idea of the Travel
Support System will be presented, which will be able to overcome these limitations. Details
of the implementation and results of tests will be also presented.

1.1. Existing travel-related systems

There are several examples of services or applications, which provide a variety of travel-related
information to their users. The list contains also two no longer developed systems — Travel
Support System (predecessor of the new Travel Support System proposed in this thesis), and
Chefmoz (ontology-based collection of restaurants). Despite the fact that they are no longer
active they provide a useful source of information and reflection.

Travel Support System (TSS; 2000–2008) The idea of the Travel Support System was
introduced in the MS Thesis from 2000 [42]. The TSS was an agent-based system
responsible for collecting information available on the internet, storing them in the
form of an RDF database, and creating highly personalized answers to users’ queries.
The initial idea was explored in a series of agent-related publications that appeared
between 2001 and 2008 (available at [31]). The working system was released in 2006
at the SourceForge [32].

Interestingly, the need to redesign the system became evident immediately after its
initial implementation. Most important lessons learned in the process of developing
and evaluating the original system were summarized in [40]. The publication pointed
out several design flaws concerning the utilization of agents in the original system.

However, none of these flaws have been resolved. Due to broken software dependencies,
the system has not been in development since 2008. Therefore, the new implementation
of the system proposed in this thesis has to carry out a detailed analysis of system
requirements, taking into account the previously acquired knowledge and new oppor-
tunities associated with the development of new technologies.

Chefmoz (2000 – 2011) Chefmoz was a branch of the Open Dictionary project [22] and
contained an online directory of restaurants and reviews. The collection covered more
than 300,000 restaurants from 142 countries. Due to the persistent technical difficulties
and lack of funds, the Chefmoz project was announced “dead” in 2011. Similarly to
the Open Dictionary Project, the Chefmoz provided its data as a hierarchical ontol-
ogy scheme. In 2009, ChefMoz had become the largest global directory of restaurants
available on the internet.

Booking.com Booking.com [11] is a web portal that focuses on hotels. It allows its users
to post their opinion, browse hotel deals and book rooms. Website has a number of
important features such as a large database of hotels (over 250,000 entries), unbiased
opinions (posted by real hotel guests), and worldwide accessibility (consumer support
in more than 40 languages). Here, it represents a broad class of hotel-focused services
(information aggregators) such as: hotels.com, venere.com, etc.

1.1. Existing travel-related systems 7

Despite the fact that Booking.com is a great web service, it is also highly specific
(it is limited only to hotel information). Due to this, Booking.com can not answer
more complex queries (for example, it can not create a list of hotels which are located
near museums or art galleries). Moreover, Booking.com does not provide personalized
recommendations. For example, it can be conjectured that a user who frequently uses
this service would be pleasantly surprised by receiving offers adjusted to her preferences,
instead of a regular newsletter containing only “statistically good deals” (for example,
the cheapest prices).

Social Services Many social services may also be a source of travel-related information and
may affect users decisions of where they want to spend their time. The two most popular
social networks are Facebook [13] and Twitter [34]. Twitter is a service that allows its
user to send short text messages that are visible to the public. In addition to the text,
its users can also add a picture or indicate a place on the map. Because of this, some of
the message can influence our travel preferences. For example, if we follow the accounts
of our friends who frequently visit one place, publish a lot of cool pictures and indicate
the position of this places on the map, it is more likely that we also decide to go there
in the future.

Facebook, like Twitter, provides tools to communicate with other people. Its users
can post comments, upload photos, share information with their friends or press the
“like” button to show that they like something. As with the frequent messages on
Twitter, the information provided by our friends may influence our decision to visit a
specific place. Moreover, many places and events have their own Facebook pages, which
makes Facebook a kind of a travel-related service. Observe that TripAdvisor [33], a
web page similar to Booking.com, uses this idea and integrates some of their services
with Facebook. Customers may connect to their Facebook accounts and see offers from
places visited by their friends.

Although this is an interesting use of social services, this approach has many drawbacks
(from the point of view of our main ideas). First, these services allow its users to share all
kinds of information (not only information related to travel). For example, the user can
post on his Facebook wall either information about a restaurant which, in his opinion,
serves the best pepperoni pizza (travel information about a certain place) or a comment
about how he feels about the current political discussion concerning taxes (information
not related to a specific place which can be recommended). Moreover, one of his recent
posts can contain information about his new girlfriend and a club where they first met.
In this case, the system is only interested in a part of the information (specifically,
the location of the club). Thus, all the information has to be filter by an external
application. Secondly, in case of the social services, the term ”recommendation” is not
appropriate (for example, the number of similar messages may encourage a user to go to
a specific location or be involved in a particular event, but none of them was a “direct”
recommendation). Finally, the external system does not utilize the personal profile,
but makes recommendations based on people’s opinion from the user’s list of friends.
Therefore, recommendations may not match the current / actual user preferences.

Yelp! Yelp! [37] is a web catalogue of local businesses. Yelp! operates as a social network
service – its content is filled by advertisers (local businesses) and ordinary users (re-
viewers and potential customers). The drawback of such a solution is that the system
does not provide personalized or context-driven recommendations. For this reason, the
users receive only regularly published newsletter which is barely connected to the user

8 1. Introduction

profile (for example, the name of the city where the user declared to live). As the re-
sult, the user receives a limited number of local offers that may or may not match his
preferences.

Yelp! is also a medium for friend-based recommendations. Unfortunately, this approach
is not as good as automated recommendations. First of all, such recommendation has to
be done manually, which takes time that the user may not be willing to spend. Second, it
is very dependent on the person who sends the recommendation, not on the actual user
preferences. Therefore, the system should relay on automatic recommendation made
be the system (the user-based recommendations can be utilized as a supplementary
function).

Google Now Google Now [15] is an intelligent personal assistant provided by Google for mo-
bile devices capable of running the Android operating system [7] in version 4.1 or newer.
This application has been released on July 9, 2012 as an extension of Android’s native
Google Search application. The most important feature of Google Now is the ability to
display information obtained in the interaction with the Google services. An example
of such information may be today’s weather, traffic information or recommended dishes
in a restaurant. All the information provided by the application are selected based on
Google data such as Web History and location services (for instance, the GPS).

Although Google Now seems to be similar to the Travel Support System, there are some
significant differences. First of all, the Travel Support System has been proposed as a
system focused entirely on supporting travellers. In the case of Google Now, the primary
function is to help users to use the Google services. Because of this, the understanding
of user’s needs is limited by the functionality of a number of independent service. For
example, Google Now is able to provide some local information such as nearby attrac-
tions and events. According to the description provided at the Google Now website,
such information is shown if location services are turned on (there is no reference to
the user preferences and search history). In comparison to the Travel Support System
(which always takes the user preferences into account), the utilized Google service does
not understand that some of the proposed places may be opposed to those favoured
by the user (and therefore Google Now inherits this limitation). Second, Google Now
forces its users to store all their personal information on Google’s servers. Despite the
fact that this is a useful feature (for example, if the device was stolen), the users have
no choice (otherwise it would be difficult to share one Google profile with the multi-
ple remote and independent services). In the case of an application such as the Travel
Support System, the number of needed information is limited by the specific use of the
system (only the travel-related information). Thus, the user may feel safer if all the
information is not stored in one place (not mentioning the fact that the personal profile
can be stored locally).

1.2. Proposed System

This section describes the main features of the Travel Support System. Many of them cor-
respond to the well-known functions from travel support systems presented in the previous
section, but several are also new. Before the list of requested features will be presented in
detail, let us concentrate on those that will make the Travel Support System unique. Our
considerations start from three use case scenarios, which emphasize the difference between
the currently existing applications and the desired solution.

1.2. Proposed System 9

Scenario 1 Peter is an employee in an IT company. Every Friday after work, he goes to
the city to take a break from his computer. Out of habit, he stores such events in his
Google calendar (for example, labelled as “going to club”). At first, he was very happy
with the club that he had managed to find. However, after a few visits he began to
be bored. Fortunately, the next Friday morning, the Travel Support System installed
on his smart-phone will prepare for him a new recommendation based on the entries
in his Google Calendar (system will recognize the word ”club”, and match it with the
repeating entries). It will recommend him a new club which he did not know before.
This club plays his favourite type of music and is on the way between his home and
work.

Scenario 2 Jack is a student. He recently met a girl named Jill, and began to chat with
her via SMS. After Jack sends a text message to Jill asking for a date, his instance of
the Travel Support System will start negotiations with the one running on Jill’s phone.
Since Jack is in her contacts, her Travel Support System will be able to share some
information about her preferences (learned through her previous interactions with the
system). As a result, Jack will receive a notification from his Travel Support System
with the recommendation of a Chinese restaurant. Moreover, Jack will also be informed
that Jill will most likely be satisfied with this choice since she likes Chinese food (this
information will be confirmed by her instance of the Travel Support System).

Scenario 3 David is a pensioner and has two hobbies – golf and travelling. He used to start
preparations for his holidays by creating a list of hotels. Then he devoted his time
to comparing this list with the list of available golf courses. Fortunately, he uses now
the Travel Support System, which is aware that David likes golf (based on his search
history). The system will automatically prepare a list of hotels prioritizing those, which
offer special medical / spa treatment and have easy access to golf courses.

From the presented use case scenarios, one can derive several noteworthy observations. First
of all, each scenario presents one unique feature of the system.

• In the first scenario, the system shows its pro-activity. The system tries to propose
Peter something new before he starts to get bored and falls into a routine.

• The second scenario presents the concept of negotiations between instances of the Travel
Support System. Jack does not know Jill, so the system works in his favor by negotiating
the best place for a date.

• The last scenario focuses on cross-referencing. Typically, similar systems use only one
specific source of information (for example, Booking.com provides its services only based
on the hotels database, and nothing else). Due to this, David does not have to waste
his time browsing several web portals.

Furthermore, comparing the second and third scenario, we can observe that the system does
not dependent on the distance (a local restaurant or a foreign hotel) and amount of prepa-
ration (now or in a few weeks). The system does not separate a spontaneous decision (Jack
spontaneously invites Jill for a date) from a deliberate action (David carefully plans his hol-
idays a few week ahead of time). Depends on a situation, the system can either produce
immediate results or take some time to prepare an in-depth list of potentially interesting
places.

Let’s summarize our assumptions toward the TSS as use case diagram. The diagram 1.1
shows three entities located outside the system: the GPS, the User and the Data Source.
They interact with the system by asking queries (User), providing information (GPS, data

10 1. Introduction

Figure 1.1: Use case of the Travel Support System

source) and negotiating. The main actor of the system is the User. The TSS is involved in five
functions: Interacting with the User, Context monitoring, Learning, Negotiating and Cross
Referencing.

The Interacting function involves preparing a list of results that match user preferences and
correspond to a given query. It is also connected to Cross-referencing and Learning. Cross-
referencing is used to obtain the results from one or many Data Sources. By the nature of the
system, each action taken by the User triggers the Learning function. During the learning
phase, the system adjusts user preferences stored in the hierarchical structure called the user
profile. The Learning function is also connected to the Backing-up function that stores the
current user profile on a remote server. Due to this, the system is able to obtaining only useful
information from the Data Sources (the information that match the user preferences). The
Context monitoring involves dealing with all contextual information available to the system.
The most important contextual information is the geo-position provided by the GPS, but
the Context monitoring may also be related to many other types of information (for exam-
ple, text messages, calendar entries and remaining battery power in case of mobile devices).
Context monitoring can trigger the Making recommendation function. The Making recom-
mendation function involves proactive searching for information based on the current user
context. It is also connected to the Cross-referencing and Creating Notification functions.
The Creating notification function involves displaying a notification about a new set of rec-
ommendations made by the system. The Negotiating function, that connects two instances
of the TSS, involves exchanging messages in order to achieve an agreement. In case of the
TSS, the agreement may relate to a meeting place that will be satisfactory for both users.
The Negotiating function is also connected to Checking permissions. Checking permissions
ensures the confidentiality of shared information (for example, the local TSS will not start
negotiations with a remote TSS if its owner is not on our contact list).

From the above description we can formulate the following functional requirements:

Context-awareness In order to provide the best possible response to user queries and
be proactive, the system has to monitor the user’s contextual information. Since the
proposed system is related to widely understood travel, the most useful information is

1.2. Proposed System 11

the user’s current geo-postion (GPS feed). Such contextual information is used by the
system almost all the time (except situations where the user decides otherwise).

In scenarios 1 and 2, two additional proposals were presented; entries in the calendar,
and text messages. Such information is to be used by the system to be proactive. It does
not directly alter user queries, but they may trigger some autonomous actions within
the application. For instance, in the first scenario, the entries from the calendar are not
included in the user data (the system does not understand what “going to” means), but
it tries to use them to produce a useful recommendation (it can query the word “club”
and check the results against the user profile).

Personalized Searching The result of performing a search process has to be personalized
to individual user’s requirements. The requirements may be specified directly (user
explicitly adds them to the query), or indirectly (the system is aware of user’s previous
choices and tendencies). The system has to intelligently reject data contrary to the
direct, or indirect, requirements and favor those which overlap with user’s preferences,
and may more likely fulfil the user’s needs. Due to this, only the personalized results
are presented as an answer to the specified query. In the third scenario, the system is
aware of David’s preferences. Therefore, the system dynamically combines results and
the user’s preferences and goes beyond mere presentation of answers to queries. Acting
pro-actively, the system is able to suggest possible places and events that may prove
useful to the user. Therefore the system favours hotels with easy access to golf courses
over those that do not have it or where such access is very difficult.

However, the situation in the first scenario is a little bit different. The system tries to
be proactive and proposes the new club to Peter. So the system should take changes of
user preferences and desires for something new into account. Thus, a user who sticks to
his/her old habits may develop new preferences (for example, going to the same club
over and over again). From time to time the system should also return a result which
is neutral or even contradictory to the stored preferences. The average time between
such propositions may be measured by analysing contradictory user’s queries. The con-
tradictory result should always be somehow separated from others and marked by the
program as a suggestion. However, the system should be aware that some preferences
may be nearly unchangeable.

Collecting important user information In order to allow intelligent searching, the sys-
tem must be able to collect important information about a user to process it in a
collection of preferences and requirements (user profile). This collection is to be dy-
namically developed over time based on user interaction with the system (user’s queries
/activities and decisions).

Negotiations Topics of negotiations may be different depending on the implementation of
the system. For example, the Travel Support System proposed in 2000 [42] assumed
the possibility of negotiations between two instances of the system – a travel-related
service (seller) and a tourist (buyer). That system was to have the ability to negotiate
special offers and promotions based on user preferences. For instance, a restaurant’s
recommendation might also include a free bottle of wine liked by the user.

The new version of the system extends this concept. Negotiations are also present in
communications between two or more instances of the system on the user’s side. Ap-
plications can come to an agreement if their goals are common. In the second scenario,
Jack and Jill want to go on a date, but none of them knows the best common place to

12 1. Introduction

go to. Therefore, the two systems are able to agree on a place and inform Jack, so he
can make a good impression on Jill.

Cross-referencing Many modern information services provide only data pertinent to a
single subject. For example, Booking.com provides information concerning hotels, but
does not provide information about nearby restaurants (not counting hotel restaurants).
Similarly to the example presented in the third scenario, the users have to cross-reference
multiple sources of information on their own. Therefore, to achieve a reliable system
that is able to advise a user in any situation, the system has to have the possibility to
combine different sources of information in such a way that the cross-referencing data
will be allowed to respond to the more sophisticated queries.

Online data storage and accessibility of the user profile from multiple devices Due
to the fact that our system is targeted mainly at mobile devices (see, scenario 1 and 2),
we may encounter several problems to deal with. Namely,

• growing risk of data loss caused by accidents while traveling (for example, losing
or damaging the device),

• need of copying the user profile from one device to another.

In the first case, an extremely important factor is the time that the system spends
learning user preferences (creating a user profile). Total loss of the user profile indicates
the need to re-adjust the system to individual needs. Through this, the system loses its
functionality to present the user relevant and personalized results and suggestions for
the time of relearning the profile.

The second problem is not so important and can be easily solved by connecting the
device with an old user profile to one with the newest version and simply copy the
profile files. However, if the user forgets to copy his profile from one device to another
then the system may not give the most accurate results with respect to the current
user’s preferences.

The solution to these two problems is the possibility of online storage and synchroniza-
tion. The user should be able to enable backing-up of his current profile, which will be
stored on a remote server (e.g. in a cloud).

Moreover, the system should fulfil the number of non-functional requirements:

Accessibility All three scenarios show that the system can be used by people of all ages
(students, young workers and pensioners). Due to this, the system should present results
in a readable and accessible form such as, for example, a list. The results should be
sorted according to individual preferences from the most to the least satisfying the user’s
requirements. Each result should include a brief description of the key information.
After selecting a response relevant to the user’s query, the system should display more
detailed information.

Security Because the system can negotiate, a security mechanism should be used to de-
cide what information should be shared. First of all, not everyone should be able to
start negotiations. For example, people who are not listed contact user are most likely
strangers and should not be allowed to participate in the negotiations. Secondly, the
shared information should be limited to the subject of negotiations. For example, if the
system starts negotiations on the place where the user likes to eat, the system should
not provide information about the user’s other preferences.

1.2. Proposed System 13

Software and hardware independence Due to a variety of devices which may be used
when traveling, the system should be as software and hardware independent as possible.
The system should be able to run on smart-phones, tablets, notebooks and desktop PCs.
Thanks to this, the system will be more flexible and will give the user an opportunity
to choose the most comfortable device to be used at a particular time (in the hotel
room, the most preferable device could be a laptop, when on a crowded street it may
be a PDA or a smart-phone). The system should take limitations of each device into
account and provide a suitable display mode for the amount of available resources.

Chapter 2

Software agents in the Travel
Support System

The system proposed in this thesis is an attempt to expand upon the initial idea of the old
Travel Support System. One of the most important features introduced in the old proposal
was the utilization of software agents [43]. However, the resulting system was subjected to a
thorough analysis in [40], which pointed out several serious design flaws concerning the usage
of agents. The list below summarizes the most important remarks:

• Software agents should not be used as a middle-ware solution, unless it is beneficial.

• Software agents should not replace currently existing technologies, unless there is a
specific need for such an approach.

• Designing an agent-based system requires finding balance between the autonomy of an
agent and its need to communicate.

Unfortunately, none of the above flaws were fixed, because the old Travel Support System
became obsolete due to software dependencies. Keeping in mind the time that has passed
since the last publication and update in 2008, it is necessary to re-evaluate the decision to
utilize software agents. Let us start our considerations by defining what a software agent
is.

2.1. Software Agents

There is no one generally accepted definition of a software agent. On the basis of a wide
variety of publications and books on the subject, one can specify a range of features which
the authors attribute to agents and agent systems. Based on these characteristics and well-
known examples of agents (such as an insurance agent or travel agent), it is possible to
intuitively define what a software agent is.

A software agent, like a human agent, can work in an organized structure called a multi-agent
system (MAS) [41] in which each agent is assigned its own agenda. In the MAS, each agent
has tools relevant to its duties. For example, in a MAS acting as an office suite, a calendar
agent, whose task is to optimally organize meetings, has access to the calendar, but it cannot
read e-mails. Similarly, an e-mail agent can deal with viewing the e-mails and filtering spam,
but it cannot read entries in the user’s calendar. The presented example shows another

15

16 2. Software agents in the Travel Support System

important feature of the agent system – agents must be able to cooperate with other agents.
If the calendar agent wants to pre-book time on the calendar, taking e-mails into account, it
will have to work with the e-mail agent. On the other hand, the interaction between agents
may change in a competition. For example, if several customer agents want to buy the same
item, they will have to compete with each other (for example, by organizing an auction). As
a result, the MAS can model a very complex system containing agents with common and
conflicting goals. In addition, the agent has to decide whether to cooperate to achieve the
common good or to compete in order to achieve its own goal.

Agents can interact indirectly (by acting on the environment, in which they live) and directly
(through communication and negotiation). Communication and negotiation are particularly
important in the context of cooperation and competition. The ability to communicate is also
connected with another important feature of the agent system – it is assumed that a software
agent is trustful. This means that an agent cannot deliberately provide false information. For
example, an agent, which takes part in an auction, cannot offer higher rates than allowed by
its client. Otherwise, this agent will prevent other agents from reaching their goals — the
vendor agent cannot sell its product if the client is unable to pay and the other buyer agents
are unable to buy the goods. In addition, the agent can expose his client to various troubles
and therefore it will lose its reliability.

Agents are also mobile. This means that they can migrate in search of the resources needed
to achieve their objective. For example, an agent performing calculations can go from one
machine to another to gain access to a better processor for more computing power (and thus
to do the job faster). This is a very interesting feature, because it often requires the agent
to decide what is more cost-efficient migration to another platform or communication with
other agents.

The ability to migrate between devices and the possibility of indirect interaction between
agents (impact on the environment) indicates that the software agent must be autonomous,
adaptive and pro-active. The agent must be able to properly react to changes in the envi-
ronment. Otherwise, the agent can get to a state where it will not be able to achieve its
goal. For example, an agent working on a device with limited battery capacity must manage
resources wisely. In case of low battery power, the agent may decide to either migrate to
another platform to continue its work or to turn off less important functions. Pro-activity is
one of the biggest advantages of software agents because it is not just a simple response to
changes in the environment. Adapting to the environment and user requirements indicates
that the software agent must also be intelligent and able to learn. For example, the mail
agent should learn how to classify incoming messages and learn the patterns considered as
spam.

2.2. Software agents and the new Travel Support System

The Travel Support System shares a lot of features with the software agent. The system lives
in a changing environment and has to properly react to these changes. For example, some
places can be closed before the user will be able to get there. The system can conclude this
based on the current time, distance between the user and the destination and opening hours.
Adapting to a changing environment is one of the software agent’s features. Software agents
are also autonomous and pro-active. For example, if the user does not manage to be on time
before a place is closed (due to a traffic jam), then the agent can recommend a similar one

2.3. JADE agent platform 17

which is sill open. A similar situation takes place in the first use case scenario. The system
acts by itself and makes a new recommendation to Peter.

In the second use case scenario, the two instances of the Travel Support System negotiate the
best place for the meeting. Typically, it would take a lot of time and effort to implement a
suitable interface for communication and negotiations. Fortunately, software agents provide
such an interface since it is a required feature of the MAS. Moreover, the MAS can have many
different agents with common or conflicting goals. Thus, such negotiations can be organized
with more than two instances of the Travel Support System. For example, a manager can
invite all his co-worker to a business meeting in a restaurant and all the negotiations (time,
date, place) will be completed in the background (by several instances of the Travel Support
System).

The Travel Support System, like a software agent, has to be intelligent and able to learn. In
the third scenario, the system learned about the user’s preferences and was able to prioritize
hotels near golf courses over others. This scenario also mentioned cross-referencing the list of
the hotels and the golf courses. It can be a very difficult task to implement one application
to connect to many different services (using different interfaces). Such a complex problem
can be model as the MAS. For example, each data source can have an appropriate software
agent assigned. The cross-referencing process can be executed in the form of communication
between one main agent (the agent, which will prepare the list of results) and several data
source agents.

The above considerations prove that utilization of software agents can be beneficial for the
Travel Support System. For this purpose, the decision was made to use the JADE agent
platform. A detailed description of the platform is presented in the next section.

2.3. JADE agent platform

The JADE [19] is the leading open-source framework for agent systems written entirely in
the JAVA programming language. The copyright holder of the JADE is Telecom Italia. The
JADE significantly simplifies development and deployment of any multi-agent system (MAS)
through middle-ware that complies with the Foundation for Intelligent Physical Agents stan-
dards [14].

It also provides a set of graphical tools that support the debugging and deployment phases.

The following list describes the most important functions of the JADE agent platform:

JADE is written in the JAVA programming language An extremely important fea-
ture of the Java programming language is the ability to easily move code between
different operating systems. Due to the fact that the Travel Support System supports
travellers, this is a very useful property. The traveller will benefit not only from a com-
puter in a hotel room or a laptop in a cafeteria, but will also receive help during a walk
around the city when the most convenient device is a smart-phone. The JADE ensures
that once written agent will be able to run on different operating systems (with support
for the Java programming language) without changing a single line of code.

JADE is popular JADE has a community of developers who create add-ons for it. In ad-
dition, on forums and mailing lists, you can find a lot of useful information in case of
problems.

18 2. Software agents in the Travel Support System

JADE can be run on mobile devices With the increasing popularity of mobile devices
with high speed Internet connection, software agents obtain new ways to support their
users. An agent that lives only on a desktop computers (even migrating between different
computers) cannot always interact with its user. It would be a huge restriction that
would probably significantly limit the use of agents in general. For example, an agent
that supports travellers would force its user to either plan everything in advance or
frequently return to the hotel to use a computer. Moreover, this approach would be
very sensitive to all random events. For instance, the selected restaurant can be leased
to a private party, and the user may not be able to enter without an invitation. In this
situation, the user has to either go back to the hotel or (more likely) be angry and
choose the next available restaurant, which may not match his preferences. The JADE
developers were aware of the benefits of running agents on mobile devices and therefore
have provided several add-ons to the JADE agent platform to make this possible. The
first add-on (for J2ME [20]) is called JADE LEAP and is capable of running an agent
container in the split-execution mode (this approach requires a persistent connection
to a remote machine running an agent main container). The second add-on (for the
Android operating system) is called JADEAndroid and it is a part of JADE LEAP. The
most significant difference in comparison to JADE LEAP is the capability of running a
stand-alone JADE platform (without the need to be non-stop connected to the internet;
see, also, next section).

JADE provides useful tools (WADE) WADE [36] is a software platform based on JADE.
It provides support for execution of tasks described as work-flows. WADE comes with a
development environment called WOLF. WOLF is an Eclipse [12] plug-in. WADE will
be utilized within the system due to its robust functionality and capability of being
integrated with an agent on an Android device (requires the JADE Android add-on).
Moreover, it will also provide a set of developer tools during the implementation phase
(for example graphical representation of processes defined as workflows).

2.4. JADE on mobile devices

The JADE LEAP add-on was developed by the JADE team to support running the JADE
agent platform in split-container execution mode on devices with JAVA Micro Edition (for-
mally known as J2ME). Split-container execution mode requires a persistent connection to
a remote machine running a JADE main container. Execution of the agent container is split
between the device (front-end) and the remote machine (back-end). The drawback of this
approach is the need to maintain the connection. If the connection is broken, then the agent
container (and all its agents) is suspended until the connection with the remote machine is
re-established. In the case of some rare devices (with the less popular version of J2ME), it
was possible to run the JADE agent platform in stand-alone container mode. The stand-
alone container mode, unlike the split-execution mode, allowed to run the full JADE agent
platform. However, devices utilizing J2ME quickly passed away, making room for the first
smart-phones.

Due to the growing interest in more powerful mobile devices, such as smart-phones and
tablets, the Travel Support System will use the JADEAndroid add-on. The JADEAndroid is
an add-on for JADE which allows to run a multi-agent system on Android. It is also a part of
the JADE LEAP add-on. Since Android was developed for smart-phones and tablets (more
powerful than the J2ME devices), the JADEAndroid supports split execution and stand-alone

2.4. JADE on mobile devices 19

modes. Due to the nature of the system, it is a very important feature. Namely, a traveler
may not be able to maintain the network connection with the remote host in all situations
or the cost of the internet connection may be too high (due to the cost of roaming). In such
situations, data transfer should be limited only to receiving the most important data. Running
the JADE platform in split execution mode can be inefficient. The Travel Support System
should be autonomous and, therefore, it will run in the stand-alone execution mode.

This section covers a careful analysis of the JADEAndroid add-on. The section starts with
a short summary of the most important information about the Android Operating System.
Then we discuss some problems concerning running the JADE agent platform with JADE-
Android. The section ends with a proposition of solutions to address these problems and a
presentation of their implementation.

2.4.1. Android Operating System

Android [7] is an open source, Linux-based operating system [21] developed by Google for
touch-screen mobile devices such as smart-phones and tablets. Nowadays, Android is the
most widely used mobile operating system. The keys to its success are the increasing number
of new applications that extend the initial functionality of the system and a large community
of developers. The source code of the system is provided by the Google under the Apache
License [9]. Due to this, the system can be freely modified and distributed by manufacturers,
wireless carriers and enthusiast developers (for example, OUYA [23], an open source game
console, runs a modified version of Android 4.1). Moreover, Google provides a set of developer
tools called Android SDK which aids developers in providing their application to the users.
The Android applications are distributed either for free or at a cost by a digital application
distribution platform called Google Play [16] (previously known as Android Market). Users
can customize the functionality of their devices by installing new applications. Furthermore, a
lot of popular PC applications have their versions for Android (for example, FireFox, Opera,
Chrome, Avast Anti-virus, and so on).

Android Application

Android applications are written in the Java programming language. Since the Android op-
erating system is a multi-user Linux system, each application is a different user identified by
a unique Linux user ID. A Linux user ID is unknown to its application and is used only by
the system.

An Android application is composed of one or more application components — activities,
services, context providers and broadcast receivers – which are packed into a single .apk file.
All four types of application components can be described as below.

Activity An activity [1] is an action that can be performed by the application on a single
screen with a user interface (for example, in an e-mail application, one activity can show
a list of new e-mails and another one can compose an e-mail). Despite the fact that they
work together, each activity is independent of the others. By the nature of the Android
operating system, activities can be called between applications (for example, a camera
application can start an activity from an email application – if the email application
allows it – in order to send a picture).

20 2. Software agents in the Travel Support System

Service A service [6] is an application component that performs long-running operations in
the background (for example, playing music or monitoring data). It does not provide a
user interface. On Android, Services can be accessed by local application components (in
the same VM) and by other processes via the AIDL. There are two types of services with
respect to their lifespan – started and bound. We can say that a service is started if it
an application component (for example, an activity) starts it by calling the startService
method. A started service can run in the background indefinitely until it is directly
stopped by calling the stopService method. On the other hand, a bound service is
created when an application component binds to it by calling the bindService method.
There can be multiple application components, which are bound to a single service
at the same time. Clients interact with a bound service via a provided interface; if
the binding was successful. A bound service runs as long as at least one application
component is bounded to it. If all its clients call the unbindService method, the service
is immediately removed. A service can be started and bound at the same time. For
instance, a service that has to be continuously running, but also provides the inter-
process communication (IPC). In such a situation, both conditions must be satisfied
before the service is destroyed (an application component calls the stopService method
and all its clients are unbound).

Content provider A content provider [10] is a standard interface that manages access to
a structured set of data for applications running in a different process. Through the
content provider, the other applications can query and modify the data (if the content
provider allows it). For example, the Android operating system provides a content
provider for accessing the user’s contact information. If an application has the proper
permissions, it can read and write information about a particular person. A content
provider is only required if data has to be shared by multiple applications. However,
some developers can also find it useful for reading and writing private information.

Broadcast listener The Android system provides system-wide broadcast announcements
as a form of communication. A broadcast listener [10] is an application component
responsible for listening for and responding to them. For example, an application can
be informed when the screen is turned off or when the battery capacity reaches its
minimum. Applications can also initiate broadcasts. For example, an application can
inform others that some data has been downloaded. Broadcast listeners do not pro-
vide a graphical user interface. Typically, they use simple listeners which initiate other
application components and, in general, do a very minimal amount of work.

Since the Android system is an operating system for mobile devices, such as smart-phones and
tablets, it is important to understand how application components work together and how
to properly utilize them. First of all, the system tries to reduce the amount of resources used
and preserve battery power by killing unused application components. A detailed description
of how the system marks an application component as unused (or as killable) is presented
in the next section. Second, activities, services and broadcast listeners are executed in the
main thread of their application. Therefore, it is necessary to carefully plan the execution
of long-running operations to avoid Application Not Responding (ANR) errors. Fortunately,
the Android system allows to run some application components in separate processes, if it is
explicitly written in the application configuration file.

2.4. JADE on mobile devices 21

Life-cycle of Android Application

As mentioned above, an application is a set of application components. To properly under-
stand how an application works, it is necessary to understand when its application components
are created and when the system destroys them. Thus, this section focuses on the life-cycles
of activities and services.

In the Android system, an activity can be in one of three states: Resumed, Paused, Stopped.
In the Resumed state, the activity is running in the foreground of the screen (it is visible
to the user). This state implies that the activity cannot be killed. In the Paused state, the
activity is partially covered by another activity. Thus, the system can kill such activity when
it is in the “extremely low memory” situations. In the Stopped state, the activity is in the
background, so it is not visible to the user. In such a situation, the system can kill such an
activity when memory of the activity is needed elsewhere.

Figure 2.1: The activity life-cycle

Figure 2.1 presents the detailed visualization of the activity life-cycle. The states of the
activity are represented by its methods and the transitions between them are shown as ar-
rows:

onCreate – the activity is created for the first time. In this state, it should set everything
up – bind or start services, create user interface and so on. The activity is not Killable.

onStart – the activity is visible to the user. This state means either the activity was
created (onCreate) or it was stopped (onResume). The activity is not Killable.

onResume – the activity is at the top of the activity stack. This means that the activity
receives user input. This state is also called after the activity was paused (another
activity partially covered the screen). The activity is not Killable.

onPause – the activity is partially covered by another activity. The activity is Killable
if an application with higher priority requires additional memory.

onStop – the activity is no longer visible to the user. The activity is Killable if an
application with higher priority requires additional memory.

22 2. Software agents in the Travel Support System

onResume – the activity was invoked by the user and brought back to the foreground.
The activity is not Killable.

onDestroy – the activity is finishing or being destroyed by the system. The activity is
Killable if an application with higher priority requires additional memory.

There are four additional states: Activity launched, Activity running, Application process
killed and Activity shut down. The initial state is the Activity launched. This state indicates
that the activity has been started by the user, or another application. The Activity running
state represents the time, in which the activity is in the foreground (it is completely visi-
ble to the user) and performs some work. Two states indicate that the activity was killed:
1) Application process killed, and 2) Activity shut down.

Figure 2.2: The service lifecycle. The diagram on the left shows the lifecycle when the service
is created with the startService method and the diagram on the right shows the lifecycle
when the service is created with the bindService method

The service, unlike the activity, does not depend on visibility on the screen. There are two
types of services – started and bound. Each type works a little bit different than the other.
Figure 2.2 shows a detail diagram representing the life-cycles of the started (on the left) and
bound (on the right) services. The states (represented by the methods of services) can be
described as follows:

onCreate – the service is created for the first time. The service is not Killable.

onStartCommand – the activity is visible to the user. This state means either the
activity was created (onCreate) or it was stopped (onResume). The activity is not
Killable.

onBind – this state is only available to the bound service. A new client is bound to the
service.

onUnbind – this state is only available to the bound service. One of the clients becomes
unbound. If there are no more bound clients, the service is immediately destroyed
(onDestroy).

2.4. JADE on mobile devices 23

onDestroy – the service is either stopped by one of its clients (started service) or it has
no bound clients (bound service).

There are three additional states: Service lunched, Service running and Service destroyed.
Each state is a little bit different with respect to the service type. If the service is started,
it was created with the startService method. Then, it will remain running until one of its
clients calls the stopService method. If the service is bound, it was created with the bindService
method and it will remain running until all of its clients call the unbindService method.

The term killable means that the system can (but does not have to) kill the application
components. In case of an activity, the system should kill it when the activity is in the
background and another application with higher priority requests additional memory. It is
also possible that the system will kill an activity if it runs out of free memory. In the case
of a service, the system will kill it immediately after calling the stopService method or when
the last client becomes unbound.

Interprocess Communication (IPC [46])

On Android, an application lives in its own security sandbox — the code is isolated from
other applications. Each process has its own virtual machine (VM) responsible for executing
the code. For this reason, the system provides a very secure environment. On the other hand,
this raises the question concerning interprocess communication (how two applications can
share data?). Fortunately, the Android system provides several methods to do so. In this
section, we describe two methods mentioned in the official documentation.

Android Interface Definition Language (AIDL) AIDL [3] is an Interactive Data Lan-
guage (IDL) [18]. The bound service can provide AIDL as an interface for the interpro-
cess communication. Clients from different processes can bind to the bound service like
to a local one by calling the bindService method. It is worth to notice that a service has
to be uniquely identified. The drawback of this approach is that the Android system can
only send simple types of data such as string, integer, double, list and so on. For more
complex objects, the developer has to implement methods to transfer them between
different processes.

Two applications can share the same Linux user ID If it is directly specified in the
application configuration file, two different applications can share the same Linux user
ID. This means that they can access their components (for example, one application
can call an activity in its sister application). Moreover, they can share the same VM.

Application’s permissions

The Android operating system implements the principle of least privilege [26] (also known
as the principle of minimal privilege, or the principle of least authority). This means that
an application has access only to the amount of resources required to complete its task. An
application can request permissions to access device data (for example, user’s contacts, text
messages) and services (Blue-tooth, Internet, camera and so on). A user has to confirm all
application permissions before installation.

24 2. Software agents in the Travel Support System

Communication within the Android operating system

Application components communicate via messages called intents [2]. Intents are used in a
variety of ways. First of all, they are used to activate application components. For example,
an activity, which allows to create an e-mail, can start another activity, which operates
the camera, to take a photo as an attachment. Second, intents are used to make system-
wide broadcast announcements. Such broadcasts contain a description of something that has
happened. For example, the screen was turned off, the battery reached the critical level and
so on.

2.4.2. Analysis of JADEAndroid

The system should support a traveller in any situation. Due to this, in the analysis of the
JADEAndroid add-on, we focus on the stand-alone mode. However, some problems and so-
lutions can be also applied to the split-execution mode.

The JADEAndroid runs the main agent container as a bound service. Since Android services
are more autonomous than other application components and can perform long-running op-
erations, this was an obvious choice. However, a bound service is immediately terminated
after all its clients become unbound. Therefore, the life-cycle of the main agent container
strongly depends on its clients. Typically, a bound service is bound to activities. From the
activity life-cycle, we know that activities have the lowest priority in the Android system.
Namely, an activity cannot be killed only if it is completely visible on the screen. When an
activity is only partially visible or in the background, the system can decide to destroy such
an activity if additional memory is needed. It is important to observe that the official Android
documentation does not define when the system can make such a decision and the term when
additional memory is need can describe multiple different situations. The termination of an
activity also means that all its resources (including bindings to services) have to be released
and if all activities (clients) bound to a bound service become unbound, then the service is
also destroyed. This problem does not apply to all possible agent applications in Android,
however, it significantly limits opportunities, in which software agents can be utilized. For
example, let us consider an Android application which communicates with sensors placed on
an elderly person. The application has to monitor the vital parameters and properly react
to critical changes. In this case, it is important to keep the agent platform running as long
as possible. However, the developers cannot force the user to keep an activity bound to the
JADE service on the screen. Thus, the JADE service has to become independent of the other
application components and, therefore, the visibility on the screen.

In the Android system, each application component is uniquely identified. Due to this, it
is possible for an application component to call another one from a different application.
Services also have this feature. However, the agent main container, as a service, is accessible
only locally. This means that only the application components, which belong to the same
application that runs the service, can access the agent main container. If an application
component tries to run the agent main container when it is already running in the process
of another application, the service will be killed and recreated for the calling application
component. In the termination process, all existing agents will be killed.

From this analysis, we can clearly identify two major limitations:

1. The expected life-time of the agent platform running on JADEAndroid cannot be esti-
mated.

2.4. JADE on mobile devices 25

2. Only one application can access the agent platform.

These two limitations do not apply to all possible usages of software agents on Android
devices. However, they restrict some interesting opportunities to utilize the JADE agent
platform. In the case of the Travel Support System, the first limitation is the problem that
has to be resolved. One of the unique features introduced in the Travel Support System is the
proactive behaviour. The agent (or a set of agents) has to monitor the current user context
and take proactive actions accordingly. For example, if the user receives a new text message,
the system can create a new recommendation based on its content (see the second use case
scenario in section 4). Since it is impossible to predict when the agent main container is killed
to free additional resources, this feature can be restricted by other applications running on
the Android system, which contradicts the usage of the software agents as autonomous and
independent software components.

The second limitation is not so important from the perspective of the considered system
(there are no other applications utilizing software agents). However, a closer look at this
problem can provide some benefits for the further development of software agents on An-
droid devices. Thus, the next section presents a detailed description of the solutions to both
limitations.

2.4.3. JADEAndroid – Proposed Solutions

The first issue can be easily resolved by methods available within the Android system. First
of all, the JADEAndroid can replace the bound service with a started one. Since the started
service cannot be stopped by the system (or, at least should be stopped last; only if such
radical solution is absolutely necessary), the agent main container can operate as long as
the host application needs to. For example, the agent main container can be created when
the user starts the application. Then, it can remain running even if the application is in the
background. Finally, the main agent container can be destroyed when the user deliberately
closes the application. It is also worth mentioning that the JADEAndroid source code contains
an error concerning started services. Namely, the override onStartCommand method throws
an exception which indicates that a service, which implements this method, can be accessed
globally. This is not true since the JADEAndroid does not provide an AIDL interface, which
allows interprocess communication. According to the official Android documentation, the
onStartCommand method is required to properly manage the life-cycle of the started service.
Secondly, the JADE service can be run in the foreground. By setting the foreground flag in
the service, the developers notify the system that killing it would be disruptive to the user.
Thus, the system increases the priority of the service. The service is required to provide an
ongoing notification, which is displayed as long as the service remains in the foreground.

The second limitation is composed of two parts – (1) a service has to be uniquely identified,
and (2) the agent main container has to mange multiple agents from different applications.
The first part of the problem prevents the JADEAndroid to be used by two or more appli-
cations at the same time. To overcome this limitation, the developer can simply override the
existing service in such a way that the application will call it as a local application com-
ponent. Thus, the new service, unlike the service provided by the JADEAndroid, will be
uniquely identified, since it belongs to the application name-space. To address the second
part of the problem, several different approaches have been tested:

The agent Main Container runs as a stand-alone application By running the agent
Main Container as a stand-alone application, the system can easily provide global access

26 2. Software agents in the Travel Support System

to a single JADE agent platform. In this approach, each agent-based application creates
its own agent container connected to the main agent container. Since all the agents are
connected to the same agent platform, they can easily interact with each other. However,
this approach requires the user to run an additional application, which creates the agent
main container and, therefore, an extra amount of work has to be put to develop such
an application. Moreover, some developers can find it not user-friendly, since the user
has to install the JADEAndroid in the system and then remember to run it before other
agent-based applications will be launched. Therefore, this approach more likely fits the
PC architecture than the simplified life-cycle of the mobile application.

Each application provides its own agent Main Container In this approach, all agent-
based applications implement their own service responsible for creating the agent main
container. Each agent main container is identify by the same IP address and a sub-
sequent port number (starting from the default port number). Thus, all agent-based
applications are independent of each other. The drawbacks of this approach are (a) the
impeded communication between agents belonging to different applications, and (b) the
amount of resources required to run several main agent containers.

All the above considerations can be summarized into one conclusion, that there are many ways
to improve the JADEAndroid, but the decision which one is the best can differ with respect
to the purpose of MAS that has to be designed. For example, if an agent-based application
does not need to communicate with other software agents, but it has to work 24/7 without
an internet connection (consider an application that monitors vital parameters of an elderly
person, communicates only with sensors via a Blue-tooth connection, and its only purpose is
to notify an emergency service by sending a text message or calling the emergency number in
case when something goes wrong), then the best solution would be to implement its own main
agent container. On the other hand, if an application can only work when it is connected to
the internet and it uses a lot of battery power for repeated calculations, then the existing
split-execution mode can be used. The next section contains the detailed implementation of
the JADEAndroid plug-in utilized by the Travel Support System.

2.4.4. Proposed implementation of the JADEAndroid in the Travel Support
System

For the purpose of this thesis, the JADEAndroid plug-in has been extended on the basis of
the following considerations:

1. The Travel Support System does not communicate with other software agents on the
same device. Thus, there is no need to share the agent main container with other
applications.

2. An agent (or a set of agents), which operate(s) inside the Travel Support System is
continuously monitoring the user’s contextual information. Even if the Android system
is not connected to the Internet, the Travel Support System should schedule delivery
of recommendations and display them to the user as soon as the Internet connection is
resumed.

Therefore, the Travel Support System should operate in the stand-alone execution mode with
its own main agent container.

2.4. JADE on mobile devices 27

The enhanced version of the JADEAndroid plug-in also contains several improvements, which
do not concern directly the main subject of our work, but significantly facilitate the use of
software agents. Here is the list of the most noticeable changes:

Some methods have been redesigned to be more intuitive RuntimeService, unlike Mi-
croruntimeService used in the split-container execution mode, does not provide simpli-
fied versions of some methods.

The service stores references to the object-two-agent (O2A) interfaces This change
was proposed to address the agent synchronization issue and the activity life-cycle (when
an activity is killed, all its resources are released, including the O2A interfaces).

The class diagram of the JadeService is presented in Fig. 2.3 . The class is uniquely iden-
tified within the application namespace by its canonical name (the package name and the
class name), travel.support.service.JadeService. In the JADEAndroid, the service is always
identified by the same canonical name, jade.android.RuntimeService. Thus, if two or more
applications request binding to the RuntimeService at the same time, the service is destroyed
and recreated for the last calling application. This does not hold for our service, since its
canonical name is unique.

Figure 2.3: The class diagram of travel.support.service.JadeService

Figure 2.4: The class diagram of travel.support.service.JadeBinder

The JadeService class provides a field called agents, which is a type of HashMap¡AID,
O2AInterface¿. This field stores all O2A interfaces (interfaces to communicate with agents)
listed by agent IDs (AID). This change especially addresses the life-cycle of activities. Each
time, an activity is destroyed and recreated, it has to obtain all needed O2A interfaces. Since,
all the agents in the Travel Support System monitor the user’s contextual information, it
can be a common situation that they will live longer than the activities which utilize them.
Unfortunately, in the stand-alone execution mode, there are no such methods which can be
used to determine if an agent is alive and to obtain its O2A interface. Therefore, the Jade-
Service class provides such functionality by monitoring events concerning the JADE agent
life-cycle.

28 2. Software agents in the Travel Support System

The JadeService class implements all the previously described methods required by a started
service:

onCreate – JadeService is created. The service initiates the agent main container and
registers all listeners. In this method, the service is also started in the foreground. This
means that an ongoing notification is registered in the Android system.

onStartCommand – Unlike RuntimeService available in the JADEAndroid plug-in,
JadeService implements the onStartCommand method. Since the service is started,
this method is required to properly manage its life-cycle.

onBind and onUnbind – All activities in the Travel Support System can bind to Jade-
Service. The onBind method provides an instance of the IBinder interface, which is
used to manage the agent main container.

onDestroy – JadeService is destroyed and the agent main container is terminated.

The class diagram of the IBinder interface provided by the JadeService is available in Fig. 2.4.
JadeBinder extends the Binder class, which provides a basic implementation of the IBinder
interface. Since the Travel Support System does not require running multiple agent containers,
the JadeBinder provides only two simple methods:

• createAgent – create an agent in a “default” agent container. The agent is also activated
within this process.

• killAgent – an agent is terminated and all its resources are released.

It is assumed that the JadeService creates only one agent container as a “default” container,
so there is no need to specify this in the createAgent method.

Chapter 3

The Recommender System

The central component of the Travel Support System is the recommender system [48]. This
is a good decision since the recommender system proved to be useful in the item-to-user
recommendations. In the case of the Travel Support System, a real word location can be seen
as an item with a set of properties, which the user may or may not like.

The detailed description of the recommender system used in the new implementation of the
Travel Support System is presented in the following sections.

3.1. Introduction to the Recommender Systems

Recommender systems are a subclass of information filtering systems, dedicated to predicting
user preferences and determining items/places they may be interested in. Predictions are
calculated, based on the history of user activity in the system such as browsing, searches,
purchases, and so on.

The idea of the recommender system came directly from the assumptions of the information
filtering: user has relatively stable needs, but content (the number of possible choices) is
increasing over time. A new content is passed through the user profile (used as a filter) to
obtain the outcome.

However, the old recommender systems did not work efficiently when the total size of the
content was large (for example, the number of articles on the internet concerning a particular
subject). Due to this limitation, researchers proposed manual collaborative filtering (users
recommend items to each other), followed by automated collaborative filtering (the system
recommends items to users). This extended the initial idea (keywords and topics) by more
complex specifications: quality and taste.

The first automated collaborative filtering system was proposed in 1994 by the GroupLen-
sProject [17] for the Usernet News. The tests made on the GroupLens system showed that
the automated collaborative filtering worked and the participants found it very useful. Some
of them kept using the test software after the end of the test.

Nowadays, recommender systems are widely used in filtering interfaces (email filters), rec-
ommendation interfaces (suggestion lists, promotions and offers) and prediction interfaces
(predicted ratings). There are several different types of recommender systems:

29

30 3. The Recommender System

Purely Editorial Recommender Recommendations are made by users to other users. Al-
gorithms are not involved in the process.

Content Filtering Recommender Recommendations are made by the system based on
user profile.

Collaborative Filtering Recommender Recommendations are made based on several
“nearest” neighbours of the current user profile.

Hybrid Recommender Recommendations are made by utilizing different technologies in
one system.

3.2. Common Pitfalls concerning Recommender System

Despite the vast research done on the filed of recommender systems, some people can still
make common mistakes. The list of such pitfalls is presented next:

Collecting user opinions It is necessary to determine a set of user actions, which will be
taken into account. The most simple and direct approach is to provide a rating system
within the user interface. However, it was empirically proved that the indirect actions
such as browsing, searching and purchasing are also a valid source of information since
users frequently do not rate all the items they were interested in. Moreover, most of
users do not re-validate the “once rated” items after some time (for example, when
their preferences have changed). Due to this, some user ratings can become obsolete
after some time.

Making the best recommendation Recommender systems should produce “the best pos-
sible” recommendation. However, they are supposed to avoid the most obvious recom-
mendations (for example, recommending an item, which is on the top of user’s list of
favourite items and will be bought regardless of the recommendation). A perfect recom-
mender system should recommend an item, which is interesting to a user and (without
a recommendation) would be missed.

3.3. The algorithm proposed for the Travel Support System

The Travel Support System utilizes the Rhee-Ganzha algorithm [47] for measuring semantic
closeness of ontologically demarcated resources (or simply the Rhee-Ganzha algorithm). The
decision to use this particular algorithm was made based on a number of factors:

• Nowadays, the recommender systems favour algorithms based on very large user-to-
product or user-to-user matrices. The idea of finding k-nearest elements in an ontology
is not so distinct from the current trend, but also provides something new. Thus, it is
more interesting to take the risk and evaluate this new algorithm rather than utilize an
old one.

• Due to the fact that the Travel Support System is a multi-agent system, the algorithm
will easily integrate with the ontological representation of knowledge inside the system.

• Despite the fact that the algorithm was proposed in 2009, its performance was never
evaluated on a realistic data. The implementation of the algorithm used within the“Agents

3.3. The algorithm proposed for the Travel Support System 31

in Personalized Information Provisioning” (APIP) [30] project is not consistent with its
description.

General description of the algorithm

The algorithm was proposed based on the observation that, in any knowledge space, informa-
tion resources do not exist in isolation from each other, but are connected through multiple
relations. The relations can be explicit or inferred. Thus, the existence, the strength and
the number of relations between two resources can determine a degree to which they are
semantically similar (or semantically close).

In context of our previous discussion concerning recommender systems, semantically close
resources can be used to create personal recommendations. Namely, if the system knows that
the user likes a resource A, then it can ask the algorithm for a resource B which is the closest
with respect to the semantic closeness. Moreover, the proposed algorithm can determine the
level of semantic closeness between two entities, which have completely different nature. For
example, a restaurant and a club can have smoking areas and free wifi connections. The
system can use such information to create an alternative recommendation, which does not
match all the user preferences, but is not completely contradictory to them.

Assumptions concerning the relevance calculation

The relevance calculation is based on the following three basic assumptions:

1. Having more relations from one object to another means that they are closer (more
relevant).

2. Each relation has different importance depending on the type of the relation.

3. Even if the relations are of the same type, the weight of the connection can vary between
individual objects (instances).

Since these assumptions are often referenced in the remaining parts of the thesis, it is impor-
tant to understand them. The first assumption is very intuitive. For example, let us consider
three restaurants – A, B and C. All three of them are located in the same city. However,
restaurants A and B, unlike restaurant C, do not allow one to smoke (or do not provide
a designated smoking area outside). Therefore, it is intuitive that restaurants A and B are
semantically closer to each other than to the restaurant C (which has tables outside, where
smoking is allowed).

The second assumption means that relations are weighted according to their semantic im-
portance. In the previous example, restaurants can have a relation indicating if a customer is
permitted to smoke in the restaurant. Let us also consider another relation indicating a type
of cuisine. In general, we can assume that the type of cuisine is more important than the
presence of a smoking area. For example, a smoking tourist will probably choose a restau-
rant serving his favourite dish, but without a smoking area, rather than a restaurant, which
serves the food that he does not like, but permits to smoke. Of course, the tourist can do
the opposite and go the second restaurant where he is permitted to smoke (e.g. when he is
a hungry chain smoker), but this illustrative example shows clearly that some relations are
more important than other. Thus, the system should have means to determine the strength
of a relation.

32 3. The Recommender System

The third assumption states that two individual objects of the same type can have different
weights. This problem can be illustrated by the following observation: a famous Chinese
restaurant and a low-quality Chinese fast-food serve meals demarcated as “Chinese cuisine.”
However, the quality of the meals in these restaurants differs significantly. Note that the
cuisine relation has the same importance for all restaurants. Thus, the system requires an
additional weight, which describes user preferences with respect to an individual information
object (e.g. one tourist may not care what is the “status” of the restaurant, while another
may not want to eat in a Chinese-fast-food).

General description of the relevance calculation process

Following the proposal described in [47], the core component of the algorithm is a matching
engine, which is responsible for finding semantic closeness represented as a single number.
In order to use the matching engine, a matching criterion has to be specified. The matching
criterion is defined as an ordered quadruple < x, q, a, g >, where:

x is a source object

q is a query which defines a subset of objects that are considered potentially relevant;
these objects will be matched against the source object x

a ≥ 0 specifies the threshold of closeness between objects to be judged actually relevant
to each other

g is a sub-query which is used to optimize the matching process by reducing the number
of considered nodes

The relevance calculation process is composed of two stages (1) Graph Generation, and
(2) Relevance Calculation. In the first stage, an ontology is used to create a graph, which is
used by the algorithm to find all direct and indirect relations between information objects.
The second stage requires the graph corresponding to the ontology, the source object and
a set of target objects. In this stage, the algorithm calculates relevance values between the
source and each target object. Let us discus each stage in details.

Graph Generation A graph generated in the first stage is called a Relevance Graph. A
Relevance Graph is a directed label graph G = (V,E), where

• V is a set of nodes (a set of individual information objects)

• E is a set of edges (a set of relations)

It is worth to notice that the structure of the graph does not restrict the number of edges
between two adjacent nodes, so if two information objects are connected by multiple
relations, the two corresponding nodes in the relevance graph will also be connected by
the same number of edges. Moreover, the graph can also contain cycles.

To avoid high computational costs, the graph generation process has to be carefully
planned and optimized. Let us consider the node and edge generation methods used
within the Travel Support System.

A naive approach for node generation is when all individuals in an ontology become
relevance graph nodes. However, the naive approach requires a huge amount of resources
to process large ontologies. Moreover, this will also affect further calculations concerning
semantic closeness because the complexity of the calculations depends on the number

3.3. The algorithm proposed for the Travel Support System 33

of nodes and edges. However, not all nodes are relevant in every context. For example, a
relevance graph can only include restaurants, which are within a certain distance form
the user.

To optimize the node generation method, in the Travel Support System, a relevance
graph is built only from the information objects, which are relevant with respect to
the contextual information. This means that the algorithm processes only a small part
of the ontology. Specifically, in the current approach, the algorithm does not need to
include information objects exceeding a certain distance from the user. For example, a
maximum distance can be set to 2 km for walking and 50 km for a car drive.

Edges in the relevance graph represent relations between nodes and are generated from
relations between information objects from an ontology. Each edge can be defined as
e ∈ E = (x, y, distance, weight), where

• x ∈ V is the tail node of the edge e

• y ∈ V is the head node of the edge e

• distance ∈ N is the conceptual distance value (the second assumption)

• 0 ≤ weight ≤ 1 ∈ R is the individual level weight value (the third assumption)

The distance between two adjacent nodes can be expressed via a formula

Distance =
1

Relevance
(3.1)

and, in practice, all distance values can be initialized to a single value (for example,
distance = 1). For non-adjacent nodes, the distance value has to be calculated by an
equation presented later in this section. Since the description of the algorithm does
not provide an automated method to update these values, they have to be manually
modified by the ontology developer or a domain expert. On the other hand, weights of
particular information objects are determined by interactions between the system and
the user. A more detailed description of how they are calculated is presented in the
section concerning the user profile.

Relevance Calculations The relevance calculations start from optimizing edges in the rele-
vance graph. Here, we distinguish two important operations: edge scaling and edge merg-
ing. Edge scaling individualizes each edge’s distance by multiplying its relevance value
by its weight. This operation is a consequence of the third assumption. Equation 3.2
presents a formula to calculate a scaled distance for an edge e = (x, y,Distance, weight) ∈
E.

NewRelevance = Relevance× weight

NewDistance =
1

NewRelevance

(3.2)

Since the structure of the relevance graph is not restricted, there can be multiple edges
between two adjacent nodes. To simplify the relevance calculation and preserve the cu-
mulative strength of connections, the algorithm applies the edge merging operation. For
two adjacent nodes x, y ∈ V , and edges e1(x, y,Distance1), . . . , en(x, y,Distancen) ∈
E, the operation creates a merged edge e′ = (x, y,NewDistance) (it is assumed that,

34 3. The Recommender System

in this step, all the edges are scaled by the edge scaling operation, thus the weights are
omitted). The formula is defined as follows:

NewDistance = (

n∑
i=1

1

Distancei
)−1 (3.3)

Note that the calculated distance represents semantic closeness of adjacent nodes.

Let us now consider the relevance between non-adjacent nodes. First of all, the algorithm
tries to find all valid paths between two non-adjacent nodes (the source node and one of
the target nodes). A path is valid if and only if it is a simple path (namely, it does not
contains repeating nodes). If there is no valid path between two non-adjacent nodes,
it means that they are not related, hence their relevance is equal to 0 (the distance is
equal to infinity). If there exists one or many valid paths, first, the algorithm calculates
distances for each of them. In graph theory, the path weight in a weighted graph is the
sum of the weights of edges in the path. Equation 3.4 shows the formula for a simple
path, where denotes the distance between two adjacent nodes and

DistanceP =

n−1∑
i=1

Distanceaiai+1 . (3.4)

However, by applying equation 3.4, the algorithm can produce undesirably close results
for two non-adjacent nodes with multiple connections. For example, consider nodes x, y
and z, where x and y are connected via medium-strength direct relations, and x and z are
connected via multiple long paths. Thus, the algorithm should return y. Unfortunately,
based on equation 3.4, it can return z if there exists a large number of very long paths
between x and z. From the example, we can derive two important adjustments which
have to be applied to the formula: 1) direct relations should be stronger than indirect
relations and 2) the length of a path makes the corresponding indirect relation weaker.
Therefore, equation 3.4 can be redefined as follows

DistanceP =
n−1∑
i=1

i×Distanceaiai+1 (3.5)

By applying equation 3.5 in the calculation, distances of long paths are weaker, but it is
still possible to overcome direct relations. Thus the algorithm becomes more intuitive.

In the last step, the algorithm calculates the cumulative influence of all paths between
the source and the target node. This operation is very similar to edge merging. For n
paths P1, P2, . . . , Pn from x ∈ V to y ∈ V the relevance value Relevancexy is defined
as follows

Relevancexy =
k∑

i=1

1

DistancePk

(3.6)

3.3. The algorithm proposed for the Travel Support System 35

3.3.1. Additional algorithms and data structures

The critical part of the algorithm is to determine all simple paths between two nodes. Unfor-
tunately, the description of the algorithm does not suggest how this task can be accomplished.
Therefore, the decision we made to implement a new implementation of Yen’s algorithm [49]
for finding k-shortest simple paths.

Fibonacci heap

The Fibonacci heap used in the Matching Engine is implemented according to [39]. A Fi-
bonacci heap is a collection of item-disjoint heap-ordered trees. A heap-ordered tree is a
rooted tree containing a set of items arranged in heap order. Namely, if x is a node, then its
key is no less than the key of the parent (provided that x has a parent). Thus, the root con-
tains an item with the smallest key. There is no explicit constraint on the number or structure
of the trees. However, the number of children of a node represents its rank. The rank of a
node with n descendants is O(log n). The heap-ordered trees can perform an operation called
linking. The linking operation combines two item-disjoint trees into one.

The heap is accessed by a pointer to its root, which contains an item with the smallest key.
We can also call this root the minimum node. If the minimum node is undefined, the heap is
empty. Each node contains a pointer to its parent, another pointer to one of its children and
its rank. The children of each node are doubly linked in a circular list. This helps the heap
maintain the low cost of its operations. For example, the double linking between a root and
its children makes removing elements possible in O(1). Similarly, the circular linking between
children makes concatenation of two such lists possible in O(1).

Since a Fibonacci heap will be used by Yen’s [49] and Dijkstra’s [38] algorithms as a priority
queue, the most important operations are the delete min operation and the decrease key
operation. The decrease key operation starts by subtracting a given number from the key
of an item i in a heap h. Secondly, the algorithm finds a node x containing i and cuts
the edge joining x to its parent (it also decreases the rank of the parent). As a result, the
algorithm creates a new sub-tree rooted at x. If the new key of i is smaller than the key of
the minimum node then the algorithm redefines the minimum node to be x. The complexity
of the decrease key operation is O(1) (this operation assumes that the position of i in h is
known).

The delete operation is similar to the decrease key operation. First, the algorithm finds the
node x containing i and cuts the edge with its parent node. Second, it concatenates the list
of children of x with the list of roots and destroys x. The delete operation complexity is O(1)
(this operation assumes that the position of i in h is known).

The delete min operation requires finding pairs of tree roots of the same rank to link. This is
achieved by using an array indexed by ranks. After deleting the minimum node and forming
a list of new tree roots, the algorithm inserts the roots one by one into the array. If the root
is inserted into an array position which is occupied, then the algorithm performs the linking
operation on the roots in conflict. After successful linking, the resulting tree is inserted to
the next higher position. The delete min operation ends when all the roots are stored in the
array and its amortized time is equal to O(log n).

36 3. The Recommender System

Dijkstra’s algorithm

Dijkstra’s algorithm [38] is a graph search algorithm that solves the single-source shortest
path problem for a graph with non-negative edge path weights. It is also used to produce a
shortest path tree. For a given source node in the graph, the algorithm finds a path with the
lowest cost (the shortest path).

To optimize Dijkstra’s algorithm, the implementation uses a Fibonacci heap as a priority
queue. This improves the time complexity of the algorithm to O(|E| + |V | log |V |), where E
is a set of edges,V is a set of vertices and |.| denotes the size of a set.

The algorithm proceeds as follows:

Djikstra’s algorithm

Constructs an array of nodes which can be used to reconstruct the shortest path

Input: a graph G, the source and the target

Output: an array of nodes which can be used to reconstruct the shortest path

for each vertex v in the graph G do
distance from the source to v (denoted by dist[v]) is equal to infinity
the previous node in the optimal path from the source to v (denoted by previous[v]) is

undefined
end for
dist[source] is equal to 0
initialize a queue Q, which contains all the nodes
while Q is not empty do

let u be a vertex in Q with the smallest distance from the source
remove u from Q
if dist[u] is equal to infinity then

break
end if
for each neighbour v of u do

calculate an alternative distance alt = dist[u] + distance(u, v)
if alt is smaller than dist[v] then

dist[v] = alt
previous[v] = u
reordervinQ

end if
end for

end while
return previous

The shortest path can be reconstructed by executing the following algorithm:

Reconstruct

Reconstructs the shortest path from an array of nodes

Input: the previous array of nodes constructed by Dijkstra’s algorithm, the target node

Output: a sequence containing the shortest path

let S be an empty sequence
u is equal to the target

3.3. The algorithm proposed for the Travel Support System 37

while previous[u] is defined do
insert u at the beginning of S
u = previous[u]

end while
return S

Yen’s algorithm

Yen’s algorithm [49] is a deviation algorithm that finds K single-source, shortest, loopless
paths in a graph with non-negative edge cost. Let us consider the k-th shortest path pk =
{v1k, v2k, . . . , vnk}. In order to find the (k+ 1)-th shortest path, the algorithm analyses every
node vi

k in pk and computes the shortest loopless path p which deviates from pk at this node.
Loopless path pk is said to be a parent of p and vi

k is its deviation node. To avoid loops
during the calculation of a new path, the algorithm should remove all sub-paths between the
source node and a deviation node vi

k. Therefore, all the nodes are temporarily removed and
the algorithm calculates a new path in the resulting graph.

For this thesis, the algorithm utilizes a new implement of Yen’s algorithm described in [44].
The new implementation of Yen’s algorithm was proved to be generally be more efficient
than other implementations (the publication covers the straightforward implementation and
the implementation proposed by Perko). Specifically, the new implementation replaces node
deletion with its reinsertion. This allows to solve the problem faster by labelling and correcting
labels of some nodes. In general, the number of corrected nodes is assumed to be smaller
than the total number of nodes in a graph. The tests performed by the authors of the article
seem to prove this hypothesis. However, in the worst case scenario, the algorithm performs its
computation in O(Kn(m+n log n)), where K is the number of paths, n is the number of nodes
and m is the number of edges. This time complexity is also the worst-case time complexity of
the straightforward implementation (assuming that Dijkstra’s algorithm is used for finding
the shortest path).

Let us start describing the new implementation by defining basic concepts. A shortest path
tree rooted at a vertex x is a spanning tree Tx of a graph G. If x is the terminal node, Tx
represents the tree of the shortest paths from every node to x. Otherwise, Tx represents the
tree of the shortest paths from x to every node. A loopless path from v ∈ V to x in Tx is
denoted by Tx(v). The cost of Tx(v) is denoted by πv and is also used as a label of v. To
generate a shortest path tree and to find the shortest path in a graph G, Yen’s algorithm
uses Dijkstra’s algorithm.

Yen’s Algorithm

Input: a graph G with the source and the target nodes, an integer k

Output: k the shortest paths

p = shortest path from the source to the target nodes in the graph G
d(p) = s
X = {p}
k = 0
while X 6= ∅ and k < K do

k = k + 1
pk = shortest, loopless path in G
X = X \ {pk}

38 3. The Recommender System

πv =∞, for any v ∈ V
remove loopless path pk, except target node t, from the graph G
remove edges (d(pk), v), v ∈ V of p1, p2, ..., pk
Tt = shortest tree rooted at t
for vki ∈ {vklk , ..., d(pk)} do

restore node vki in the graph
calculate πvki

(label) using forward star form
if πvki

is defined then

correct labels of vki successors using backward star form
p = sub(s, vki) · Tt(vki)
d(p) = vki
X = X ∪ {p}

end if
restore (vki ,vki+1) in the graph
if πvki

> πvki+1
+ costvki ,vki+1

then
πvki

= πvki+1
+ costvki ,vki+1

correct labels of vki successors using backward star form
end if

end for
Restore the graph G

end while

Forward star form

Correct labels of x successors

Input: a graph G

for edge e = (i, j) ∈ E do
if πi > πj + costi,j then

πi = πj + costi,j
end if

end for

Backward star form

Correct labels of x successors

Input: a graph G and a vertex

list = {x}
repeat

i = element of list
list = list \ {i}
for edge e = (i, j) ∈ E do

if πi > πj + costi,j then
πi = πj + costi,j
list = list ∩ {j}

end if
end for

until list 6= ∅

3.4. Implementation of the Rhee-Ganzha algorithm 39

3.4. Implementation of the Rhee-Ganzha algorithm

This section summarizes and concludes the above discussion concerning the use of the Rhee-
Ganzha algorithm in the Travel Support System.

3.4.1. RDF Ontology

The Semantic Web [28] (also referred to as a “web of data”) is a collaborative movement led
by the World Wide Web Consortium (W3C) [35], The main idea is to provide a common way
to store data on the Internet by using data formats such as RDF [27].

The data stored inside the Semantic Web can be easily processed directly or indirectly by
the machines. Since the Semantic Web is beneficial for usage of agent-related technologies
(agents’ autonomy, accessibility to the information, unified way of communication with the
environment), the Travel Support System provides data compliant with the RDF specifica-
tions.

An ontology, in computer science or information science, is a formal description of knowledge
as a set of concepts within a domain [45]. Two concepts are connected to each other by one
or many relations. In an agent system, an ontology is used to model a domain and represents
things that can exist for the agents. In the case of this thesis, the ontology describes concepts
within the “Travel” domain (such as Hotel, Room, Restaurant) and relations between them
(for example “Hotel has Room”). Ontologies used within the Travel Support System are
stored in the RDF format.

The Resource Description Framework (RDF) is a family of World Wide Web Consortium
(W3C) specifications. RDF is used to represent information about resources in the form of a
graph. In text form, RDF is represented by a set of semantic triples. Each triple contains a
subject, a predicate and an object.

Resources in RDF are defined by the Uniform Resource Identifier (URI) or the Internation-
alized Resource Identifier (IRI). URI is a superset of the URL. In comparison to the URL,
the URI can identify any resource, not only network documents. The IRI is an extension of
the URI that allows to use international (Unicode) characters. Typically, the URI or the IRI
may look like http://www.example.com/ontology/ontology.rdf# individual.

3.4.2. Implementation of the Matching Engine

The Figure 3.1 presents the component diagram of the Matching Engine. The Matching
Engine is composed of 6 components: Graph Generator, Filter, Matching Engine, Yen’s al-
gorithm, Dijkstra’s algorithm, and Fibonacci heap. The Graph Generator takes an ontology
as an input. Then, the ontology is filtered by the Filter. The Filter selects the information
objects, which satisfy the Matching Criteria. For example, it will return all hotels within a
10 km range. The selected nodes are returned to the Graph Generator and are used to create
a relevance graph. The relevance graph is required by the Matching Engine. The Matching
Engine, based on the graph and the Matching Criteria, creates an appropriate request for the
Yen’s algorithm. The Yen’s algorithm is responsible for finding all simple paths within the
graph between the source node and all target nodes. To do so, the Yen’s algorithm interacts
with two other components — the Dijkstra’s algorithm and the Fibonacci heap. The Dijk-
stra’s algorithm performs operations listed in the description of Yen’s algorithm (see, Section

40 3. The Recommender System

Figure 3.1: The component diagram of the Matching Engine

3.3.1). Typically, the algorithm returns a simple path (or its fragment), which can be used
to create another simple path in the next iteration. Both Yen’s and Dijkstra’s algorithms use
the Fibonacci heap as a priority queue for nodes or path fragments respectively. In the final
stage, all simple paths are sent to the Matching Engine for merging and selection of the closest
information object with respect to the source (if, after merging, the distance from the source
is smaller than the current one, then this information object becomes the closest).

Chapter 4

Implementation of the Travel
Support System

The Travel Support System is implemented using the following additional software arti-
facts:

JENA Apache Jena [8] is a JAVA framework for building Semantic Web [28] applications.
The Jena framework is capable of:

• reading, processing and writing RDF

• storing RDF triples efficiently (storage file or database)

• SPARQL queries

• publishing RDF data

Jena will be used to provide semantic data into the system.

Android SDK 4.2 The Android SDK [5] provides the API library and developer tools
necessary to build, test and debug applications for Android OS.

Java Virtual Machine (Java SE 1.7 update 7) The Java Virtual Machine is a platform
used to run all Java-based programs. Since JADE is written in the JAVA programming
language, it is necessary to use it during the implementation and deployment of the
system. Moreover, the system takes the advantage of the portability of JAVA.

PLAY framework 2.0.4 The Play framework [25] is a lightweight, stateless Web frame-
work written in JAVA and Scala. The Play framework will be responsible for maintain-
ing communication between the recommender system (one or a set of agents available
as a web service) and personal agents.

4.1. User profile

A user profile is an organized structure that collects all user-related information. Due to
the use of the Rhee-Ganzha algorithm, the user profile contains weights of the information
objects which are used during the relevance computation.

41

42 4. Implementation of the Travel Support System

The user profile is stored outside the system as a file. The file has an ordered structure, which
allows the system to load it into memory and create an interface which is used to read and
modify the represented user profile. Since the file is not a part of the system, it can be moved
from one device to another. This also allows to make backups and synchronize the user profile
with a remote server.

The user profile stores pairs of keywords and corresponding weights. Each keyword represents
one information object from an ontology. For example, a pair

(http://www.example.com/restaurant/restaurant.rdf#FastFood, 0.4)

indicates that the information object identified by this URI has a weight equal to 0.4. However,
not all information objects are stored in the user profile. The system based on interaction
with the user chooses the most frequent objects and modifies their weights. If the weight of
an object is modified then it is stored in the user profile. If the system requires a weight that
is not present in the user profile, the default value is returned.

To model changes in user’s behaviour, weights decrease over time. The decreasing factor
decreases a weight to the default value. If the default value is reached, then the weight and
the corresponding key are removed (the system will return the default value for non–existent
entries in the user profile). However, not all user preferences should have the same value
of the decreasing factor. For example, if the user likes fast food, but he is overweight and
his doctor recommended him a diet, then the system should relatively quickly adjust his
preferences according to his new habits (the decreasing factor is high). On the other hand, if
the user loves action genre films, but, from time to time, he also sees a romantic comedy, then
the system should remember that his favourite genre is action films even if he saw several
romantic comedies in a row (the decreasing factor is low). Therefore, in the system, there are
three stages which are modelled based on human types of memory: 1) sensor memory (very
short), 2) short–term memory, and 3) long–term memory. Let us discuss how the decreasing
factor changes in the system based on the proposed memory model.

Initially, information objects are assigned to sensor memory. In this stage, the decreasing
factor is the largest, but information objects are also faster promoted to short–term memory.
Sensor memory works like a buffer for occasional selections which does not indicate habits
or patterns in the user behaviour. Short–term memory has an average decreasing factor.
This stage covers most of the information objects. It is also a place where the system can
find multiple alternatives for recommendations. For example, short-term memory can have
several types of food and each type is a “good” recommendation. The final stage corresponds
to long–term memory. Here, the decreasing factor is very low, but it contains only the most
frequent information objects. In comparison to the other memory types, long–term memory
stores user preferences which are almost unchangeable. For example, sensor memory can have
information that the user went to a club with electronic music. Unfortunately, he did not like
it, so the system will quickly forget about it. Otherwise, this information will be promoted
to short–term memory and it will become one of many alternatives (for example, there are
other types of music like rock and pop). However, in long term memory, the system can store
information that the user does not smoke, so he always chooses places where smoking is not
permitted.

Weights can also represent negative feelings (the user does not like something), but the system
is not allowed to use negative numbers since all the algorithms require graphs with non-
negative costs. This problem can be addressed by using an appropriate scale. Specifically,
the default value for a weight can be set to 0.5 . This divides the interval (0;1) into two
subintervals – (0;0.5) and (0.5;1). The system can use the first interval to express negative

http://www.example.com/restaurant/restaurant.rdf#FastFood

4.2. Reading a structure of an ontology 43

feelings (weight equal to 0 means that the user strongly dislikes something). Similarly, the
second interval can be used for “good” recommendations (weight equal to 1 means that the
user strongly like something). The default value (here, a sample value 0.5) represents neutral
feelings (the system does not know if the user likes something or not). To these two intervals,
the system can apply the presented memory model. The weights from the interval (0;0.5) are
obtained by analysing the structure of an ontology. For example, “smoking area” and “non–
smoking area” are contradictory. Thus, the system can decrease the weight of “smoking area”
below the default value if “non–smoking area” is chosen.

However, not all weights should be decreased. For example, if a search query concerns a
restaurant ontology, then the system should not decrease weights in the golf ontology. To
avoid such situations, the user profile is divided into sections according to the individual
ontologies. Therefore, the system can decrease the weights in a specific category.

There are several strategies concerning updating weights

1. Weights can be updated based on all actions

2. Weights can be updated based on deliberate actions

The first strategy has a drawback concerning the weights of actions. Specifically, if we consider
the select and the browse actions, we can agree that the first action is stronger than the second.
However, the browse action can determine two different things; an item is either good (the
item is not selected but feedback is positive) or bad (feedback is negative). Thus, this approach
forces the user to rate each observed item. In the second strategy, interaction with the user
is more flexible. Namely, instead of the browse action (which is done automatically when
the user navigates through results), the system provides another action called deselect which
always indicates negative feedback.

In this approach the user can select (weights are increased), deselect (weights are decreased)
or do not nothing (weights remain the same). Unfortunately, there is a problem with the
deselect action. The user can deselect a recommendation because of one of its properties.
However, the system cannot easily determine, which property caused this action.

Taking the previous considerations into account, the system updates weights based on the
following rules:

• In the system, the user gives positive feedback by selecting results. The selected result
is assumed to be the best.

• The user is not able to give negative feedback, but negative weights are calculated based
on the structure of an ontology

4.2. Reading a structure of an ontology

OntoReader is used to dynamically generate a user interface based on an ontology. It is a
simplified version of QueryBuilder from the project called Agent in Grid [29]. There are
several factors which justify the decision to reimplement this software artefact:

1. QueryBuilder was developed for the Play! Framework and its PC version is not available.
Thus, the already existing implementation had to be slightly modified.

2. OntoReader uses only OWLAPI [24] (a JAVA API for creating, manipulating and se-
rialising ontologies) to read an ontology where QueryBuilder depends also on JENA.

44 4. Implementation of the Travel Support System

Because OntoReader is used on the device (not on the server), it is convenient to remove
unnecessary dependencies.

3. OntoReader was implemented with the Travel Support System in mind. Specifically,
OntoReader obtains only a brief structure of an ontology (typically a set of triples
describing only one level of an ontology). Therefore, the system preserves battery power
because only a small part of the ontology is analyzed at the given time.

During the implementation of OntoReader for the Android system, special attention had to
be devoted to several problems:

• The Android system does not allow to send normal JAVA objects via Intents. Therefore,
it was impossible to send a part of the ontology encapsulated within a JAVA class from
a dedicated service.

• The device has limited memory. Thus, the ontology, especially a big one, should be
loaded into system memory only once.

To deal with this problem, the Travel Support System implements the Parcelable interface [4].
The Parcelable interface provides a mechanism to write and read simple data types (for ex-
ample String, Integer, Double, List) from a bundle, which can be sent via an Intent. The
mechanism has two phases – writing and reading. In the writing phase, an object is decom-
posed into a set of simple types and the mechanism calls a method, which fills a bundle with
pairs consisting of a key (String) and a value (simple data type). Then, the bundle is attached
to an Intent. After receiving the Intent, an Activity has to obtain the Parcelable object for
the attached bundle. The reconstruction method is automatically called by the Parcelable
mechanism when the object is read. Both deconstruction and reconstruction methods have
to be provided by the developer.

The OntoReader reads three ontological elements: Class (a concept), DataProperty (a relation
between two concepts), and Individual (an instance of a concept). Each element is represent
by a JAVA class – OntoClass, OntoDataProperty and OntoIndividual respectively. When
the user interface is created, the system asks OntoReader for a parent Class (for example
Restaurant). OntoReader returns the specific instance of OntoClass which also contains a
list of all associated DataProperties. The user can navigate through the DataProperties and
choose them one by one. If the user selects a DataProperty containing only Individuals, then
the system creates a window which allows multiple selection (for example, the user can choose
several different cuisines for DataProperty called hasCuisine). Otherwise, the system stores
the current user selections and recreates the user interface for the given OntoClass. Similar
operations are performed for all levels of the ontology.

4.3. Travel Support System – putting it all together

Figure 4.1 presents the component diagram of the Travel Support System. It is composed
of two types of software agents; 1) Client Agents and 2) Server Agents. These two types
of agents perform different (and disjoint) tasks and have to cooperate in order to make
recommendations. The Client Agent runs on the Android system (the structure of a software
agent for the Android system was described in the previous sections). First of all, the Client
Agent manages the user profile on the device. During the start-up of the system, the user
profile is loaded into the memory and the agent receives an I/O interface, through which
it can read and write the user preferences. The Client Agent is also responsible for making

4.3. Travel Support System – putting it all together 45

Figure 4.1: The component diagram of the Matching Engine

back-ups of the user profile and synchronizing it with the on-line server (the one which runs
the Server Agent).

The Client Agent monitors the user context. Since it is a part of the Android system, the
agent can read the private user data (the user is informed about it during the installation of
the application, as an appropriate agreement is necessary to access data within an Android-
based system) and act accordingly. The private user data includes text messages, entries in
the calendar, contacts, and so on. Since the Client Agent is running on a real Android device,
there is no native emulator that can be used to provide GPS feed. Therefore, the system uses
its own emulator which send GPS coordinates to the Client Agent via IPv4 socket. The Client
prioritizes the data sent by the emulator over data received from the Android system.

Instead of directly interacting with the Matching Engine, the Client Agent communicates with
it via the Server Agent. During the communication, the Client Agent provides all information
required to construct a Match Criteria. Namely, the Server Client receives a piece of the
user profile corresponding to the search query and the user contextual information (GPS
coordinates and the current time). The piece of the user profile contains all the (keyword,
weight) pairs related to a specific topic (for example, restaurants). The Matching Criteria is
constructed by the Server Agent. Then, the Server Agent sends it to the Matching Engine.
Note that the Matching Engine is described in detail in section 3.4.2. The Matching Engine
performs the relevance calculation and returns the results. The results are forwarded to the
Client Agent who presents them to the user. Based on user selection, the user profile is
modified according to the rules presented in section 4.1.

4.3.1. Matching Process Example

Let us discus in details the matching process based on finding a restaurant. In this example,
the system uses the ontology from the old implementation of the Travel Support System ??.
In order to find a suitable recommendation, the Travel Support System has to perform the
following steps:

46 4. Implementation of the Travel Support System

1. Based on the user-related information provided by the Client Agent, a Matching Criteria
< x, q, a, g > is created by the Server Agent. Then, the Server Agent sends the Match-
ing Criteria to the Matching Engine for further processing. For example, a Matching
Criteria for a recommendation concerning restaurants can look as follows:

(a) x = UserRestaurant

(b) q =

PREFIXonto : 〈http : //localhost : 9000/assets/Ontologies/Restaurant/Restaurant〉

SELECT?restaurant

WHERE?restaurantisaonto : Restaurant.

(c) a = 3
5

(d) g = [lat = 22.2, long = 44, dist = 2000] :

lat = user’s latitude

long = user’s longitude

dist = the maximum distance (in meters) between the source (the user’s cur-
rent position) and a target object

Note that the source object x, UserRestaurant, does not exist in the ontology. It is
an information object created based on the user profile. For example, if a user profile
contains pairs:

(cur:Polish, 0.8)

(cur:Chinese, 0.45)

(asc:SmokingArea, 0.6)

(drs:Casual, 0.3)

(rcc:FastFoodRestaurant, 0.55)

(rcc:CasualRestaurant, 0.7)

then the information object corresponding to this user profile has the following relations:

(a) res:UserRestaurant res:cuisine cui:Polish

(b) res:UserRestaurant res:cuisine cui:Chinese

(c) res:UserRestaurant res:smoking acs:SmokingArea

(d) res:UserRestaurant res:dress drs:Casual

(e) res:UserRestaurant res:restaurantCategory rcc:FastFoodRestaurant

(f) res:UserRestaurant res:restaurantCategory rcc:CasualRestaurant

2. By executing the g and q queries, the Matching Engine determines a set of possibly
relevant target objects. In our example, the Client Agent is interested in restaurants.
The q query accepts all individuals which are instances of the Restaurant class. However,
the q query does not determine which information objects are located within a certain
distance from the user (here, a sample value dist = 2000). Therefore, the g query
removes all places located further than a given distance. By combining these two queries,

4.3. Travel Support System – putting it all together 47

the Matching Engine is able to obtain all restaurants located not further than 2 km
from the user.

3. Finally, the Matching Engine calculates the semantic relevance between the source and
all the target information objects found in the previous step. The matching process
involves:

(a) source instance URI = UserRestaurant

(b) target objects URI’s = [PolskiePierogi, BarOrientalny, BarSmakosz]

(c) relevance threshold: a = 3
5

The detailed description of the relevance calculations performed by the system is pre-
sented in the next section.

4.3.2. Relevance Calculation Example

Figure 4.2: The Restaurant ontology from the old implementation of the Travel Support
System

The relevance calculation starts from creating a Relevance Graph (described in section 3.3)
which corresponds to an overview presented in figure 4.2. Since the resulting graph has
no multiple relations between two adjacent information objects, the system skips the edge
merging procedure. Now, let us recall that different information objects can have different
individual weights stored in the user profile. For example, Polish and Chinese cuisines have
their individual weights equal to 0.8 and 0.45 respectively. Therefore, the Matching Engine
needs to scale the edges by applying equation 3.2. Without loss of generality, all the edges
have their initial distances equal to a constant number 0 ≤ d ≤ 1 (here, a sample value
d = 1).

1. distancePolish = (1
dcuisine

× wPolish)−1 = (1× 0.8)−1 = 1.25

2. distanceChinese = (1
dcuisine

× wChinese)
−1 = (1× 0.45)−1 = 2.2

48 4. Implementation of the Travel Support System

If the user profile does not specify the weight for an information object, then a default value
is returned (for example, w = 0.1).

After creating the Relevance Graph, the Matching Engine calculates relevance values be-
tween the source (UserRestaurant) and the target objects (PolskiePierogi, BarOrientalny
and BarSmakosz):

PolskiePierogi
The system utilizes the Yen and Dijkstra algorithms (described in section 3.3.1) to
find all simple paths. Based on the Relevance Graph, we can define four paths from
UserRestaurant to PolskiePierogi :

Path 1 : UserRestaurant→ Polish→ PolskieP ierogi

Path 2 : UserRestaurant→ SmokingArea→ PolskieP ierogi

Path 3 : UserRestaurant→ Casual→ PolskieP ierogi

Path 4 : UserRestaurant→ CasualRestaurant→ PolskieP ierogi

By applying equation 3.5, the respective distance values are:

DPath1 = 1.25 + (2× 1.25) = 3.75

DPath2 = 1.67 + (2× 1.67) = 5.01

DPath3 = 3.34 + (2× 3.34) = 10.02

DPath4 = 1.43 + (2× 1.43) = 4.29

Finally, the Matching Engine obtains the final relevance value by utilizing equation 3.6:

RelPolskieP ierogi = 1
3.75 + 1

5.01 + 1
10.02 + 1

4.29 = 0.7992

BarOrientalny
All simple paths between UserRestaurant and BarOrientalny :

Path 1 : UserRestaurant→ Chinese→ BarOrientalny

Path 2 : UserRestaurant→ SmokingArea→ BarOrientalny

Path 3 : UserRestaurant→ Casual→ BarOrientalny

Path 4 : UserRestaurant→ CasualRestaurant→ BarOrientalny

By applying equation 3.5:

DPath1 = 2.23 + (2× 2.23) = 6.69

DPath2 = 1.67 + (2× 1.67) = 5.01

DPath3 = 3.34 + (2× 3.34) = 10.02

DPath4 = 1.43 + (2× 1.43) = 4.29

By applying equation 3.6:

RelBarOrientalny = 1
6.69 + 1

5.01 + 1
10.02 + 1

4.29 = 0.682

BarSmakosz
All simple paths between UserRestaurant and BarSmakosz :

Path 1 : UserRestaurant→ Polish→ BarSmakosz

4.3. Travel Support System – putting it all together 49

Path 2 : UserRestaurant→ Casual→ BarSmakosz

Path 3 : UserRestaurant→ CasualRestaurant→ BarSmakosz

By applying equation 3.5:

DPath1 = 2.23 + (2× 2.23) = 6.69

DPath2 = 3.34 + (2× 3.34) = 10.02

DPath3 = 1.43 + (2× 1.43) = 4.29

By applying equation 3.6:

RelBarSmakosz = 1
3.75 + 1

10.02 + 1
4.29 = 0.5996

Remarks concerning the relevance calculation

From the presented calculations, one can derive several noteworthy observations:

PolskiePierogi and BarOrientalny
Despite the fact that PolskiePierogi and BarOrientalny have the same number of paths
which cover the same relations (cuisine, smoking, dress and restaurantCategory), the
difference between their relevance values comes from the user preferences. Specifically,
the user profile states that Polish cuisine is more likely to be chosen by the user than
Chinese cuisine. Therefore, the PolishPierogi restaurant is more relevant to UserRestau-
rant.

BarOrientalny and BarSmakosz
BarOrientalny In comparison to BarSmakosz, BarOrientalny provides a smoking area.
However, BarOrientalny serves Chinese food which is rated lower than the one served
by the BarSmakosz. Therefore, the algorithm has to decide which factor is more im-
portant – permission to smoke or a type of cuisine. The algorithm takes advantage
from analysing relations in the ontology and is able to determine that, the user can can
choose a little less liked food in favour of smoking cigarettes.

Processing results

Based on these results and the proposed Matching Criteria (a ≥ 3
5), where a is the relevance

threshold, PolskiePierogi and BarOrientalny will be recommended to the user. Because the
relevance value of BarSmakosz is below the threshold, the Matching Engine will not include
this recommendation in the results sent to the Server Agent. The recommendations will be
ordered based on their relevance values.

Chapter 5

Test scenarios

To evaluate the performance of the Travel Support System, two different use case scenarios
were executed.

5.1. Making proactive recommendations

One of the great features of the system is its ability to execute pro-active behaviours. This sce-
nario tests this feature by periodically producing new recommendations for the user. For the
purpose of this test, the time interval between searches initialized by the Client Agent without
interacting with the user is set to a random number between 60 and 120 seconds.

The scenario proceeds as follows:

1. The user starts the Travel Support System on the Android device.

2. The user opens the Emulator and sets the time interval to 60–120 seconds.

3. After some time (no longer than 120 seconds) the Client Agent communicates with
the Server Agent in order to obtain new recommendations. These recommendations are
made based on a piece of the user profile sent by the Client Agent. The user is notified
about this action by a system notification.

4. After clicking the notification, the user opens an Android activity with the results.

5.2. Context monitoring

This scenario tests the ability of the system to properly react to changing context. In this
scenario, the Emulator is used to send a text message to the Client Agent. Then, the Client
Agent analyses the content of the message and takes appropriate actions to provide the user
some useful recommendations.

The scenario proceeds as follows:

1. The user starts the Travel Support System on the Android device.

2. The user opens the Emulator and send a text messages with the word ”Chinese”.

51

52 5. Test scenarios

3. After receiving the message, the Client Agents starts to analyse the context in order to
find some keywords.

4. The keyword recognized by the agent is ”Chinese”. Therefore, the Client Agent creates
a new search query concerning the ”Chinese” cuisine for the Travel Support System
ontology. The user is notified about this action by a system notification.

5. After clicking the notification, the user opens an Android activity with the results.

5.3. Test results and summary

After successful execution of the two scenarios, we can conclude that the proposed system
fulfils its requirements and is able to provide a great aid for travellers. The system takes
advantage of the utilization of the newest technologies (for example, software agents on mobile
devices, ontologies) and delivers functionality which overcomes the current limitation of other
travel support systems (listed in section 1.1).

Moreover, by successful combining all mentioned technologies into one system, we have proved
that there are some new ways to improved quality of existent solutions. Namely, the utilization
of software agents and RDF/OWL ontologies can be beneficial and lead to discover new,
non-trivial dependences between different resources. Hence, the system can produce more
interesting and personalized recommendations. These technologies can be also available on
mobile devices. This creates new, exciting possibilities to support users in more situations
and gives them the opportunity to choose the most suitable device (for example, a PC at
home and a mobile device on a street).

Mariusz Marek Mesjasz Warszawa, 7 czerwca 2013
Nr albumu 211615

Oświadczenie

Oświadczam, że pracę magisterską pod tytułem „Travel Support System”, której promotorem
jest prof. dr hab. Marcin Paprzycki wykonałem samodzielnie, co poświadczam własnoręcznym
podpisem.

..

Mariusz Marek Mesjasz

Bibliografia

[1] Android Activity. http://developer.android.com/guide/components/activities.
html.

[2] Android Intent. http://developer.android.com/guide/components/
intents-filters.html.

[3] Android Interface Definition Language. http://developer.android.com/guide/
components/aidl.html.

[4] Android Parcelable. http://developer.android.com/reference/android/os/
Parcelable.html.

[5] Android SDK. http://developer.android.com/sdk/index.html.

[6] Android Service. http://developer.android.com/guide/components/services.
html.

[7] Android system. http://www.android.com/.

[8] Apache Jena. http://jena.apache.org/.

[9] Apache license. http://www.apache.org/licenses/.

[10] Application Components. http://developer.android.com/guide/components/
fundamentals.html.

[11] Booking.com. http://www.booking.com/.

[12] Eclipse IDE. http://www.eclipse.org/.

[13] Facebook. https://www.facebook.com/.

[14] Foundation for Intelligent Physical Agents. http://www.fipa.org/.

[15] Google Now. http://www.google.com/landing/now/.

[16] Google Play. https://play.google.com/store?hl=en.

[17] Group Lens. http://www.grouplens.org/.

[18] IDL. http://en.wikipedia.org/wiki/IDL_(programming_language).

[19] Java Agent DEvelopment Framework. http://jade.tilab.com/.

[20] Java Platform, Micro Edition. http://www.oracle.com/technetwork/java/javame/
index.html.

[21] Linux. http://en.wikipedia.org/wiki/Linux.

1

http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/activities.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/guide/components/aidl.html
http://developer.android.com/reference/android/os/Parcelable.html
http://developer.android.com/reference/android/os/Parcelable.html
http://developer.android.com/sdk/index.html
http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html
http://www.android.com/
http://jena.apache.org/
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://www.booking.com/
http://www.eclipse.org/
https://www.facebook.com/
http://www.fipa.org/
http://www.google.com/landing/now/
https://play.google.com/store?hl=en
http://www.grouplens.org/
http://en.wikipedia.org/wiki/IDL_(programming_language)
http://jade.tilab.com/
http://www.oracle.com/technetwork/java/javame/index.html
http://www.oracle.com/technetwork/java/javame/index.html
http://en.wikipedia.org/wiki/Linux

2 BIBLIOGRAFIA

[22] Open Directory Project. http://www.dmoz.org/.

[23] OUYA . http://www.ouya.tv/.

[24] OWL API. http://owlapi.sourceforge.net/.

[25] Play Framework. http://www.playframework.com/.

[26] Principle of least privilege. http://en.wikipedia.org/wiki/Principle_of_least_
privilege.

[27] Resource Description Framework. http://www.w3.org/RDF/.

[28] Semantic Web. http://www.w3.org/standards/semanticweb/.

[29] Software Agents in Grid. http://www.ibspan.waw.pl/~paprzyck/mp/cvr/research/
agents_GRID.html.

[30] Software Agents in Personalized Information Provisioning. http://www.ibspan.waw.
pl/~paprzyck/mp/cvr/research/agent.html.

[31] Travel Support System publications. http://www.ibspan.waw.pl/~paprzyck/mp/cvr/
research/agents_TSS.html.

[32] Travel Support System Sourceforge. http://e-travel.sourceforge.net/.

[33] TripAdvisor. http://www.tripadvisor.com/.

[34] Twitter. https://twitter.com/.

[35] W3C. http://www.w3.org/.

[36] Workflows and Agents Development Environment. http://jade.tilab.com/wade/
index.html.

[37] Yelp! http://www.yelp.com/.

[38] Rivest Ronald L. Stein Clifford Cormen Thomas H., Leiserson Charles E. 2011.

[39] Tarjan R. E. Fredman M. L. Fibonacci Heaps and Their Uses in Improved Network.
Journal of the ACM, 1987.

[40] Paprzycki M. Ganzha M. Gawinecki M., Kruszyk M. Pitfalls of agent system develop-
ment on the basis of a travel support system. Proceedings of the BIS 2007 Conference,
strony 488–499. Springer, 2007.

[41] Wooldridge M. John Wiley & Sons, 2002.

[42] Andy Nauli. Using software agents to index data of an e-travel system. Master thesis,
Oklahoma State University, 2000.

[43] H. S. Nwana. Software agents: An overview. Cambridge University Press, Knowledge
Engineering Review, strony 205–244. Cambridge University Press, 1996.

[44] Martins E. Pascoal M. A new implementation of Yen’s ranking loopless paths algori-
thm. 4QR - Quarterly Journal of the Belgian, French and Italian Operations Research
Societies, 2003.

[45] Gruber T. R. Toward principles for the design of ontologies used for knowledge sharing.
International Journal of Human-Computer Studies, strony 907–928. Elsevier, 1995.

[46] Stevens R. Prentice Hall, 1999.

http://www.dmoz.org/
http://www.ouya.tv/
http://owlapi.sourceforge.net/
http://www.playframework.com/
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://en.wikipedia.org/wiki/Principle_of_least_privilege
http://www.w3.org/RDF/
http://www.w3.org/standards/semanticweb/
http://www.ibspan.waw.pl/~paprzyck/mp/cvr/research/agents_GRID.html
http://www.ibspan.waw.pl/~paprzyck/mp/cvr/research/agents_GRID.html
http://www.ibspan.waw.pl/~paprzyck/mp/cvr/research/agent.html
http://www.ibspan.waw.pl/~paprzyck/mp/cvr/research/agent.html
http://www.ibspan.waw.pl/~paprzyck/mp/cvr/research/agents_TSS.html
http://www.ibspan.waw.pl/~paprzyck/mp/cvr/research/agents_TSS.html
http://e-travel.sourceforge.net/
http://www.tripadvisor.com/
https://twitter.com/
http://www.w3.org/
http://jade.tilab.com/wade/index.html
http://jade.tilab.com/wade/index.html
http://www.yelp.com/

BIBLIOGRAFIA 3

[47] Park M.-W. Szymczak M. Frackowiak G. Ganzha M. Paprzycki M. Rhee S. K., Lee J.
Measuring semantic closeness of ontologically demarcated resources. Fundamenta Infor-
maticae, strony 395–418, 2009.

[48] Shapira B. Ricci F., Rokach L. Introduction to Recommender Systems Handbook. Sprin-
ger, 2011.

[49] Yen Jin Y. An algorithm for finding shortest routes from all source nodes to a given
destination in general networks. Quarterly of Applied Mathematics 27, strona 526–530,
1970.

	Title page
	Spis treści
	Introduction
	Existing travel-related systems
	Proposed System

	Software agents in the Travel Support System
	Software Agents
	Software agents and the new Travel Support System
	JADE agent platform
	JADE on mobile devices
	Android Operating System
	Analysis of JADEAndroid
	JADEAndroid – Proposed Solutions
	Proposed implementation of the JADEAndroid in the Travel Support System

	The Recommender System
	Introduction to the Recommender Systems
	Common Pitfalls concerning Recommender System
	The algorithm proposed for the Travel Support System
	Additional algorithms and data structures

	Implementation of the Rhee-Ganzha algorithm
	RDF Ontology
	Implementation of the Matching Engine

	Implementation of the Travel Support System
	User profile
	Reading a structure of an ontology
	Travel Support System – putting it all together
	Matching Process Example
	Relevance Calculation Example

	Test scenarios
	Making proactive recommendations
	Context monitoring
	Test results and summary

	Bibliografia
	Title page
	Contents
	Introduction
	Existing travel-related systems
	Proposed System

	Software agents in the Travel Support System
	Software Agents
	Software agents and the new Travel Support System
	JADE agent platform
	JADE on mobile devices
	Android Operating System
	Analysis of JADEAndroid
	JADEAndroid – Proposed Solutions
	Proposed implementation of the JADEAndroid in the Travel Support System

	The Recommender System
	Introduction to the Recommender Systems
	Common Pitfalls concerning Recommender System
	The algorithm proposed for the Travel Support System
	Additional algorithms and data structures

	Implementation of the Rhee-Ganzha algorithm
	RDF Ontology
	Implementation of the Matching Engine

	Implementation of the Travel Support System
	User profile
	Reading a structure of an ontology
	Travel Support System – putting it all together
	Matching Process Example
	Relevance Calculation Example

	Test scenarios
	Making proactive recommendations
	Context monitoring
	Test results and summary

	Bibliography
	Contents
	Introduction
	Existing travel-related systems
	Proposed System

	Software agents in the Travel Support System
	Software Agents
	Software agents and the new Travel Support System
	JADE agent platform
	JADE on mobile devices
	Android Operating System
	Analysis of JADEAndroid
	JADEAndroid – Proposed Solutions
	Proposed implementation of the JADEAndroid in the Travel Support System

	The Recommender System
	Introduction to the Recommender Systems
	Common Pitfalls concerning Recommender System
	The algorithm proposed for the Travel Support System
	Additional algorithms and data structures

	Implementation of the Rhee-Ganzha algorithm
	RDF Ontology
	Implementation of the Matching Engine

	Implementation of the Travel Support System
	User profile
	Reading a structure of an ontology
	Travel Support System – putting it all together
	Matching Process Example
	Relevance Calculation Example

	Test scenarios
	Making proactive recommendations
	Context monitoring
	Test results and summary

	Statement

