
WARSAW UNIVERSITY OF TECHNOLOGY

FACULTY OF MATHEMATICS
 AND INFORMATION SCIENCE

MASTER THESIS
COMPUTER SCIENCE

Towards Semantic Web

Author: Maciej Obojski

Supervisor: Ph. D Marcin Paprzycki

WARSAW APRIL 2008

1

………………………… ………………………

podpis promotora podpis autora

2

Table of Contents

Abstract

This work presents approach that is to become a step towards realization of the vision

of the Semantic Web. The main goal was to create mechanism which would allow finding

specific information on the Internet and utilizing it to complete missing information in

instances of ontologically demarcated objects. Application developed for the purpose of this

thesis is a part of the Travel Support System (TSS).

The TSS is an approach to fully use benefits of the Semantic Web – a Web where

machines are capable of analyzing and semantically processing data. Application and the TSS

3

take advantage of the JADE platform, which is used to develop software agents. The TSS

delivers user-specific data, based on personal preferences. Information about restaurants and

hotels are stored in the RDF format, which contains data and metadata as well.

For the needs of the task, several approaches were taken into consideration (neural

networks, regular expressions, logic wrappers and machine learning). In the thesis, the

DATAPROG algorithm, created by Craig Knoblock, was adapted and modified. The

algorithm is a machine learning approach. Purpose of DATAPROG is to find statistically

significant tokens in a set of examples, and to identify pattern, by which those examples were

created. After the DATAPROG finds patterns, then those are stored in a file.

TSS is an agent-based system which consists of several subsystems. This thesis is

focused on the Content Collection Subsystem, where main role is played by Coordinator

Agent (CA). This agent has been originally equipped in receiver and scheduler behaviours. In

order to integrate the DATAPROG algorithm with existing functionality, CA’s receiver

behaviour has been added new action: FindMissingTokensAction. This action starts running

whenever there is need to find missing data. Algorithm queries Google for top ten results. For

each page in results, the code logic removes HTML tags. Such obtained document is traversed

and patterns identified by DATAPROG algorithm are stored in HashTable object. Algorithm

returns the most often found answer to the query.

Algorithm was tested in practice, and results are presented and discussed.

Streszczenie

Niniejsza praca prezentuje ideę oraz oprogramowanie, które przybliży wizję Sieci

Semantycznej. Głównym celem było stworzenie mechanizmu pozwalającego na znajdowanie

specyficznej informacji w Internecie, oraz wykorzystanie jej do uzupełnienia brakujących

danych w instancjach ontologicznie opisanych obiektów. Aplikacja stworzona na potrzeby tej

pracy jest częścią Systemu Wspomagania Podróży (TSS od angielskiej nazwy – Travel

Support System).

System TSS jest próbą wykorzystania wszystkich korzyści płynących z zastosowania

Sieci Semantycznej – Sieci w której komputery są w stanie zrozumieć, zanalizować i

semantycznie przetworzyć dane. Aplikacja oraz TSS używają platformy JADE,

skonstruowanej do tworzenia oraz zarządzania agentami. TSS dostarcza spersonalizowanych

4

danych, bazując na indywidualnych preferencjach użytkowników. Informację o restauracjach

oraz hotelach są trzymane w formacie RDF, który zawiera dane oraz metadane (dane o

danych).

Na potrzeby zadania zostało rozpatrzonych kilka rozwiązań: sieci neuronowe,

wyrażenia regularne, wrappery logiczne oraz uczenie maszynowe. W pracy użyty został

algorytm DATAPROG, opracowany przez Craiga Knoblocka. Algorytm został

zmodyfikowany na potrzeby zadania, jest on przykładem rozwiązania nazywanego uczeniem

maszynowym. Celem algorytm jest znalezienie statystycznie znaczących ciągów liter w

zbiorze przykładów, oraz zidentyfikowanie wzorca za pomocą którego dane przykłady zostały

stworzone. Po pomyślnym znalezieniu wzorca (lub wzorców), algorytm DATAPROG

zapisuje wyniki w pliku.

TSS jest systemem wielo agentowym, który składa się z kilku podsystemów. Niniejsza

praca skupia się na Podsystemie Wyszukiwania Danych (Content Collection Subsystem),

gdzie główne zadania są obsługiwanie przez agenta nazwanego: Coordinator Agent (CA). Ten

agent został domyślnie wyposażony w dwa zachowania: receiver (odbiorca) oraz scheduler

(planowanie). W celu zintegrowania algorytmu DATAPROG z istniejącą funkcjonalnością,

CA, zachowanie receiver zostało wzbogacone o nową akcję: FindMissingTokensAction. Ta

akcja rozpoczyna działania gdy tylko zajdzie potrzeba odnalezienia brakujących danych.

Algorytm odpytuje Google i przetwarza 10 pierwszych wyników zapytania. Dla każdej

zwróconej strony internetowej, usuwane są znaczniki HTML. Tak spreparowany dokument

jest przeszukiwany celem znalezienia wzorców zidentyfikowanych przez DATAPROG.

Algorytm zwraca najczęściej powtarzający się wynik.

Algorytm został przetestowany w praktyce. Wyniki są opisane i skomentowane.

1. Travel Support System

The Semantic Web

“I have a dream for the Web [in which computers] become capable of analyzing

all the data on the Web – the content, links, and transactions between people and

computers. A ‘Semantic Web’, which should make this possible, has yet to emerge,

but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily

lives will be handled by machines talking to machines. The ‘intelligent agents’

people have touted for ages will finally materialize.”

Tim Berners-Lee

5

http://en.wikipedia.org/wiki/Intelligent_agents

Tim Berners-Lee is the inventor of the World Wide Web. During early stages of

development of the Hyper Text Markup Language (HTML) he put forward a

proposal that the evolution of the network (Internet) should be devoted to

understanding information by machines. This vision of machines being able to

read and understand data throughout the Internet is called the Semantic Web.

Unfortunately the Web evolved not as Tim Berners-Lee planned it.

Nowadays documents located in the Internet are mainly focused for eye-catching

effects, and the really important data is mixed with constructs responsible for

layout and graphic aspects of the web page. HTML interpreters built-in into

popular browsers can properly render graphical information described by various

tags. But none of those browsers is capable of telling what does the document

concern.

There exist special <META> tags by which page creator can instruct search

engines or web crawlers about the content of the page. Nevertheless it happens

very often that creators omit this tag. Even if it is specified – it is only a guide

telling what the document contains – if one is interested in more accurate data then

those tags are useless. The problem lies in the definition of the HTML –

programmer can easily describe layout of the page, but high level relations that

describe the data in the document, cannot be defined. Tim Berners-Lee has a

vision that tags defining layout and the data itself are two separate things; what is

more – data are structured and described by series of relations that allow writing

appropriate mechanisms that can automatically join various data placed in Internet.

Semantic Web is a great tool that can help us deal with problems that normal users

come across almost every day:

• information overload

Internet is a mess – finding valuable and reliable information is a task

which begins to get harder and harder. By describing the data ontologically

people would be able to find exactly what they were looking for

6

• poor content aggregation

Most of programming projects focused on gathering data from the web are

using technology called screen scrapping. It means that a special program

called Wrapper has hard-coded structure of HTML document and ‘knows’

exactly where to seek information about specific data. E.g.: Wrappers

"remember” that for information about address they should look for fifth

<TR> tag and third <TD> tag. This type of content aggregation is volatile

and is based upon the structure of document – every change of layout

forces programmer to rewrite the wrapper.

Below there is presented diagram created by Tim Berners-Lee showing vision of

Semantic Web. From the diagram one can deduce that basically it is a structure of

a standard HTML document. But the main difference is that relations were added.

Those relations describe how content of the document interacts with other data

located on the Web. Since there exist only several types of those relations (often

called Metadata), then there is no difficulty in implementing a given model. Thus

it is possible that machines will be able to “understand” what content is being

presented to the user (e.g. machines are capable of telling whether document

describing Java refers to island or rather programming language; then they could

present to user pages with travel agencies, or with books about programming).

7

Figure 1: Vision of Semantic Web by Tim Berners-Lee

The Semantic Web is sometimes referred to as Web 3.0. Currently there is a huge

amount of web sites that enable user to add own content and share it worldwide –

this phenomena is called Web 2.0. Examples of those user-content based portals

are: Flickr, MySpace, or in Poland Grono or Nasza-Klasa. Evolution of those

portals was possible thanks to development of appropriate tools. Asynchronous

JavaScript and XML (AJAX) is one among multiple technologies that allow

addition of text, images, videos and documents real-time by concurrent users.

Web 3.0 means new human-computer relations, meaning that omnipresent

machines, connected to the Internet, are capable of sensing human intentions.

Thus computers will offer us products, entertainment or any other type of data that

one really intends to use. One example of this can be refrigerator of the future –

having ability to analyse our diet, knowing which products are preferred by us,

capable of reading nourishment’s expiry date. Such machine, when connected to

8

the Internet will be able to make shopping instead of us, and controlling our food

quality. It is hard to underestimate positive aspects of such solution.

Next diagram presents different stages of growth of Web. Beginning from

simple USENET groups and FTP transmission through SQL databases placed on

the Web until now – dynamically generated content using AJAX, instant news

retrieval using RSS and ATOM. Current stage of evolution is provided for years

2000-2010. This document and many others in the Internet can be serious

advantage in development of Semantic Web, and in future – Semantic Search.

Figure 2: Diagram showing evolution of the Web and technologies used

When talking about Semantic Web, technologies used in it should be described.

Two main technologies that make dream about Semantic Web come true are

presented below:

• Software agents

9

Software agent is an autonomic programming unit, which is capable of

interacting and communicating with other agents. Agent is simply natural step

of evolution in Computer Engineering. When a programmer starts to design

software, it is good to have tools that model our reality as closely as possible.

Few years ago programmers had only low-level programming languages (like

Assembler) then Bjarne Stroustrup invented classes, which could have

properties, interfaces; they could inherit one each other – just like real life

objects. Currently Software Agent is the highest possible level of abstraction

which is capable of modelling reality. Agents can communicate, interact, and

use each others’ predispositions – just like people in real world.

In order to develop Agents one can use JADE framework written in

JAVA programming language. There exist several different platforms, but this

thesis is restricted only to JADE framework. Crucial part of agent-based

system is communication – it makes agent learning possible. Messages are

sent between agents using the Agent Communication Language (ACL).

[10][20][21]

• RDF

Resource Description Framework is an XML-based model used to represent

data and metadata. RDF metadata are statements about resources organized in

triples in form: subject-predicate-object. Elementary example showing great

advantage of data written in RDF format is (“Maciek”, “is_author”,

“this_document”). Having data in this format human can easily deduce that:

“Maciek is author of this document”. The same logic can be applied when

writing program gathering information from the Internet. Currently programs

collecting information from web pages operate on strings, and are not capable

of deciding whether: ”Maciek is author of this document” and “Maciek has

written this document” are statements meaning exactly the same or do they

have nothing in common.

Travel Support System

The Travel Support System (TSS) is an approach to fully use benefits of the

Semantic Web. It is a multi-agent system, where agents are responsible for

10

collecting, managing and presenting data to the user. Data are stored in the RDF

format. Main part of the system consists of restaurants – locations and

specifications of those are taken from the ChefMoz database. It is the largest

restaurant database which has its contents stored in RDF format. The TSS is

developed by people World-wide. Top-level overview of the current architecture

can be seen on the following picture:

Figure 3: Overview of the Travel Support System Architecture

From this diagram one can see how the system works: external users connect to

the Content Delivery Subsystem, which is responsible for presenting data

retrieved from the Content Management Subsystem. Content Collection

Subsystem collects the data and generates content either from Verified Content

Providers (VCP) or other sources.

For storing data in the system the creators of TSS have decided to use Hewlett-

Packard’s JENA ontological database.

Slightly clearer is the Use-case diagram of the system, from one can easily

deduce how the system resolves users’ needs, and which agents perform which

tasks:

11

Figure 4: Use-case diagram of the system

The Travel Support System consists of three subsystems:

• Content Delivery Subsystem

This subsystem is responsible for format and the semantics of the user-system

communication. In this case when user sends a query, then the Personal Agent

(PA) initiates user profile in the system and requests data from the

Personalization Infrastructure Agent (PIA). PIA consists of a number of

extremely simple rule-based “RDF sub-agents” – those subagents extend

original query to obtain Maximum Result Set, which is delivered to the PA.

Personal Agent filters, organizes and presents results to the user. The PA is

also used in process of updating user’s profile.

• Content Management Subsystem

12

This subsystem is responsible for managing and assuring that data kept in

database are up-to-date. It also is responsible for correctness of data. There are

two agents present in this subsystem – Database Agent (DB Agent) –

responsible for inserting data into Database – and Data Management Agent –

which monitors system seeking for obsolete or incomplete data.

• Content Collection Subsystem

This subsystem is responsible for collecting data from the Internet. Multiple

Wrapper Agents (WA) travel through Internet searching and converting found

data into RDF format. After conversion data are sent to Indexing Agent, which

in cooperation with Database Agent inserts data into database. At the same

time the Coordinator Agent (CA) waits for requests from DMA which informs

Content Collection Subsystem about errors in data. CA instructs appropriate

WA to gather required information. Content Collection Subsystem is the most

important part from the point of view of this thesis. Structure and processes

which take place in this subsystem will be presented in detail.

As for now, the Content Collection Subsystems gathers data only from the

Verified Content Providers. Hopefully this thesis and software developed for the

needs of it will have an impact so that the data for the database will be collected

not only from VCPs but also from any existing source on the Internet.

Content Collection Subsystem Described

As mentioned before – this is the most important system from our point of view.

Let us take a look at the schema of the subsystem:

13

Figure 5: Content Collection Subsystem overview

Content Collection Subsystem consist of series of Wrapper Agents – since there

are very few RDF-demarcated databases on the Internet, wrappers have to parse

HTML pages one by one and extract data from it by using screen scrapping. WA

generates RDF triples and sends those to the Coordinator Agent which schedules

WAs and passes received triples to the JENA database. Currently there is one

Wrapper Agent assigned to gathering data from one source (e.g.: Marriott hotel

home page or Hilton hotel home page). Having one agent per VCP is very flexible

idea – in case when one of those content providers decides to publish data in RDF

format or changes page layout, then a programmer simply adjusts this WA and the

system works properly. Whole CCS was implemented by Szymon Pisarek

(subject to his master thesis). As in the model – there exists exactly one

Coordinator Agent (which probably will be a performance bottleneck when the

system grows) and there are several Wrapper Agents. Szymon Pisarek developed

CCS as a standalone JAVA application [25]. One of the tasks was to integrate his

14

code into the existing system. In order to do that it was necessary to add required

libraries and make additional changes to the source code.

In the following image, the Content Collection Subsystem use-case diagram is

presented:, where there are presented possible actions, as well as most important

parts of the subsystem.

Figure 5: Content Collection Subsystem use-case diagram

15

As it was mentioned – central part of the system is Coordinator Agent which

processes responses from Wrapper Agents, and supports requests from the

Indexing Agent.

Missing Data Problem

Let us now consider possible problems which are caused by using multi-Wrapper

technology. Having one Wrapper Agent per Verified Content Provider can lead to

extreme situation, when programmers are not improving the system but are only

maintaining it. For example let us assume that the system (in near future) consists

of 50 WAs for every bigger hotel and 300 WAs for restaurants. Then let us make

further assumption, that every hotel or restaurant changes its page once a year

(e.g.: new menu, new holiday offer, new techniques for creating web pages etc.).

This means that 350 pages change every year – this can lead to situation, when

programmer has to write new wrapper agent almost every day. The situation

presented is made with assumption that programmer is aware of fact that wrappers

extract wrong data – thus programmer knows which part of the system has to be

rewritten. If there is no such control, then the system can contain thousands of

improper records and only way of finding that out is by chance (or when system

users complain). This is one of the reasons that illustrate how big is the need for

some mechanisms, which can gather data from almost every source and which are

independent from the page layout.

Current solution (one Wrapper Agent per one Verified Content Provider) has

another drawback – in the Content Management Subsystem there exist a group of

agents called Data Management Agents. It is their role to find incomplete or

erroneous data in the repository. Currently – when the DMA finds a record for

which there is need to gather data once more from the Internet, this request is sent

to the Coordinator Agent in the Content Collection Subsystem. Now the

Coordinator Agent has no other way of acting but to call an appropriate Wrapper

Agent and try to retrieve data once more. Since data in database were generated by

Wrapper Agent, then (if nothing changed in the Web Site) the same data will be

generated once more. Of course this is not an acceptable situation.

16

From previous paragraphs comes one conclusion – there is need for mechanism

which is not dependant to changes in page layout. This mechanism should also be

capable of extracting data from any web page or other data source. Since whole

system is agent-based, then it would be good that such solution is also

implemented as an agent. The best place for new agent behaviour is shown in the

next diagram:

Figure 6: Content Collection Subsystem extended by the new wrapper

New wrapper should work in strict cooperation with the Coordinator Agent. It

should be started whenever the CA receives message with an order to retrieve

some missing data from the Internet. Newly created wrapper will be responsible

for gathering data which could not be extracted by normal use of the appropriate

wrapper. WAs use Verified Content Providers as their primary (and in most cases

only) data source. Thus preferred place to start looking for missing data are “other

sources”. Of course new wrapper will be capable of extracting data from every

source.

17

NEW
AGEN

T

In order to achieve mentioned functionality it was needed to make changes to

the Coordinator Agent originally developed by Szymon Pisarek. Let us now take a

deeper look at the implementation of the CA. The complete logic responsible for

coordinating the CCC is split into the following classes:

• CoordinatorAgent

Description taken from the source code:

CoordinatorAgent

Description taken from source code:

“This class represents Coordinator Agent who plays vital role in

Content Collection Subsystem. He is responsible for:

1. starting Indexing Agents at CCS start-up

2. starting Wrapper Agents at CCS start-up and starting them in

appropriate time (in appropriate intervals)

Listing 1: Description of the CoordinatorAgent

Coordinator Agent can have three behaviours:

o receiver – responsible for receiving the ACL messages

o scheduler – responsible for starting Indexing Agents and Wrapper

Agents.

o GUIreceiver – responsible for receiving messages from the GUI agent.

Those behaviours are implemented into following three classes:

• CoordinatorReceiver

Description from the source code:

18

This behaviour belongs to Coordinator, is responsible for
receiving

1. an IndexToken [action] from a Wrapper Agent -
Coordinator saves the received token in its Tokens Priority
Queue

2. an RequestToken action from an Indexing Agent -
Coordinator gets a token with the highest priority form its
Tokens Priority Queue and sends it to the Indexing Agent

All the communication is done by using Contract-Net-

Listing 2: Description of the CoordinatorReceiver behaviour

• CoordinatorScheduler

Description from the source code:

Listing 3: Description of the CoordinatorScheduler behaviour

• CoordinatorGUIReceiver

This behaviour handles the GUI messages (e. g.: shutdown of the application

should cause that all agents are stopped before termination of the system).

Receiver behaviour and Scheduler behaviour are more complicated than

GUIreceiver, so the creator has decided to move code not connected with agent

programming into separate classes (this functionality is called Business Logic).

Thus there exist two more classes:

• CoordinatorReceiverBL, CoordinatorSchedulerBL

CoordinatorReceiver class currently handles two types of requests. One request is

from the Wrapper Agent when it is supplying new token to store in DB. Second

request may come from the Indexing Agent which asks the Coordinator Agent for

19

“This class represents a scheduler of the Coordinator Agent.

 This class is responsible for:

 1. starting Indexing Agents at CCS start-up

 2. starting Wrapper Agents at CCS start-up and starting
them in appropriate time (after appropriate intervals)”

tokens created by Wrapper Agents. Here is the right place to add new

functionality – CoordinatorReceiver should be able to receive message from the

Data Management Agent which will be asking for missing data.

Let us inspect “performAction” method in CoordinatorReceiverBL class:

Listing 4: performAction method, from the Coordinator Agent

This method shows that this Agent’s behaviour can only handle ‘Save’ action and

‘Request’ action. Any new behaviour that this agent should support must be added

here.

.

Research

In the previous chapter the place in the system where the new functionality will be

located was proposed. Also the functionality itself was discussed. Empty tokens that

can be found are defined by the ontology. Ontologies tell what kind of data can be

20

searched. In this master thesis there is a restriction that only address-based data will be

taken into account. Hopefully the implementation can be easily extended to any

ontology ever defined in the system.

Discovering way to find specific data on the web

The task is to parse hundreds of web pages for some specific data. This data is

semi-structured; e.g.: addresses in Poland have a strict format. Most of them begin

with text “ul.”, followed by name of the street, then number of building and

number of flat. Full address contains also zip-code which in Poland consists of

two digits a dash and another three digits. Assumption is that all ontologically

described data have some structure, which can be described in some machine-

readable way.

Below there is presented list of several techniques that were considered during

research phase of the master thesis:

1. Regular Expressions

Regular Expressions (often called regex or regexp) are special strings [27] that

describe patterns and structure of tokens. Everyone who is creating documents is

familiar with special sign, called wildcard – represented by sign *. Such special

sign is used for finding all files ending with desired extension, e.g.: *.txt for text

documents. Regular expressions language is far more detailed and can be used for

describing more sophisticated and (if applicable) recursive patterns. Below there is

an example of more complicated regular expression representing a valid e-mail

address:

\b[A-Z0-9._%-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b

Regular expressions are widespread technology – each programming

language and most of text editors have built-in processor responsible for

recognizing and applying regex.

Knowing this technique, first thing that comes across one’s mind is to write

down regular expressions representing each type of data that can be represented in

21

the system. After that one can simply apply selected expression to set of web pages

until finding of proper data.

This approach has drawback – a programmer has got to write down address

formats for every possible country in whole world. That is task impossible to

complete. What is more – there is assumption that narrows search to address data,

and in the system there exist ontologies that tell us about different details of

objects; e.g.: whether the restaurant is non-smoking, or are the pets allowed. Some

of those ontologies are hard to define, or may lead to over-generalization that

multiple different data types are represented by single regular expression

2. Artificial Neural network

Often called simply Neuron Network is mathematical model based on biological

neural network. It consists of group of neurons, typically distributed into three

layers (input layer, hidden layer and output layer). There exist various types of

neural networks (including recursive, and having multiple hidden layers). Each

neuron in such network can have multiple inputs and multiple outputs. Input

signals are weighted and result is passed to the activation function. Overview of

such network can be seen here:

22

Image 7: Schema of artificial neural network

What is in interest to my master thesis is that neuron networks have the

ability to learn – user can train neuron network by supporting set of input data and

comparing it with desired output. Those artificial networks are widely used in

weather forecasts, analysing stock market and for searching patterns as well.

3. Logic Wrappers and Inductive Logic Programming

“Logic wrappers [...] are a new technology for constructing wrappers for

relational data extraction from the Web. This technology borrows ideas from the

areas of logic programming and inductive learning” [1]

This technique is based on the fact that vast majority of web pages is written

using HTML language, which can be transformed to XHTML (this means web

pages which conform the syntax of XML)[3]. Such document can be represented

by labelled ordered tree. L-wrapper is a set of patterns that is shared by structure

and the data. One can say that this technique is very similar to the regular

expressions described earlier, but there is main difference – L-wrappers based on

the structure of the document, which is assumed to change often.

Logic Programming is the use of mathematical logic for computer

programming. In this case it is used to learn L-wrappers how to extract data. [1]

[3][4][5]. this approach seems to be proper for presented task, nevertheless during

work on the thesis, another technique was used.

4. Machine Learning

Machine Learning is a subfield of Artificial Intelligence [3], but in contrast, it

does not try to simulate the way that human beings behave. Machine Learning

tries to achieve the best result using currently available technologies and

algorithms. Machine Learning is a science that tries to make desired tasks as

23

automated as possible, hence it takes advantage of statistic methods. Several main

types of Machine Learning are distinguished:

- Supervised learning – where algorithm maps input into desired output. In this

case large set of examples is supported, together with desired result. Learning

here is similar to learning process in Artificial Neuron Networks.

- Unsupervised learning – in this case desired output is not supplied, which

means that algorithm presents its result based on observations of the set of

inputs.

- Semi-supervised learning – combination of previous two types of learning. In

some cases output is supplied, and in other test cases it is not.

- Reinforcement learning – technique where software agents learn how they

should act to some action, in order to gain the most benefits.

- Transduction – technique where algorithm tries to predict output based on

inputs and outputs used while learning.

- Learning to learn – algorithms learns its set if assumptions (inductive bias)

used to predict given outputs [3][6]

From the techniques mentioned above I have decided to dedicate this thesis to the

last – Machine Learning. I believe that this is the right approach – try to take

advantage of techniques, not trying to make machines more intelligent than they

really are.

Moving in this direction I started to take a closer look at research work of Craig

Knoblock, in the Information Sciences Institute at the University of Southern

California. He is one of the leaders of a research group, which states that: “Our

research group is developing intelligent techniques to enable rapid and efficient

information integration. The focus of our research has been on the technologies

required for constructing distributed, integrated applications from online

sources.”[7]

24

Craig Knoblock and his achievements

As mentioned before Craig Knoblock led his group of researchers to discover way

of data extraction from the web. The goal of this team was to create system

capable of organizing and integrating huge amount of data. This system, if

developed, could be a great assistance in travel planning, or analyzing biological

data. Researchers have divided task into several sub-projects: Machine Learning,

arbitrate whether records across web present the same data, automatic integration

of data from multiple sources, managing execution plans in the Web and defining

constraints for planning and integrating data. For the purpose of thesis, two

projects are particularly interesting: Apollo [8] and Mercury[9].

1. The Apollo project

This project is devoted to finding techniques of linking records which represent the

same object, but they are expressed in different ways; e.g. assume that there are

two Internet sources that describe the same store, but their addresses are written

differently:

Image 8: Example of mapping of two addresses

Above there is presented example from the Apollo homepage. Address Ventura

Boulevard can be also expressed in its shorter, yet understandable form: Ventura

Blvd. As human beings can recognize those kinds of constructions without

problem, then for machines these are two distinct sequences of characters.

25

The Apollo project deals with record inconsistency with system that uses two types

of resolving such issues.

a. Building mapping tables

A database-like table which contains records with information about

possible mappings of one string into another

b. Mapping function

A computer program that converts recorded data into another form.

Apollo joins both techniques in order to achieve semi-automated results – first of

all system is building a simple mapping table from set of data to analyze, and

then, using machine learning, system is trying to improve achieved mapping (by

analyzing abbreviations, acronyms or word sequence in sentences.

This subsystem wasn’t implemented in software included in this master thesis,

but is seems natural way of evolution, and next step in automating Travel Support

System.

2. The Mercury Project

Mercury Project is something like the Content Collection Subsystem in the Travel

Support System – it is responsible for gathering data. Creators of the Mercury

Project assumed that sources on the Internet appear all the time – extracting data

from new source is connected with reprogramming it. In order to omit this part,

there is a need for mechanism that would be capable of adapting data from new

source.

The second of those projects utilizes variety of techniques that I have taken

advantage of, for the needs of this master thesis.

26

DATAPROG algorithm

The Mercury project main task is to adapt newly created sources of data, in such

way that implemented algorithms are capable of extracting valuable information.

There is a variety of methods for accomplishing this task – Craig Knoblock

together with group of researchers decided to use a machine learning approach.

Most of wrappers created by programmers are landmark-based, which is

typical approach when extracting data from the web. Landmark-based wrappers

have hot hard-coded structure of document – they are capable of extracting data

from exactly one web page. This solution has major drawback – basing on outline

of document means writing specific program extracting data from one specific

page layout. Here, it is clear why HTML is not a good language to present data –

every slight change in graphical layout of a web page means change in position

where data is located. Since data is not separated from graphics, then a

programmer must react to every such change, and then rewrite the wrapper.

When the dream of the Semantic Web will come true, then no wrappers

will be needed – data on the Internet will be presented in machine-understandable

form, probably in the RDF format. Since there are a few truly semantic data

sources on the Web, then some mechanism should be supported, which extract

data in semantic way – regardless to layout, can source, and data that user intends

to receive. In order to approach towards Semantic Web, content-based wrappers

must be considered. Those programs should be able to analyze type of data which

user needs. Of course full, faultless analysis is not possible, but this can lead to

promising results.

In this thesis we try to extract data from some semi-structured information

sources. The goal of the wrapper algorithm will be to learn such structure. There

are two ways of achieving this task: either learning algorithm can take into account

negative examples, or positive examples. Full automation of the process is desired,

but at the current state of development, system cannot run without user interaction.

However, we assume that learning of the structure is done only once. Since there

does not exist explicit source of negative examples, the algorithm will learn

patterns based on positive examples. Programmer should be able to provide

enough positive examples, to treat result as significant. Set of about one hundred

27

test cases per type of data should be enough to talk about statistically significant

data.

Since we are interested in address-related data, Let us note that each address in

every country has some specific format. Let us consider example of few Polish

addresses:

Listing 5: Examples of Polish addresses

As it can be seen, they are not identical, but obviously share some similarities.

The idea is to use pattern language, which will represent such records in set of

regular expressions-like pattern.

Picture below shows the structure of such pattern language:

28

Image 9: Structure of pattern language used in DATAPROG algorithm

Several types of tokens (words that are considered) can be distinguished. They are

organized into hierarchical structure, where each element of the tree means class of

characters:

• TOKEN – abstract class of characters meaning any kind of character

• PUNCT – class of characters representing punctuation marks, which are one of

following:

o . (period)

o , (comma)

o ; (semicolon)

29

o : (colon)

o – (hyphen)

o _ (underscore)

o ! (exclamation mark)

o ? (question mark)

o ' (apostrophe)

o " (quotation mark)

o / (slash)

o \ (backslash)

o & (ampersand)

• HTML – class of characters, which are describing constructs specific to Hyper

Text Markup Language. This class of characters means everything that is

contained between < and > signs (opening and closing tags, respectively)

• ALPHANUM – class of characters that represent alphanumeric characters,

meaning digits and letters of alphabet, regardless to letter case.

Direct descendants of ALPHANUM class of characters are:

o NUMBER – class of characters that represents any sequence of digits

30

o ALPHA – class of characters describing letters of alphabet, regardless

to letter case

Direct descendants of ALPHA class of characters are:

 LOWER – class of characters where ale letters in token are

lower-case

 UPPER – class of characters where the first letter of token is

upper-cased, rest of the characters can have mixed-case

The token UPPER has one direct descendant:

• ALLCAPS – class of characters where all letters are

capitalized

HTML has built-in specific character entities [13], for example: character < (less

than) is represented by series of characters <

HTML has about one hundred of such constructs – nevertheless none of them

should appear in address, so those constructs are omitted..

Since pattern tree is organized in a hierarchical structure, then it is obvious, that

token belonging to one class of characters belongs also to all parent classes.

Originally Craig Knoblock together with his group suggested slightly different

token tree structure. It contained further division of NUMBER class into small

numbers (e.g. those consisting of one number), medium and large.

What is interesting in presented structure is that it can be easily adapted, or

extended to meet domain-specific requirements.

31

To the presented token classes new class is added, called specific, for every

string that appears more than some fixed number of times. So it means, that if

during processing presented earlier examples, algorithm will determine that tokens

ul and . are appearing frequent enough, then structure will look like:

Image 10:Pattern tree after processing some examples

From above, after applying certain algorithm, one would come to fact that Polish

address format consist of sequence of tokens:

<ul,., UPPER, NUMBER>

Please note that first two characters are specific token types – ul and “.” (full stop).

32

As Craig Knoblock remarks: “a sequence of specific and general token types is

more useful for describing the content of information than the character-level

finite state representations...”.[12]

Such description of data prototype is easy to implement, and understand by

human. What is more, it allows storing data in compact form.

The main part of data extraction is appropriate algorithm, capable of analyzing

data, using pattern language described above. This algorithm, created by Craig

Knoblock is called DATAPROG, it is successor to previous version called

DATAPRO.

DATAPROG finds statistically significant sequences of tokens. Token is

statistically significant whenever it occurs in examples more frequent than

expected by chance. By phrase ‘by chance’ one can understand situation when

tokens are generated in random way by uncontrolled source. In order to decide

whether token’s occurrence is significant, one needs to compute probabilities of

each token type.

Since assumption was made that learning will be based on positive

examples, then learning examples are treated as source of nearly 100% correct

data. Computed probabilities are stored in a special structure called HashTable

[14], which is an object mapping keys to values. What is more, it has been

implemented in way that optimizes time of searching and inserting data. Having

specified maximum load factor, and automatic change of size, it is powerful tool in

computation. It can be useful for counting how many times specified word occurs

in examples, and after that in counting probabilities of each token.

Table showing statistics about examples is shown below:

Token Type Representant Count
Alphanum 29
Number 17
Punct 12
Alpha 12

33

Upper 8
Lower 4
SpecificType / 4
SpecificType . 4
SpecificType - 4
SpecificType ul 4
SpecificType 100 2
SpecificType Łódź 1
SpecificType Doroszewskiego 1
SpecificType 23 1
SpecificType 22 1
SpecificType 21 1
SpecificType Niepodległości 1
SpecificType 006 1
SpecificType 900 1
SpecificType 222 1
SpecificType 129 1
SpecificType 6 1
SpecificType 16 1
SpecificType 45 1
SpecificType 1 1
SpecificType Lublin 1
SpecificType Chorzów 1
SpecificType Maja 1
SpecificType 05 1
SpecificType 02 1
SpecificType 01 1
SpecificType 00 1
SpecificType Gdynia 1
SpecificType Chełmska 1
AllCaps 0
HTML 0

Table 1: List of token types from training examples

Knowing number of occurrences of each token type, and total number of tokens,

probabilities of occurrences can be computed of each token type. Results below:

Token Type Representant Probability
Alphanum 0,71
Number 0,41
Punct 0,29
Alpha 0,29
Upper 0,20
SpecificType ul 0,10
SpecificType / 0,10
SpecificType . 0,10

34

SpecificType - 0,10
Lower 0,10
SpecificType 100 0,05
SpecificType Niepodległości 0,02
SpecificType Maja 0,02
SpecificType Łódź 0,02
SpecificType Lublin 0,02
SpecificType Gdynia 0,02
SpecificType Doroszewskiego 0,02
SpecificType Chorzów 0,02
SpecificType Chełmska 0,02
SpecificType 900 0,02
SpecificType 6 0,02
SpecificType 45 0,02
SpecificType 23 0,02
SpecificType 222 0,02
SpecificType 22 0,02
SpecificType 21 0,02
SpecificType 16 0,02
SpecificType 129 0,02
SpecificType 1 0,02
SpecificType 05 0,02
SpecificType 02 0,02
SpecificType 01 0,02
SpecificType 006 0,02
SpecificType 00 0,02
HTML 0,00
AllCaps 0,00

Table 2: Probabilities of occurrences of each token type

After computing overall probabilities of each of token’s calculation can be made

how many times token <NUMBER> is expected to follow token <UPPER>

completely by chance. If number of occurrences is larger than that value, then one

can say that token <UPPER> is also significant, thus token <NUMBER, UPPER>

is a data prototype.

In order to decide whether patterns are significant hypothesis testing is used

[15]. This is a technique for determining whether given hypothesis is correct.

Process of deciding of correctness is done by statistical computation.

Hypothesis testing consists of four steps:

35

1. Formulate the null hypothesis often represented by H0 symbol. Null hypothesis

is a case when observations are result of pure chance. Alternative hypothesis is

formulated – that observations are ‘real effect’.

2. Identify a test statistic used to test whether null hypothesis is true.

3. Compute the P-value – probability that test statistic would be obtained from

null hypothesis. The smaller the p-value, the stronger evidence against null

hypothesis.

4. Compare the P-value to a significance value , called alpha value. This is a

value from range , such that probability of observing at least k cases

among N observations is less than alpha value. Mathematically this is denoted

by equation:

Choice of alpha value is crucial to the results of algorithm – it will decide

whether to accept given token sequences or not. In other words – it will decide

of significance. A variety of different alpha values may be used. Usually it is

assumed that value is set to 5%. Nevertheless, based on observations and

specific type of data used, I have decided to set significance level to value of

10%, which is sometimes called almost significant.

If P-value is less than alpha value then observation is statistically significant,

so the alternative hypothesis is valid.

Knowing the theory-behind, the definition can be made what particular

mathematical terms mean in the presented task. Starting from the beginning,

definition of null hypothesis must be provided. In presented case it means that

sequences of tokens were generated randomly and completely by chance. The test

statistic will be observing that given token sequence is plausible. Next point is to

36

compute the P-value. Let us make assumption that there exist have n identical

sequences, which were generated randomly. After computation of token’s

probabilities, it is known that specific, currently observed token type T has

probability of occurrence p. Probability that this token will be the next token in k

of those examples has got a binomial distribution. It can be proved that for large n

binomial distribution approaches normal distribution[17]. Normal distribution is

often referred to as Gaussian distribution.

Normal Distribution is defined as:

Where x is variable, is mean, and is variance.

In this case, mean can be referred to as average value. Average number of

occurrences of token whose probability is p, in n sequences is expressed by

multiplication:

Variance is measure of statistical dispersion [3]. This value tells us of average

squared distance of values from mean. Variance is calculated as:

The cumulative probability of observing at least n1 events is given by equation:

In the standard edition, JAVA does not contain any libraries providing tools for

computing neither integrals, nor stochastic functions. Moreover, due to multiple

definitions of word integral, it has hard to find appropriate libraries on the web.

Here one can see how Semantic Web could help us in finding information about

37

calculating integrals in JAVA, and not about integral data types in JAVA. I have

managed to find COLT library [18]. This is open-source library that was created

for the needs of High Performance Computing. The COLT project is carried out at

CERN (European Organization for Nuclear Research), by scientists for scientists.

JAVA is considered as slow environment for executing applications, and lack of

advanced mathematical libraries is a proof that creators of JAVA think alike.

Nevertheless developers at CERN who created COLT library claim that latest

release breaks up the 1.9 Gflop/s barrier (floating point operations per second).

The library is free to use and modify, with restriction that license agreement

appears in source code of application taking advantage of COLT, as well as in

supporting documentation.

The COLT library is divided into several packages. The one containing

appropriate for us functions is called cern.jet.stat. Class responsible for computing

statistical functions is called Probability. In that class there is defined static

method normal:

38

Image 11: description of computation of normal distribution in COLT library

This function will compute integral on range from minus infinity to variable x. In

DATAPROG, there is need to calculate integral based on the interval from x to

infinity. Knowing that:

This can be written down by:

Hence:

This is denoted by:

From above comes out fact, that COLT library can be used to calculate

probability, but from the result number 1 should be subtracted.

On next page pseudo code of the DATAPROG algorithm is shown:

39

Image 12: pseudo code of the DATAPROG algorithm

40

Algorithm starts with an empty tree – meaning that the only element is the root node,

which has no influence on calculations of the algorithm. Next, algorithm iterates

through all positions in examples – for each encountered token type a new token object

is created. Please note that since creation of children for each token type is made, then

for every string derivation of all possible token types must be made – from most

general to most specific (including specific type representing the currently processed

token). Each token type is tested whether it is significant, with respect to the parent

node. If positive, then it is added as a child to the current node. After creation of

children, nodes are pruned. DATAPROG is comparing every two sibling nodes, and

eliminates the less significant. Above procedure is repeated for each element of the

tree. Let us illustrate this procedure on the above introduced example.

First step is to split characters – especially punctuation marks from other signs.

For needs of text-processing I have developed Utilities class. It contains method called

SplitTokensFromPunct, its code is presented below:

41

Listing 6: implementation of SplitTokensFromPunct method

After splitting, the following set of examples is obtained:

ul . Doroszewskiego 22 / 6 05 - 006 Łódź
ul . Chełmska 21 / 45 02 - 100 Chorzów
ul . 1 Maja 129 / 100 00 - 900 Lublin
ul . Niepodległości 16 / 23 01 - 222 Gdynia

42

Token tree consists of only the root node. Let us observe how data structures

change when algorithm runs:

1. Token tree empty:

2. For each token at next position in examples:

ul . Doroszewskiego 22 / 6 05 - 006 Łódź
ul . Chełmska 21 / 45 02 - 100 Chorzów
ul . 1 Maja 129 / 100 00 - 900 Lublin
ul . Niepodległości 16 / 23 01 - 222 Gdynia

Current position is 1 – determination of each token type at this position is

made. The result is:

<ALPHANUM, ALPHA, LOWER, ul>

Next, algorithm checks whether those token types are significant. In this case,

it happens that all of them except ALPHANUM are significant. This token type

is too general in this case, as it represents almost every token in examples.

Something more specific is needed, to represent valuable data. Algorithm will

treat the remaining 3 token types as significant. After this step the tree looks

like:

3. Next step is to prune the tree. Algorithm will compare every pair of sibling

nodes, such that one of them is more general, and will leave only the more

significant. Algorithm will leave the specific token, since it appears more times

than expected by chance, and it fully covers the domain. The tree after pruning:

43

root

root

ALPHA LOWER ul

4. Repetition of the procedure for every node of the tree:

ul . Doroszewskiego 22 / 6 05 - 006 Łódź
ul . Chełmska 21 / 45 02 - 100 Chorzów
ul . 1 Maja 129 / 100 00 - 900 Lublin
ul . Niepodległości 16 / 23 01 - 222 Gdynia

This case is almost exactly the same as previous. The difference lies in

obtained token types – here algorithm deals with <PUNCT> class of

characters. Nevertheless – after pruning the algorithm will leave the specific

type. The token tree is now:

44

root

ul

root

ul

•

5. The next position in examples is processed:

ul . Doroszewskiego 22 / 6 05 - 006 Łódź
ul . Chełmska 21 / 45 02 - 100 Chorzów
ul . 1 Maja 129 / 100 00 - 900 Lublin
ul . Niepodległości 16 / 23 01 - 222 Gdynia

Here, algorithm will recognize two different sets of token types

<ALPHANUM, ALPHA, UPPER, Doroszewskiego, Chełmska,

Niepodległości>

And

<ALPHANUM, NUMBER, 1>

The latter of these sets will be treated as not significant – hence

algorithm will reject the address “ul. 1 Maja 129 ...”. This may lead to

conclusions, that several Polish addresses will be treated as incorrect (Polish

addresses mainly start with characters ul. , but this can be followed by a

number or a word). As it was mentioned earlier – learning examples are treated

as nearly 100% correct (from above one can see that algorithm will not crash

when small percent of data is improper). If programmer is aware of possible

address formats, then several learning examples should be supplied in order to

create different token sequences.

After processing of this point, and calculations of significance, we

receive following tree (after pruning):

45

root

ul

•

UPPER

6. Repetition of procedure for next node of tree – in this case for node containing

type <UPPER>. After processing next records, tree has following shape:

46

From the above procedure the following token sequence is obtained:

<ul, •, UPPER, NUMBER, /, NUMBER, NUMBER,–, NUMBER, UPPER>

47

root

ul

•

UPPER

NUMBE

/

NUMBE

NUMBE

–

NUMBE

UPPER

Presented pattern covers most of Polish addresses. After finding such sequence of

patterns, the programmer’s task is to apply the result to Internet pages in order to

find desired information.

The use of DATAPROG algorithm in the Travel Support System

Presented method of obtaining patterns was used in Travel Support System. The

Coordinator Agent has been equipped with a new behaviour –

FindMissingTokensAction. This behaviour needs information – name of the object

that search concerns, and an ArrayList object containing pattern which has to be

searched. When called, it and uses the specially constructed class PatternSearcher

that tries to find data on the Internet.

The PatternSearcher class queries Google for the name of the object. The

class takes into account the first 10 results returned by search engine. Every link

being returned is examined. To achieve this goal the WebPageReader class, which

is responsible for reading contents of the web page, and supplying its source, was

written. Furthermore, functionality that allows retrieving pure text from the web

page (without HTML tags and special HTML symbols [28]) was also

implemented. The resulting sequences of strings are put into the HashTable, in

order to count number of occurrences. The result with greatest hit count is the one

returned by to the Coordinator Agent. Testing the number of occurrences of

specific string is a temporary solution. Development of trust-management based

algorithm could be a good entry point to another master thesis.

Let us now take a look at example showing how the algorithm will try to search

missing data.

The test case is finding address of Honoratka restaurant, located in Warsaw,

Poland. From DATAPROG algorithm it was discovered that Polish addresses are

represented by sequence of tokens:

<ul, •, UPPER, NUMBER>

This is shortened, but also proper form of address. It does not contain information

about zip code, nor city.

48

First thing that code logic does, is to query the Google homepage about data

supplied as one of the parameters. In this case this would be: Honoratka

Restaurant Warsaw. This string should be obtained from ontology. The name of

the restaurant which should be checked is supplied by Data Management Agent

(which monitors consistency of data).

When searching through Google one will obtain following results:

49

Image 13:Results from Google

50

Presented results may vary upon location, from which query was generated (one

will probably see different results for machines located in USA and Poland). The

first result returned by Google leads to main page of Honoratka restaurant.

Code locates all hyperlinks in obtained text. In HTML hyperlinks are

represented by the tag. For example – let us see the source code of

first two results from Google:

Image 14: Source code of Google results

51

From above text, algorithm extracts the tags, which will result in

obtaining two hyper links:

• http://www.honoratka.com.pl/ - the main page of the restaurant

• http://www.honoratka.com.pl/kontakt.php - page containing information

about address.

For each obtained link, the PatternSearcher class is instantiated. The first page is

shown on following screen (unnecessary Flash content has been cut out):

Image 15: Main page of the ‘Honoratka’ restaurant

The second page overview:

52

http://www.honoratka.com.pl/kontakt.php
http://www.honoratka.com.pl/

Image 16: Page containing ‘Honoratka’ address data

First page does not contain any data connected with addresses – algorithm will not

find any sequence of tokens beginning with text “ul .”. Let us move then to the

second page found by Google.

Source code of the part containing addresses is presented below:

Image 17: Source code of page containing ‘Honoratka’ address data

53

Algorithm traverses through source code, searching for supplied pattern. What is

important – search is performed on source code, which has got HTML tags

removed. I have also developed method for splitting tokens from punctuation

marks (so they are treated as separate characters). The above presented source will

have following form:

Image 18: Source code of ‘Honoratka’ restaurant contact page with HTML

tags removed

The algorithm will examine such input, and will correctly recognize two

addresses:

• ul. Miodowa 14

• ul. Podwale 11

Continuing with successive 8 web pages return by Google, algorithm will find

various valid street addresses (from pages of other restaurants, or yellow pages).

Results are in table below:

Found Address Hit count

ul . Miodowa 14 11
ul . Podwale 11 4
ul . Berezyska 39 2
ul . Wiertnicza 96 2
ul . Długa 52 1
ul . Marszałkowska 55 1
ul . Marszałkowska 10 1

54

ul . Huculska 1 1
ul . Jezuicka 1 1
ul . Sadowa 2 1
ul . Grzybowska 47 1
ul . Wilcza 8 1
ul . Wilcza 43 1
ul . Królewska 2 1
ul . Mokotowska 45 1
ul . Wilcza 35 1
ul . Wiolinowa 14 1
ul . Zgoda 1 1
ul . Stawki 2 1
ul . Zgoda 4 1
ul . Chłodna 34 1
ul . Senatorska 3 1
ul . Wierzbowa 9 1
ul . Waliców 9 1
ul . Poligonowa 30 1
ul . Wrbla 3 1
ul . Różana 14 1
ul . Rejtana 14 1
ul . Wsplna 62 1
ul . Połczyńska 126 1

Table 3: Number of occurrences of patterns recognized as addresses

The address “ul. Miodowa 14”, which is the real address of “Honoratka”

restaurant, occurs most often. Number of occurrences between this address, and

the second on the list is big enough, to talk about statistically significant result.

Summary

In this Master thesis I have described what Semantic Web is. I have mentioned

technologies used in development of SW. The goal if this thesis was to develop a

mechanism, which will be capable of searching desired information on the web. I

have done quick overview of possible ways of achieving this functionality.

I have successfully configured and deployed the Travel Support System.

Into the system, I have embedded functionality written by Szymon Pisarek

(Content Collection Subsystem – subject to his master thesis).

For the needs of the task, I have developed several classes and data

structures, which are widely used in my implementation of DATAPROG

55

algorithm – originally invented by Craig Knoblock. The algorithm is responsible

for ‘learning’ patterns from the supplied examples. It uses hypothesis testing and

uses advanced mathematical library COLT.

Results obtained from the DATAPROG are passed to the new behaviour

added to Coordinator Agent (which can be found in CCS).

I have developed functionality that takes as input simple query and pattern

to search. Algorithm searches the top 10 results from Google, and then for each

encountered result, it searches for supplied pattern.

What is more, I have developed several useful tools that are used in text

processing, HTML processing and statistical mathematical equations computing.

The task that was planned has been achieved, although there still are

places where actions could be more automated.

This master thesis, and any software developed for the needs of it, or based

upon it will bring us closer to the Semantic Web.

56

Bibliography:

1. Implementing Logic Wrappers Using XSLT Stylesheets, Amelia Bâdicâ, Costin Bâdicâ,

Elvira Popescu

2. Google, http://www.google.com

57

3. Wikipedia, http://en.wikipedia.org

4. ontoX - A Method for Ontology-Driven Information Extraction, Burcu Yildiz and Silvia

Miksch

5. Improving scalability of multiple crawlers based on contextualized query-sampling, Jason

J. Jung, Yun-Sang Oh, and Geun-Sik Jo

6. Mathworld, http://mathworld.wolfram.com

7. Craig Knoblock homepage, Craig Knoblock, http://www.isi.edu/~knoblock/

8. Apollo Project homepage, Craig Knoblock et al., http://www.isi.edu/integration/Apollo/

9. Mercury Project homepage, Craig Knoblock et al.

http://www.isi.edu/integration/Mercury/

10.Java Agent for Development (JADE) Framework, http://jade.tilab.com

11.Foundation for Intelligent Physical Agent (FIPA), http://www.fipa.org

12.Wrapper Maintenance: A Machine Learning Approach, Kristina Lerman, Steven N.

Minton, Craig A. Knoblock

13.World Wide Web Consortium http://www.w3.org

14.JAVA API http://java.sun.com/javase/6/docs/api/

15.Mathworld - Hyphothesis testing, http://mathworld.wolfram.com/HypothesisTesting.html

16. MathWorld - Decisions based on P-values and Significance Level Tests

http://demonstrations.wolfram.com/DecisionsBasedOnPValuesAndSignificanceLevels/

17.MathWorld - Binomial Distribution

http://mathworld.wolfram.com/BinomialDistribution.html

58

http://www.fipa.org/

18.COLT http://dsd.lbl.gov/~hoschek/colt/

19. Systemy agentowe w technologii RDF Wawrzyniec Hyska

20.JADE Administrator's Guide Fabio Bellifemine, Giovanni Caire, Tiziana Trucco

(TILAB S.p.A., formerly CSELT). Giovanni Rimassa (FRAMeTech s.r.l.), Roland

Mungenast (PROFACTOR GmbH)

21.JADE Tutorial Giovanni Caire (TILAB, formerly CSELT), David Cabanillas

(Technical University of Catalonia - UPC)

22.Transforming Arbitrary Tables into F-Logic Frames with TARTAR Aleksander Pivk,

York Sure, Philipp Cimiano, Matjaz Gams, Vladislav Rajkovi, Rudi Studer

23.Zastosowanie ontologii do organizacji informacji pozyskiwanych z Internetu, Rafał

Gąsiorowski

24.Modelowanie użytkownika na podstawie interakcji z systemem opartym o technologie

WWW, Maciej Gawinecki

25.Utilizing Semantic Web and Software Agents in a Travel Support System Maria Ganzha,

Maciej Gawinecki, Marcin Paprzycki, Rafał Gąsiorowski, Szymon Pisarek, Wawrzyniec

Hyska

26.Ontologicznie zorientowane przeszukiwanie Internetu, Szymon Pisarek

27.Regular Expressions, http://www.regular-expressions.info/

28.HTML 4.01 Specification World Wide Web Consortium (W3C)

http://www.w3.org/TR/html401/

59

Warszawa, dnia

60

Oświadczenie

Oświadczam, że pracę magisterską pod tytułem; „Towards Semantic Web” ,

której promotorem jest dr Marcin Paprzycki wykonałem samodzielnie, co poświadczam
własnoręcznym podpisem.

..

61

	Oświadczenie

