
WARSAW UNIVERSITY OF TECHNOLOGY
Faculty of Mathematics
and Information Science

Master's Thesis
Computer Science

Intelligent Software Agents
in Resource Management

on the Grid

Author:
Mateusz Dominiak

Supervisor:
Prof. Marcin Paprzycki

Warsaw, October 2006

......................
Author's
signature

......................
Supervisor's

signature

Intelligent Software Agents
in Resource Management on the Grid

Abstract
Grid computing is a promising approach of utilizing geographically distributed,
multi-domain computational resources for massive, high performance compu-
tations. Performance to cost ratio of grid computing is especially attractive
when comparing it with expensive supercomputers. While the grid comput-
ing is speeding up recently, the progress is still not satisfactory probably
because of overly complicated grid computing infrastructure. It has been
recently proposed that software agents might be the solution for creating
adaptable middleware for grid computing. The thesis proposes agent-based
system for resource management on the grid.

There are User Agents that act autonomously on behalf their users striv-
ing to execute submitted jobs on the grid utilizing available resources in the
way that meets user requirements. Each grid resource has its Worker Agent
which o�ers its services to the grid according to the speci�ed resource policy.
The system addresses the key challenges of the grid: highly dynamic nature
where resources appear and disappear without notice, workload of nodes is
susceptible to rapid and unpredictable �uctuations. Therefore agent teams
are introduced to provide Quality of Service and Service Level Agreements.
Agent team are virtual organizations which comprise collaborating Worker
Agents and Local Master Agent, which is the leader of the group.

Agent teams post their team advertisements to the Client Information
Center (CIC) which is centralized grid yellow pages made accessible to all
grid clients via CIC Agent. Team advertisements, expressed as ontology de-
marcated data persisted in relational database, consists of list and descrip-
tion of resources that are o�ered by the team. CIC allows User Agent to
query teams that are capable of executing jobs according to the job require-
ments given by the user. The interaction with CIC occurs in the early stage
of almost any system action, hence CIC service must be fast, reliable and
up-to-date. Three CIC infrastructures are implemented: multi-threaded, lo-
cal multi-agent, distributed multi-agent. Performance results are established
empirically and discussed. The best infrastructure is further tuned for more
performance boost and its reliability is secured by proper recovery mecha-
nism.

User Agents negotiate with potential teams, obtained from CIC, utiliz-
ing FIPA Contract Net Protocol. The o�ers proposed by team leaders are
validated against marginal constraints speci�ed by the user. The best o�er
is chosen using Multi Criteria Analysis.

Inteligentni Agenci Programowi
w Zarz¡dzaniu Zasobami w Gridzie

Streszczenie

Siatka komputerowa (ang. grid) jest obiecuj¡cym podej±ciem do problemu wykorzystania
zasobów, które s¡ rozproszone geogra�cznie i nale»¡ do ró»nych domen administracyjnych,
celem ich zaprz¦gni¦cia do oblicze« wymagaj¡cych du»ej wydajno±ci. Stosunek wydajno-
±ci do kosztu oblicze« na siatce jest zwªaszcza ciekawy, gdy zestawimy go i porównamy
z drogimi superkomputerami. Post¦p w dziedzinie oblicze« na siatce przyspiesza, jed-
nak wydaje si¦ on nie by¢ satysfakcjonuj¡cy. Dzieje si¦ tak prawdopodobnie z powodu
zbyt skomplikowanego oprogramowania, które wspiera to rozwi¡zanie. Ostatnio zostaªo
zaproponowane, »e wyj±ciem z obecnego impasu mo»e by¢ zastosowanie agentów progra-
mowych (ang. software agents). Niniejsza praca przedstawia propozycj¦ systemu opartego
o agentów do zarz¡dzania zasobami w siatce komputerowej.

Agenci U»ytkownika dziaªaj¡ autonomicznie próbuj¡c wykona¢ powierzone przez u»yt-
kownika zadania (ang. jobs) u»ywaj¡c dost¦pnych zasobów siatki, które speªniaj¡ okre-
±lone wymagania. Z drugiej strony, ka»dy zasób siatki jest reprezentowany przez Agenta
Robotnika, który oferuje usªugi zasobu klientom siatki wedle ustalonej polityki zasobu. Sys-
tem stawia sobie za cel dwa kluczowe wyzwania: (1) siatka przejawia bardzo dynamiczn¡
natur¦, gdzie zasoby mog¡ si¦ pojawia¢ i znika¢ bez »adnego ostrze»enia, (2) nat¦»enie
pracy (ang. workload) poszczególnych w¦zªów jest podatne na nagªe i nieprzewidywalne
�uktuacje. Dlatego te», zostaªy wprowadzone zespoªy agentów, które s¡ w stanie zapew-
ni¢ Jako±¢ Usªugi (ang. Quality of Service) oraz Umow¦ Serwisow¡ (ang. Service Level
Agreement). Zespoªy te s¡ wirtualnymi organizacjami kolaboruj¡cych ze sob¡ Agentów
Robotników, na czele których stoi Agent Przywódca.

Zespoªy Agentowe publikuj¡ swoj¡ ofert¦ w Centrum Informacji Klienta (CIK), które
jest scentralizowan¡ »óªt¡ ksi¡»k¡ (ang. yellow pages) siatki dost¦pn¡ dla wszystkich klien-
tów siatki poprzez Agenta CIK. Oferta zespoªu, opisana ontologicznie i przechowywana w
relacyjnej bazie danych, stanowi list¦ oraz opis zasobów oferowanych przez zespóª. CIK
umo»liwia Agentom U»ytkownika odszukanie zespoªów, które speªniaj¡ wymagania zada-
nia postawione przez u»ytkownika. Interakcja z CIK nast¦puje we wczesnej fazie niemal
ka»dej akcji systemowej, dlatego CIK musi by¢ szybki, niezawodny, ponad to powinien
udost¦pnia¢ najbardziej aktualne oferty zespoªów. Zostaªy przygotowane trzy architektury
CIK : wielow¡tkowa, wieloagentowa lokalna oraz wieloagentowa rozproszona. Empirycznie
otrzymane wyniki wydajno±ciowe s¡ przedstawione i przeanalizowane. Najlepsze rozwi¡za-
nie zostaªo poddane dalszym mody�kacjom celem zapewnienia jeszcze lepszej wydajno±ci
oraz zabezpieczenia niezawodno±ci za pomoc¡ mechanizmu odzyskiwania (ang. recovery
mechanism).

Agenci U»ytkownika negocjuj¡ z potencjalnymi zespoªami, otrzymanymi z CIK, wy-
korzystuj¡c Protokóª Sieci Kontraktowej FIPA (ang. FIPA Contract Net). Oferty przed-
ªo»one przez zespoªy s¡ poddane walidacji wzgl¦dem warunków brzegowych okre±lonych
przez u»ytkownika. Nast¦pnie najlepsza oferta jest wybierana za pomoc¡ Analizy Wielo-
kryterialnej.

Contents

1 Introduction 6

2 Proposed system 8

3 Client Information Center 11
3.1 Grid yellow pages and matchmaking 11
3.2 Interaction with CIC Agent 16
3.3 Architectures . 21
3.4 Performance experiments . 25
3.5 Auxiliary topics . 33

4 Job execution from user perspective 34
4.1 User Input . 34
4.2 Negotiation . 35
4.3 Multi Criteria Analysis . 36
4.4 Example . 37

5 Conclusions 39

Bibliography 41

List of Figures 42

List of Listings 43

List of Acronyms 44

A Grid Yellow Pages Ontology 45

B Messaging Ontology 50

C CIC behaviours 54

Chapter 1

Introduction

Grid computing is a promising approach of utilizing geographically distributed,
multi-domain, heterogeneous computational resources. Virtualization of com-
puting resources by grid computing is expected to provide its users with
highly available and adaptable computing utilities. It is also expected to have
a broad impact in science, businesses and industries. It is worth noting spec-
tacular successes of scienti�c projects like SETI@Home and Folding@Home
utilizing idleness of millions of distributed, internet-connected desktop ma-
chines. Although these projects were speci�c in nature, they showed power
of distributed computing � with 900000 computers SETI@home has ability
to compute 250 TFLOPS, whereas fastest supercomputer (Blue Gene) has
280 TFLOPS. The up-take of the grid, while speeding up recently, is still
unsatisfactory. One possible reason for this situation is an overly compli-
cated support for resource management provided by current grid software
infrastructure.

It has been suggested that software agents with ontologies may provide
the necessary infrastructure, by infusing grid with intelligence [1, 2]. Foster
et al. note that grid community have recently focused on �brain� � sophisti-
cated infrastructure and tools for reliable and secure resource sharing within
dynamic and geographically distributed virtual organizations, while software
agents community have focused on �brain� � �exible and adaptable problem
solvers. It is supposed that grid computing could bene�t from autonomous
and �exible behaviors of software agents.

As pointed out by Cao et al. [3] there are two key challenges that must
be addressed:

• Scalability. A given component of the grid will have it's own func-
tions, resources, and environment. These are not necessarily geared to
work together in the overall grid. They may be physically located in
di�erent organizations and may not be aware of each other.

7

• Adaptability. A grid is a dynamic environment where the location,
type, and performance of the components are constantly changing. For
example, a component may be added to, or removed from, the grid at
any time. These resources may not be entirely dedicated to the grid;
hence their computational capabilities will vary over time.

The goal of the thesis is to present proposal of the agent-based system
for resource management on the grid utilizing ontology demarcated data.
Chapter 2 presents overall system design, also published in [4]. Note that
the thesis itself is part of the project, and therefore we focus ourselves on
the part of the system functionalities, namely in chapter 3 we present Client
Information Center and in chapter 4 negotiation between User Agent and
agent teams. Work advances related with Client Information Center were
also reported in [5].

Chapter 2

Proposed system

Grid can be viewed as an environment, in which owners of resources (mostly
computational resources) want to o�er their resources for usage and be remu-
nerated for it. On the other site, there are users who want to complete their
tasks utilizing available grid resources. Approaching this problem in agent-
oriented manner, we start building up grid agency, which at the beginning
consists of:

• worker agents � represent grid resources and act on behalf their owners,
autonomously strive to meet its given objectives (e.g. gaining as much
pro�t as possible for resource lease, or contributing to scienti�c-oriented
projects)

• user agents � represent and act behalf of users (or whole organiza-
tions) that have jobs to be completed utilizing available grid resources,
autonomously strive to meet given user expectations (e.g. deadline,
budget)

Out most basic assumption is that single worker agent, for example rep-
resenting a typical �home-user�, can be of little value in real-life open-world
grid applications. While we recognize success of applications like SETI@home
or Folding@home that are based on harnessing millions of �home-PCs�, these
applications are of a very speci�c nature. There, the fact that a particular
resource �disappears� during calculations is rather inconsequential, as any
data item can be processed at any time and in any order. Furthermore, data
item that was not completed due to the fact that the PC processing it �died�
can be completed some time in future by another resource. This, however is
not the case in realistic (business-type) applications, where calculations have
to be completed in a speci�c order and, what is mostly the case, in a well-
de�ned time-frame. Therefore, to address this problem, we introduce virtual

9

organizations, called agent teams. Each team consists of a leader, the Local
Master Agent (LMaster). It is the LMaster with whom user agents negoti-
ate terms of task execution, and who decides whether accept a new worker
agent to the team. Throughout the thesis worker agent is also referred as
Local Slave Agent (LSlave).

Having agent teams, we can impose some level of assurance that task
completion will meet user's conditions. We adapt the idea of Service-Level
Agreement (SLA) from [6], which is kind of contract, settled before job exe-
cution between user agent and team leader � LMaster, imposing job com-
pletion conditions that must be met (e.g. deadline). Furthermore, if for
any reason team does not ful�ll SLA then it may be penalized, paying �ne
previously included in the agreement. Assuring such an SLA in case of a
single worker agent, representing ordinary home-PC, may be rather di�cult
as mostly such ordinary machines does not have backup power supplies (like
UPS) and thus are likely to fail. In case of agent teams, such a situation can
be easily overcome by resubmitting execution of the job (or continuation of
a job if parts of the results are available) to other worker agents.

For an agent team to be visible to other agents (potential users or team
members), it must post its team advertisement in such a way that it will
be reachable to other agents. As described in [7], there are many ways in
which information that is to be used in matchmaking can be posted in a dis-
tributed system and each of them has its advantages and disadvantages. In
[8] there has been presented multi-agent system with yellow page approach
to matchmaking. Based on that work we think that this type of matchmak-
ing can be successfully adapted in our multi-agent system. Thus LMaster
agents post their team advertisements within the Client Information Center
(CIC). Such an advertisement contains both information about o�ered re-
sources (e.g. hardware capabilities, available software, price etc.) and �team
metadata� (e.g. terms of joining, provisioning, specialization etc.). In this
way yellow pages will be used twofold by:

1. User agents looking for resources satisfying their task requirements.

2. Worker agents searching for a team to join.

For example, worker agent representing computational resource with in-
stalled MPI software, may want to join a team specializing in solving prob-
lems utilizing MPI software. Note that such a team may assure the SLA, as
in the case when one PC goes down it will be able to immediately run the
job on another and complete it on time or almost on time.

In our proposed system, user initiates the execution of the job by pro-
viding its user agent with speci�c requirements such as: resource require-

10 Proposed system

ments � required capabilities of resources that are to execute the task, and
execution constraints � time, budget etc. From this moment on, the user
agent autonomously acts on behalf of its user. First, it queries the CIC for
resources matching speci�ed requirements. In response it obtains (from the
CIC) a list of query-matching agent teams. Then it negotiates with LMasters
representing selected teams, taking into account its execution constraints to
�nd the best team for the job.

Similarly, user can specify that its agent joins a team, and specify con-
ditions for joining (e.g. frequency of guaranteed jobs or share of generated
revenue). In this case the user agent queries the CIC and obtains list of
teams of possible interest; negotiates with them, decides which team to join
and starts working for it. Observe that in all situation involving agents initi-
ating interactions with the system, they have to interact with the CIC �rst.
Note also that, since our system follows the general tenets of agent-system
design, the CIC service has to be designed and implemented as a CIC agent
(possibly supported by auxiliary agents). This being the case, how can we
make this agent-infrastructure as e�cient as possible; and this is the focus
of this paper. To �nd answer to this general question, we will introduce a
number of possible architectures of the CIC agent and its co-workers and
empirically establish their performance.

Chapter 3

Client Information Center

Client Information Center (CIC) is grid yellow pages storing and providing
information about available grid resources. Since our system follows general
tenets of agent-system design, the CIC is implemented as an agent infras-
tructure consisting of CIC Agent and possibly auxiliary agents (discussed in
architecture considerations, section 3.3 on page 21). The CIC Agent is the
agent via which grid clients have access to CIC services:

• (de)registering grid resources

• querying of grid resources

Section 3.1 describes team advertisements and matchmaking. It is fol-
lowed by description of interactions with CIC Agent in section 3.2 on page 16.
Observe that in all situations involving agents interaction with the system,
they have to interact with the CIC �rst. This being the case, how can we
make this agent-infrastructure as e�cient as possible. To �nd answer to this
general question, we will introduce number of possible architectures of CIC
Agent and its co-workers (section 3.3 on page 21) and empirically establish
their performance (section 3.4 on page 25).

3.1 Grid yellow pages and matchmaking
For an agent team to be visible to other agents (User Agents, Worker Agents)
it must prepare and post its team advertisement within CIC, which stores
the advertisements in yellow pages. The incoming resource queries are then
executed on the yellow pages. Standard matchmaking takes place here, user
resource requirements are matched against team advertisements in yellow
pages.

12 Client Information Center

Figure 3.1: Diagram of classes in Grid Yellow Pages Ontology. The arrows
on diagram show rdfs:subClassOf relationships.

Figure 3.2: Diagram of object properties in Grid Yellow Pages Ontology.
The arrows on the diagram show rdfs:domain and rdfs:range relationships.

3.1 Grid yellow pages and matchmaking 13

Team advertisements are expressed and stored as semantically demar-
cated data according to the Grid Yellow Pages Ontology (�gure 3.1 to 3.2
on the preceding page). While there exists a number of separate and incom-
patible attempts at designing an ontology of the grid, at this stage they can
be treated only as �work in progress�. In other words, �all-agreed� ontology
of the grid does not exist. However, we took careful implementation steps
in our resource management system, so when there will be standardized grid
ontology the system will be ready for it.

We decided to use OWL as an ontology language. There are three OWL
sublanguages: OWL Lite, OWL DL, OWL Full (sorted in order of increasing
expressiveness). Since there are many operations involving manipulations on
ontologies in the system, we found performance of inference and validation
engines to be the most important factor while choosing suitable sublanguage.
Generally, in case of inference engines, the more expressive sublanguage is the
higher worst-case complexity is. Hence, wanted to stay on safe side, we chose
OWL Lite. Most of the vocabulary concepts describing grid resources were
taken from Common Information Model1 (CIM). The complete speci�cation
of the ontology can be found in appendix A on page 45. Let us analyze
example team advertisement (expressed in N3 notation2):

: teamX a YellowPages :TeamAd ;
yel lowPages : teamMaster [

ye l lowPages : a idSt r "monster@e−plant . com:1099/JADE"
] .
ye l lowPages : o f f e r sRe s ou r c e : PC2929 .
ye l lowPages : o f f e r sRe s ou r c e : PC2930 .

: PC2929 a yel lowPages : UnitaryComputer ;
ye l lowPages : totalCPUCount "1" .
ye l lowPages : cpu [

ye l lowPages : cpuVendor yel lowPages : I n t e l ;
ye l lowPages : cpuArch yel lowPages : Generic_x86 ;
ye l lowPages : cpuClockSpeed "1500" ;
ye l lowPages : cpuCount "1"

] .
ye l lowPages : hostedFi leSystem [

yel lowPages : ava i l ab l eSpace "8000"
] .

1Grid Yellow Pages Ontology is based on Computer System, Processors, Local File
Systems and Operating System models de�ned in Common Information Model (CIM) [9].

2Notation 3 (N3) is a language which is compact and readable alternative to RDF's
XML, see speci�cation: http://www.w3.org/DesignIssues/Notation3.html

14 Client Information Center

yel lowPages : runningOS [
yel lowPages : freePhysicalMemory "1000" ;
ye l lowPages : freeVirtualMemory "2000" ;
ye l lowPages : operat ingSystem [
a yel lowPages : Linux ;
ye l lowPages : osType "Debian Linux" ;
ye l lowPages : osVers ion "3 .1"

] ;
ye l lowPages : i n s t a l l e dSo f twa r e [

ye l lowPages : softwareName "JRE" ;
yel lowPages : so f twareVer s ion "1 . 4 . 2 "

] ;
] .

: PC2930 a yel lowPages : UnitaryComputer ;
ye l lowPages : totalCPUCount "1" .
ye l lowPages : cpu [

ye l lowPages : cpuVendor yel lowPages : I n t e l ;
ye l lowPages : cpuArch yel lowPages : Generic_x86 ;
ye l lowPages : cpuClockSpeed "2000" ;
ye l lowPages : cpuCount "1"

] .
ye l lowPages : hostedFi leSystem [

yel lowPages : ava i l ab l eSpace "60000"
] .
ye l lowPages : runningOS [

yel lowPages : freePhysicalMemory "1000" ;
ye l lowPages : freeVirtualMemory "2000" ;
ye l lowPages : operat ingSystem [

yel lowPages : osType "SuSE Linux" ;
ye l lowPages : osVers ion "10 .0"

] ;
ye l lowPages : i n s t a l l e dSo f twa r e [

ye l lowPages : softwareName "JRE" ;
yel lowPages : so f twareVer s ion "1 . 4 . 2 "

] ;
] .

Above team advertisement describes �teamX� whose LMaster is an agent
identi�ed by �monster@e-plant.com:1099/JADE� which is JADE Agent IDen-
ti�er (AID) needed for an agent to be able to contact team master within
agent platform. Team o�ers two computational resources (unitary comput-
ers) with the following capabilities:

3.1 Grid yellow pages and matchmaking 15

• PC2929

� processor: Intel, 1500MHz clock speed, x86 architecture
� 8GB �le system space
� 1GB of free physical memory and 2GB of free virtual memory
� operating system: Debian Linux 3.1
� installed Java Runtime Environment (JRE) 1.4.2

• PC2930

� processor: Intel, 2000MHz clock speed, x86 architecture
� 60GB �le system space
� 1GB of free physical memory and 2GB of free virtual memory
� operating system: SuSE Linux 10.0
� installed Java Runtime Environment (JRE) 1.4.2

Matchmaking To query semantically demarcated yellow pages we utilize
SPARQL (Query Language for RDF) [10]. Let us now assume that User
Agent is looking for two machines with processor of at least 1GHz, at least
256MB of RAM and installed JRE. Additionally one machine should have
at least 10GB of disk space for storing some data. Then the SPARQL query
will have the form:
PREFIX yel lowPages :

<http :// g r idagen t s . s ou r c e f o r g e . net /YellowPages#>
SELECT DISTINCT ?teamContact
WHERE {

?team yel lowPages : teamMaster [
ye l lowPages : a idSt r ? teamContact

] .
?team yel lowPages : o f f e r sRe s ou r c e ? r e s1 .
?team yel lowPages : o f f e r sRe s ou r c e ? r e s2 .
FILTER (? r e s1 != ? re s2)

Matching f i r s t machine
? r e s1 yel lowPages : cpu [

ye l lowPages : cpuClockSpeed ? cpuClockSpeed1 ;
] .
FILTER (? cpuClockSpeed1 > 1000)
? r e s1 yel lowPages : runningOS [

yel lowPages : freePhysicalMemory ? freePhysicalMem1 ;

16 Client Information Center

yel lowPages : i n s t a l l e dSo f twa r e [
ye l lowPages : softwareName ? softwareName1 ;

]
] .
FILTER (? freePhysicalMem1 > 256 && ?softwareName1 = "JRE")

` # Matching second machine
? r e s2 yel lowPages : cpu [

ye l lowPages : cpuClockSpeed ? cpuClockSpeed2 ;
] .
FILTER (? cpuClockSpeed2 > 1000)
? r e s2 yel lowPages : runningOS [

yel lowPages : freePhysicalMemory ? freePhysicalMem2 ;
yel lowPages : i n s t a l l e dSo f twa r e [

ye l lowPages : softwareName ? softwareName2 ;
]

] .
FILTER (? freePhysicalMem2 > 256 && ?softwareName2 = "JRE")
? r e s2 yel lowPages : hostedFi leSystem [

yel lowPages : ava i l ab l eSpace ? ava i lSpace2
]
FILTER (? ava i lSpace > 10000)

}

The above query matches team advertisement (described at the beginning of
the section) and returns �monster@e-plant.com:1099/JADE�, which is AID
of master agent of �teamX�. Obviously, the complete response would consist
of a list of all teams that have among them at least two machines that satisfy
the criteria described above.

3.2 Interaction with CIC Agent
Grid clients can request CIC Agent to perform an action (e.g. query) simply
by sending an appropriate request message to it. The intercommunication
between agents is standardized by CIC Request Protocol, which is fully com-
pliant with FIPA Request Protocol3. Figure 3.3 on the next page4 depicts
interaction between requestor and CIC Agent. Requestor can be either User
Agent, querying for available grid resources, or LMaster, registering/updat-
ing team advertisement. First, requestor sends appropriate request message,

3See http://fipa.org/specs/fipa00026/SC00026H.pdf for FIPA Request Interac-
tion Protocol speci�cation

3.2 Interaction with CIC Agent 17

Figure 3.3: Interaction protocol diagram for CIC Request Protocol.

18 Client Information Center

then CIC Agent replies with one of the following communicative acts :

• not-understood, if the contents of the message could not be understood,
more speci�cally, it could not be successfully extracted according to
Messaging ontology. The problem lies at requestor's site.

• refuse, CIC has the limit of pending requests and thus may refuse to
perform another request if the request queue is full. Requestor should
try later on.

• failure, if for any reasons CIC fails to service a request (for example,
database is down). The problem lies at CIC site.

• inform, if request has been completed successfully. Depending on the
kind of request, it may be either inform-done, simply denoting that re-
quest has been completed successfully, or inform-result, which contains
action results in message contents.

In agent world the interaction between agents takes place by exchanging
messages. The syntactic conformance is forced by usage of FIPA Semantic
Language (SL)5. For the communication to be meaningful agents must have
the same semantic understanding of the message contents, therefore we in-
troduce Messaging Ontology that describes agent actions, their results and
concepts that can be utilized during interaction. Figure 3.4 on the facing
page depicts Messaging Ontology (see appending B on page 50 for complete
speci�cation of Messaging Ontology).

Example interaction There is User Agent which queries CIC Agent to
describe resources that have CPU clock speed greater then 1000MHz. The
following two messages are exchanged in this example scenario:
(REQUEST

: sender (agent− i d e n t i f i e r
: name tester@kameleon :1099/JADE
: addre s s e s (sequence http :// kameleon :7778/ acc)
:X−JADE−agent−classname gridrm . t e s t . c i c . CICTesterAgent

)
: r e c e i v e r (

s e t (agent− i d e n t i f i e r
: name c i c−agent@kameleon :1099/JADE
: addre s s e s (sequence http :// kameleon :7778/ acc)

)
)

4Interaction protocol diagram was introduced in Agent Uni�ed Modeling Language
(AUML), see [11, 12] for details.

5See http://�pa.org/specs/�pa00008/SC00008I.html for FIPA Semantic Language
speci�cation.

3.2 Interaction with CIC Agent 19

Figure 3.4: Class diagram of Messaging Ontology. The arrows show
rdfs:subClassOf relationship between classes.

: content "(
(ac t i on

(agent− i d e n t i f i e r
: name c i c−agent@kameleon :1099/JADE
: addre s s e s (sequence http :// kameleon :7778/ acc)

)
(CICQueryResource

: resourceQuery (OntoQuery
: ontoQuerySyntax http :// jena . hpl . hp . com/2003/07/ query/SPARQL
: ontoQueryStr

\"PREFIX gr id : <http :// g r idagen t s . s ou r c e f o r g e . net /YellowPages#>
DESCRIBE ? r e s
WHERE { ? r e s g r id : cpu [g r id : cpuClockSpeed ?cpuSpeed] .
FILTER (? cpuSpeed >= 1000)}\"

)
)

)
)"

: language f ipa−s l 0
: onto logy Messaging
: rep ly−by 20060501T145408274Z
: p ro to co l f ipa−r eque s t
: conversat ion−id C26811873_114649524528

)

rep ly from CIC Agent :

(INFORM
: sender (agent− i d e n t i f i e r

20 Client Information Center

: name c i c−agent@kameleon :1099/JADE
: addre s s e s (sequence http :// kameleon :7778/ acc)
:X−JADE−agent−classname gridrm . agents . c i c . CICAgent

)
: r e c e i v e r (s e t

(agent− i d e n t i f i e r
: name tester@kameleon :1099/JADE
: addre s s e s (sequence http :// kameleon :7778/ acc)
:X−JADE−agent−classname gridrm . t e s t . c i c . CICTesterAgent

)
)

: content "(
(r e s u l t

(ac t i on
(agent− i d e n t i f i e r

: name c i c−agent@kameleon :1099/JADE
: addre s s e s (sequence http :// kameleon :7778/ acc)

)
(CICQueryResource

: resourceQuery
(OntoQuery

: ontoQuerySyntax http :// jena . hpl . hp . com/2003/07/ query/SPARQL
: ontoQueryStr

\"PREFIX gr id :
<http :// g r idagen t s . s ou r c e f o r g e . net /YellowPages#>

DESCRIBE ? r e s
WHERE { ? r e s g r id : cpu [g r id : cpuClockSpeed ?cpuSpeed] .
FILTER (? cpuSpeed >= 1000)}\"

)
)

)
(RdfGraphResult

: rdfGraph (OntoData
: ontoDataLang RDF/XML−ABBREV
: ontoDataStr

\"<rd f :RDF
xmlns : g r i d="http :// g r idagen t s . s ou r c e f o r g e . net /YellowPages#"
xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#">

<gr id : UnitaryComputer rd f : about="jade ://myLaptop@kameleon :1099/JADE">
<rd f : type rd f : r e s ou r c e=

"http :// g r idagen t s . s ou r c e f o r g e . net /Grid#ComputerSystem"/>
<gr id : cpu>

<gr id : cpuClockSpeedMhz
rd f : datatype="http ://www.w3 . org /2001/XMLSchema#in t">

1500
</gr id : cpuClockSpeedMhz>

</gr id : cpu>
</gr id : UnitaryComputer>

</rd f :RDF>\"
)

)
)

)"
: rep ly−with tester@kameleon :1099/ JADE1146495245939
: language f ipa−s l 0
: onto logy Messaging
: p ro to co l f ipa−r eque s t
: conversat ion−id C26811873_1146495245282

)

3.3 Architectures 21

Localization of CIC Agent Each grid agent must be able to locate CIC
Agent. Therefore we use agent platform's yellow pages service provided by
Directory Facilitator (DF) agent. Once CIC Agent is ready to service clients
it registers within DF (�gure 3.5), so other agents can locate it. There are
two service types that are registered: cic-resource-querying and cic-resource-
registration (listings 3.1 to 3.2 on pages 21�22 respectively). Whenever grid
agents want to contact CIC, they query DF for agent that is o�ering one
of the service types depending on what they want to do. Description of
the services explicitly states that interaction should be initiated according to
FIPA Request Protocol, message contents should be encoded using minimal
subset of FIPA SL codec and Messaging ontology.

Figure 3.5: CIC Agent registered in DF.

(s e r v i c e−d e s c r i p t i o n
: name " c i c "
: type " c i c−re source−querying "
: p ro to co l (s e t "FIPA−Request ")
: onto logy (s e t "Messaging ")
: language (s e t "FIPA−SL0")

)

Listing 3.1: Description of cic-resource-querying service

3.3 Architectures
The CIC infrastructure is one of key components in our system. Therefore,
it must be reliable, fast, and capable of e�ciently handling large number of

22 Client Information Center

(s e r v i c e−d e s c r i p t i o n
: name " c i c "
: type " c i c−re source−r e g i s t r a t i o n "
: p ro to co l (s e t "FIPA−Request ")
: onto logy (s e t "Messaging ")
: language (s e t "FIPA−SL0")

)

Listing 3.2: Description of cic-resource-registration service

requests. Speci�cally, since interactions between User Agents and the CIC
are the key part of early stages of job execution, or Worker Agents joining an
agent team, long delays in CIC responses would become a major bottleneck
of the whole system.

In this context, let us note �rst, that in our system the yellow page in-
formation is stored in an ontologically demarcated form. To facilitate it
we use Jena 2.3 [13] and its database persistency mechanism (see [14] for
a report on using Jena with massive store of ontological triples). In [15]
it has been shown, among others, that tasks involving database access can
be e�ciently distributed to multiple database-access agents (SQLAgents).
Speci�cally, in the reported experiment, a single agent was receiving and
enqueuing client-requests, and multiple SQLAgents were dequeuing requests
and executing them on the database. All query-processing agents and the
database were running on separate computers. Multiple tests with di�erent
number of SQLAgents have been executed and have shown that as the num-
ber of SQLAgents increases to 5, the total query-processing time decreases
by almost 33%. Obviously, we should try utilizing such agent-based database
access mechanism in our system. More generally, we have decided to look
for the most e�cient agent-based architecture for the CIC service and as the
�rst step implemented the following three basic architectures:

1. multi-threaded CIC, see �gure 3.6.

2. multi-agent CIC with local database agents (CICDbAgents), see �g-
ure 3.7.

3. multi-agent CIC with distributed database agents � located on separate
computers (based on the idea from [15]), see �gure 3.8

In (1) we utilize the well-known task-per-thread paradigm. We have used
Java threads and made them accessible to the CIC agent within its container.
Each worker thread has its own connection to the database and its instance

3.3 Architectures 23

thread poolMain CIC Container = single JVM

incoming
request
messages

outgoing
result
messagesworker thread

request
queue

CICAgent
 worker thread

worker thread

JADE-provided
message

queue

Figure 3.6: Request/result �ow in a multi-threaded CIC architecture.

of the Jena model. Initialization of these resources is computationally expen-
sive and that is why instead of spawning new threads, we use preinitialized
threads in the worker thread pool. The CIC agent picks requests (query-
requests or yellow-pages-update-requests) from the JADE-provided message
queue (storing incoming standard ACL messages) and enqueues them into
the request queue (which we have implemented). It is this request queue from
which free worker threads pick requests for execution. After executing the
query they send obtained responses to their originators.

CICDbAgentCICDbAgent

Main CIC Container = single JVM

CICAgent

CICDbAgent

incoming
request
messages

(1) enqueue

request
queue

(2) dequeue

(3) delegation

(4) send result

outgoing
result
messages

(5) send result

JADE-provided
message

queue

Figure 3.7: Request/result �ow in multi-agent CIC architecture with local
CICDbAgents.

In the second approach we use local (residing in the same agent container)
CICDbAgents�instead of worker threads. The CIC agent picks requests
form the JADE message queue and enqueues them into the internal request
queue. This queue acts as a bu�er between the CIC Agent and the CI-
CDbAgents and, furthermore, reduces the number of messages stored in the
JADE message queue. Note that this queue is the only way for the CIC to re-
ceive ACL messages. Incoming requests are delegated (in the form of ACL

24 Client Information Center

messages) to �free� CICDbAgents by the CICAgent. Each database agent
completes one task (request) at a time. Upon completion, results are sent
(also as an ACL message) back to the CIC Agent. As a result they are placed
in the same JADE message queue as the incoming query-requests. There are
two behaviors within the CIC Agent that are servicing the JADE message
queue. One of these behaviors checks for incoming query-requests, while the
other checks for incoming query-results. Since both behaviors operate within
a single thread (JADE utilizes a one-thread-per-agent paradigm), it can be
assumed that (except when there is nothing to do for one of them) they take
turns removing messages of a given type from the JADE message queue. As
we will see this has very important consequences for the performance of this
approach.

CICDbAgentCICDbAgent

Main CIC Container = single JVM

CICAgent

CICDbAgent

incoming
request
messages

(1) enqueue

request
queue

(2) dequeue

(3) delegation

(4) send result

outgoing
result
messages

(5) send result

JADE-provided
message

queue

Figure 3.8: Messages �ow in multi-agent CIC architecture with distributed
CICDbAgents.

The last approach (3), is almost exactly the same as the previous one (2).
The only di�erence is that database agents are located on remote machines
contributing additional computational power and allowing CICDbAgents to
work without stealing resources from the CICAgent.

Overall, in the multi-threaded approach (1) we utilize a �pull architec-
ture�, where worker threads pick requests from request queue, while in multi-
agent solutions (2,3) requests are delegated by the CICAgent to CICD-
bAgents��push architecture.�

3.4 Performance experiments 25

3.4 Performance experiments
In our experiments, to simulate a �ow of incoming requests from user agents
we used 4 Querying Agents (QA), requesting the CIC to perform SPARQL
[10] resource queries. It should be noted that the form of the SPARQL
query can change performance of the system. The ARQ engine in Jena,
responsible for executing the query on RDF resources persisted in database,
translates only parts of the SPARQL query into SQL. The rest (e.g. FILTER
operations) of the query are performed not by the database itself, but locally
by the ARQ engine, utilizing local JVM resources. In our case queries had
the following form:
PREFIX gr id : <http : // g r i d a g en t s . s ou r c e f o r g e . net /Grid#>
SELECT ?master
WHERE {

?comp gr id : cpuClockSpeedMhz ?cpu
FILTER (? cpu > 1000)
?master g r id : o f f e r sRe s ou r c e ?comp

}

Each QA was running concurrently on separate machine, and was sending
2, 500 requests and receiving query-results. Thus in each experiment 10, 000
queries have been processed by the CIC. Since we have been running mul-
tiple experiments (especially when attempting at performance tuning), we
have developed an experimental framework for running tests automatically,
while varying their parameters (e.g. number of worker threads, number of
CICDbAgents etc.). All experimental runs were coordinated by the Test
Coordinator Agent (TCA). Before each test, remote JADE agent contain-
ers were restarted to provide equal environment conditions. Experiments
were performed using up to 11 Athlon 2500+, 512MB RAM machines run-
ning Gentoo Linux and JVM 1.4.2. Computers were interconnected with a
100Mbit LAN. The MySQL 4.1.13 database used by Jena persistence mech-
anism for storing yellow pages data was installed on a separate machine. In
all cases the experimental procedure was as follows:

1. Restart of remote agent containers

2. Experiment participants send ready message to the TCA�just after
they are set-up and ready for their tasks

3. On receiving the ready signal from all agents, the TCA sends start
message to all QAs, triggering start of the experiment

4. When QAs receive all results back, they send a �nish message to the
coordinator (the TCA)

26 Client Information Center

5. Reception of all �nish signals end of the experiment

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 1 2 3 4 5 6

pr
oc

es
si

ng
 ti

m
e

(s
)

VP - varying parameter

multi-threaded (VP - number of worker threads)
local multi-agent (VP - number of CICDbAgents)

distributed multi-agent (VP - number of CICDbAgents)

Figure 3.9: Experimental results of di�erent CIC architectures: multi-
threaded, multi-agent with local CICDbAgents and multi-agent with dis-
tributed CICDbAgents ; processing time of 10, 000 queries depending on num-
ber of worker threads in multi-threaded architecture/number of CICDbAgents
in multi-agent architectures.

Results At �gure 3.9 we represent total processing time of 10, 000 requests
by each CIC architecture, when the number of agents/worker threads in-
creases from 1 to 6. The �gures 3.10 to 3.12 on pages 27�28 show the best
throughputs achieved in local multi-agent, distributed multi-agent and multi-
threaded architectures respectively. Obtained results are as expected for the
�rst approach (worker-threads). As the number of threads increases from
1 to 3 we can see a total time reduction of about 11%. Further increase of
the number of threads does not result in performance increase indicating,
that all local resources have been consumed when 3 threads are used.

What is somewhat surprising is the fact that the architecture with local
CICDbAgents does not scale well. In order to understand this situation
we have to refer to the mechanics of messaging in JADE, which provides
each agent with its own message queue managed by the JADE Message
Transport System (MTS). In this context let us recall that as the system
works, query-request messages are intermixed with response messages. At

3.4 Performance experiments 27

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70

th
ro

ug
hp

ut
 (

se
rv

ed
 r

eq
ue

st
s

pe
r

se
co

nd
)

time (s)

Figure 3.10: Throughput of multi-agent architecture with 1 local CICD-
bAgent.

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50

th
ro

ug
hp

ut
 (

se
rv

ed
 r

eq
ue

st
s

pe
r

se
co

nd
)

time (s)

Figure 3.11: Throughput of multi-agent CIC architecture with 3 CICD-
bAgents.

28 Client Information Center

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

th
ro

ug
hp

ut
 (

se
rv

ed
 r

eq
ue

st
s

pe
r

se
co

nd
)

time (s)

Figure 3.12: Throughput of multi-threaded CIC architecture with 3 worker
threads.

the same time, we have two message retrieving behaviors that take turns
trying to retrieve their types of messages from the queue. Let us now observe
what happens in early stages of our experiment, when the response message
retrieving behavior tries to retrieve a message. This process involves iterative
�ltering through messages stored in the message queue. Thus, if there are
1, 000 request messages stored in the queue when the �rst response message
was received from the CICDbAgent, it will be placed at the end of the queue.
In order to get to that message, all 1, 000 request messages have to be checked
�rst, and �nally the result message will be found at the end of the queue. Note
also that this situation cannot be changed programmatically, since this is how
JADE works internally. Obviously, as time passes, and request messages
become intermixed with result messages, the situation becomes less radical,
but still this approach turns out to be relatively ine�cient. Further support
for our explanation can be found in �gure 3.16 (even though this �gure
represents performance of the last approach, behavior noted in the case of
local agents was of a very similar nature). There we can observe that, as
the number of request messages decreases, throughput increases. Obviously,
this e�ect is somewhat biased by the way that our experiment was set-up; all
query-request messages were sent at once at the beginning and then Querying
Agents were just waiting for responses.

As it turns out, the best performance can be observed in the case of
the multi-agent approach with 3 distributed CICDbAgents. In this case,

3.4 Performance experiments 29

reduction of time of order 2.5 is observed. Since the starting point is well
above the case of the local architecture (caused by the cost of computer-
to-computer communication), the maximum reduction of time against the
threaded solution is of order 18%. Unfortunately, as the number of agents
increases past 3, the same e�ect as in the case of local agents � performance
decrease caused by the way that the CICAgent removes data from the queue �
can be observed.

Overall, as the result of our initial set of tests we were able to establish:
(a) the importance of way that the messaging is handled, (b) that when only a
single machine is available for facilitating the yellow page service, a threaded
solution should be used, and (c) that the additional computational power
available in the case when CICDbAgents are located on multiple separate
machines plays an important role and makes this particular approach the
best candidate for further performance improvement.

Performance tuning Based on observations collected thus far we have
decided to attempt at improving the performance of the third CIC architec-
ture � the multi-agent approach with agents located on separate machines.
To overcome the way that query and response messages are handled, we
have added the CIC Internal Agent (CICIA) (see �gure 3.13). This agent

CICDbAgent

CICDbAgent

Main CIC Container = single JVM

CICAgent

CICDbAgent

incoming
request
messages

(1) enqueue request queue

(2) dequeue

(3) delegation

(4) send
result

outgoing
result
messages

7) send result

JADE-provided
message

queue

CICIA

JADE-provided
message

queue

(5) enqueue
result

(6) dequeue
result

shared
result
queue

Figure 3.13: Request/result �ow in distributed multi-agent CIC with CICIA.

plays a role of an intermediary between the CICAgent and CICDbAgents.
More precisely, processing request messages starts in the same way as in
the previous solution�these messages are stored in JADE message queue.
The CICAgent removes messages from the message queue and stores them
in the internal request queue and, later, delegates them to the CICDbAgents

30 Client Information Center

(sending them as ACL messages). CICDbAgents query the database and
send results of their queries to the CICIA (as ACL messages�to be stored
in JADE message queue of the CICIA). Upon reception of such messages,
CICIA enqueues them into a synchronized result-queue (that we have imple-
mented), from which they are dequeued by the CICAgent and send back to
requesters. In other words, the intercommunication between the CICIA and
the CICAgent is accomplished through a shared result queue instead of ACL
messaging. As it is easy to see, this is also why these agents (CICIA and
CICAgent) must run within the same agent container (the Main CIC Con-
tainer). The CICAgent has now three behaviors: (1) receive message from
the JADE message request queue and enqueue it in the request queue, (2)
dequeue request from the request queue and send it to the CICDbAgent, and
(3) dequeue message from the result queue and send it to the requester. The
sequence diagram of handling the request is presented in �gure 3.14. Observe
that, in the modi�ed approach, database query results are not intermixed
with query requests and hence we eliminate the above mentioned overhead
of �ltering results form the message queue.CIC request handling 2006/09/08

ResultQueue :
SyncQueue

CICInternalAgent :
Agent

CICAgent :
Agent

CICDbAgent :
Agent

Requestor :
Agent

7: inform(result)

6: result := get()

5: notify()

4: put(result)

3: inform(result)

2: request(cicAction)

1: request(cicAction)

CIC

CIC Main Container

UserAgent or
LMaster

Figure 3.14: Sequence diagram: Handling requests by CIC with additional
CIC Internal Agent.

In �gure 3.15 we compare performance of the CIC service implemented
using worker threads and two versions utilizing non-local CICDbAgents �
with and without the CICIA. As can be seen, the performance of both non-
local CICDbAgent-based approaches, when the total number of CICDbAgents
is between 1 and 3 is quite similar (the architecture with the CICIA is only

3.4 Performance experiments 31

 30

 40

 50

 60

 70

 80

 90

 1 2 3 4 5 6

pr
oc

es
si

ng
 ti

m
e

(s
)

VP - varying parameter

multi-threaded (VP - number of worker threads)
distributed multi-agent without CICIA (VP - number of CICDbAgents)

distributed multi-agent with CICIA (VP - number of CICDbAgents)

Figure 3.15: Comparison of multi-threaded CIC with distributed multi-agent
architecture with and without CIC Internal Agent ; processing time of 10,000
queries varying number of worker threads/number of CICDbAgents.

slightly better). However, as the number of CICDbAgents increases up to 6,
the performance continues to improve steadily. Since we can observe also a
leveling-o� e�ect, the fact that we were not able to run experiments with more
than 11 computers (and thus the largest number of CICDbAgents was 6), is
rather inconsequential. Speci�cally, it can be predicted that if the number
of CICDbAgents was to increase further, then the performance gain would
be only marginal. Overall, with 6 CICDbAgents the performance gain over
the system with only a single CICDbAgent is of order of 3. Furthermore,
the performance gain over the worker threads based implementation of the
CIC is of order 45% (here we compare the best threaded solution � with
3 threads � with that of the distributed agent solution with CICIA, for 6
CICDbAgents).

Finally, in �gure 3.16 we present the throughput of the two systems with
non-local CICDbAgents (with and without the CICIA). These results were
collected using another CICAgent behavior which was controlling the state
of the CICAgent and logging appropriate variables for post-processing. The
results con�rm our earlier understanding of processes taking place in the sys-
tem working under conditions of our experiment. In the case of the system
without CICIA, throughput is slowly increasing as more and more response
messages are intermixed in the queue with request messages. In this way,
time to retrieve a response message decreases (these messages move closer
and closer to the front of the JADE message queue). When all request

32 Client Information Center

messages have been processed (e.g. have been removed from the CICAgent
message queue), the request retriever behavior blocks and the response mes-
sage retriever starts to �continually� retrieve results form the message queue
and send them to the requesters. This situation can be observed in the form
of the throughput spike near the end of the process. In the case of archi-
tecture with the CICIA we observe (after a brief start-up period) a steady
performance of the order of 400�500 processed requests per second.

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70

th
ro

ug
hp

ut
 (

se
rv

ed
 r

eq
ue

st
s/

se
c)

time (s)

without CICIA
with CICIA

Figure 3.16: Comparison of distributed multi-agent architecture (6 CICD-
bAgents) with and without CIC Internal Agent. Throughput (served requests
per second) vs. time.

It should be mentioned that we have also evaluated a modi�cation of the
above architecture, where the CICIA becomes both the delegator of requests
and receiver of results. This architecture proved to be slightly faster, however
it was more complicated from the conceptual point of view. Therefore, for the
sake of design readability we have abandoned that idea as the �nal solution
to our problem.

Additional performance tuning After establishing candidate architec-
ture, we have proceeded with further performance tuning. In the multi-agent
architecture, the CICDbAgent is requested to perform a single action, and
once it returns result of it there is another request delegated to it. Obvi-
ously, proceeding in this way we do not utilize remote CICDbAgents fully,
they are idle for some time between sending result to the CICIA and receiv-
ing a new request. We have found that by adding local request queues of

3.5 Auxiliary topics 33

size 10 to CICDbAgents, the overall performance of the CIC increases by
approximately 3%.

3.5 Auxiliary topics
CIC reliability Introduction of additional database agents to the CIC ar-
chitecture reduces its reliability. In the case of failure of the CICDbAgent,
requests owned by that agent would be lost without any noti�cation to the
client. Therefore, we have decided to provide a recovery mechanism. Since
all requests and results �ow through the CICAgent we are able to continually
store and maintain two snapshots: (1) one with recent requests delegated to
database agents, (2) the other one with recently received results. These snap-
shots have reasonably bounded size that depends on the number of database
agents and sizes of their local queues. In the case of a crash of a CICDbAgent,
recovery procedure �nds requests (delegated to the agent) without matching
results (in the second snapshot). These requests are put back to the request
queue for subsequent execution.

Prioritized requests Let us observe that it is extremely important to keep
grid yellow pages up-to-date as this allows us to limit number of missed query
results. Therefore, requests are di�erentiated according to their type, and
any team advertisement modi�cation has precedence over querying actions.
To facilitate this, we change implementation of request queue into priority
request queue, which queues requests according to their priority, and thus
CICAgent strives to delegate modi�cation actions for execution �rst. For
example, having 1, 000 pending query-requests, incoming team modi�cations
will be placed in priority queue before queries, so that the pending queries
are �assured� to be served with the most up-to-date information. It should be
noted that here we assume that the overall number of modi�cations of yellow
pages is negligible with respect to the number of query requests, otherwise
starvation of querying actions could occur.

Chapter 4

Job execution from user
perspective

The �rst step to execute a job on the grid is to provide User Agent with
the necessary information such as job description, negotiation parameters
and constraints. Having user input, User Agent acts autonomously trying to
execute job utilizing available resources meeting user expectations. First it
queries Client Information Center (CIC) for agent teams that have required
resources for the job. Then it starts negotiation process with team lead-
ers (LMasters) taking into account negotiation parameters and constraints
speci�ed by the user. The best team is chosen using Multi Criteria Analysis
(MCA) [16].

4.1 User Input
The user provides User Agent with the job description, negotiation pa-
rameters and execution constraints. Job description contains resource re-
quirements expressed in the Grid Yellow Pages Ontology (see section 3.1 on
page 11). There are three negotiation parameters: cost, job start time and
job end time. For each of theses parameters the user speci�es its importance
by giving weight that is used in MCA (section 4.3 on page 36). For example
user may state that cost of the execution is twice important than job end
time by giving weight 2 to cost and weight 1 to job end time. If any of theses
parameters should not be taken into account then 0 weight is given. The user
may also specify constraints such as maximum cost, maximum job start time
and maximum job end time. The o�ers that do not meet these constraints
are not taken into account during negotiation phase. We have implemented
User Agent GUI as the way of providing User Agent with user input (see

4.2 Negotiation 35

example in section 4.4 on page 37).

4.2 Negotiation

Figure 4.1: Interaction Diagram of FIPA Contract Net Protocol.

After receiving a list of potential teams that are capable of doing the
job, User Agent starts negotiation with them utilizing FIPA Contract Net
Protocol (�gure 4.1)1. First is sends CALL-FOR-PROPOSAL (CFP) mes-
sage to all matched LMasters. CFP contains job description according to
which LMasters are able to construct their o�ers. Once the o�er is ready it
is sent back to User Agent via PROPOSE message. It is possible that some
of LMasters refuse to propose, for example in the meantime some of the
resources �disappeared� and now they do not have required resources. The
User Agent awaits for PROPOSALs and REFUSALs until all of them are
received or deadline occurs. It is important to introduce deadline to avoid

1See http://www.�pa.org/specs/�pa00029/SC00029H.html for FIPA Contract Net In-
teraction Protocol Speci�cation.

36 Job execution from user perspective

too long latencies in the process. If there is no proposal then User Agent
fails with the task and reports back to the user. Otherwise, if there is at
least one PROPOSAL then User Agent starts evaluation of o�ers, which is
two-stage process:

• O�ers which do not meet execution constraints (e.g. cost, job start
time, job end time) are �ltered out and are not taken into account
in the next stage. If all o�ers are �ltered out in this stage due to
constraints then User Agent fails with the task and reports back to the
user.

• The remaining o�ers are evaluated using Multi-Criteria-Analysis mod-
ule (MCA) � see section 4.3.

After MCA phase there is chosen team for job execution and ACCEPT-
PROPOSAL is sent to that team. The other teams are rejected by sending
REJECT-PROPOSAL to them. The chosen team con�rms acceptance by
INFORM-DONE message.

4.3 Multi Criteria Analysis
We use linear additive model [16] as Multi Criteria Analysis. It is done by
multiplying value scores on each criterion by the weight of that criterion, and
then adding all those weighted scores together. We have three criterions that
take part in MCA process: cost, job start time and job end time. If there
are n teams then criterion scores of i-th team are calculated in the following
way:
Start Time Score: STSi =

(1
startT imei−currentTime

)∑n

j=1
(1

startT imej−currentTime
)

End Time Score: ETSi =
(1

endTimei−currentTime
)∑n

j=1
(1

endTimej−currentTime
)

Cost Score: CSi =
(1

costi
)∑n

j=1
(1

costj
)

All scores are normalized and generally the better criterion value the higher
score it is given. Overall i-th team score calculations:
Team Score: TSi = STSi ∗ startT imeWeight + ETSi ∗ endT imeWeight +
CSi ∗ costWeight
Team with the highest overall score, as a weighted sum of criterion scores
of the team, is chosen as the winner team. For the example of MCA in use
please refer to the section 4.4 on the facing page.

4.4 Example 37

Figure 4.2: User Agent GUI: Resource requirements.

4.4 Example
We would like to compute some job utilizing MPI library on 16 machines.
First, we specify resource requirements as shown on the �gure 4.2. Then
we provide negotiation parameters expressing our execution preferences. For
example, we must meet deadline of 12:00 11th October 2006, and the cost
does not matter as much as time (�gure 4.3 on the following page). Therefore
we specify deadline as end time constraint and we prefer three times more
sooner end time then cheaper cost. We do not care when the job starts
(weight 0), we only want to meet speci�c deadline.

Figure 4.4 on the next page shows matched teams and their scores eval-
uated by MCA. Let us note that teamA has been rejected because it does
not meet deadline constraint. The other teams are calculated score. Despite
of cheaper cost 40% of teamC, it was teamB that was accepted to do a job
because of sooner end time.

38 Job execution from user perspective

Figure 4.3: User Agent GUI: Weights and constraints of criterions.

Figure 4.4: User Agent GUI: Matched teams and their scores.

Chapter 5

Conclusions

We presented overall vision of agent-based approach to resource management
of the grid. It seems that nature of software agents as autonomous soft-
ware entities striving to meet their objectives proves to be useful in highly
dynamic environments such as grids. We have prototyped Client Informa-
tion Center as the grid yellow pages within which agent teams post their
team advertisements and User Agents look up resources. Expressing team
advertisements as ontology demarcated data is especially promising in vast
environments were common knowledge understanding must be imposed, how-
ever no standardized ontology have been worked out by grid community so
far. Reliability and performance were addressed as the key challenges in the
implementation of CIC component. Therefore we prepared three CIC archi-
tectures and empirically established their performance. It turned out that
multi-threaded CIC is the best choice for single machine infrastructure, how-
ever distributed multi-agent approach seems to be much more e�cient. We
performed further performance tuning overcoming the observed shortcoming
of the agent-platform's message queue by introduction of additional agent �
CICIA. That architecture outperformed other architectures with the steady
throughput of 400�500 requests per second. The reliability of the distributed
CIC architecture was also taken into consideration by introducing simple
recovery mechanism in case of CICDbAgent failure. Despite of this, CIC re-
mains single point of the failure in the system, if the main CIC agent crashes
then the whole infrastructure breaks down as well. This critical issue should
be considered in the future works. Then we prototyped negotiation between
User Agent and agent teams utilizing FIPA Contract Net Protocol and Multi
Criteria Analysis implemented using linear additive model. That part of the
system is highly abstract and is only the basis for the future work, we have
covered neither the issues of job submission mechanism nor the estimation
of the job execution.

Bibliography

[1] Ian Foster, Nicholas R. Jennings, and Carl Kesselman. Brain meets
brawn: Why grid and agents need each other. In AAMAS '04: Proceed-
ings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 8�15, Washington, DC, USA, 2004. IEEE
Computer Society.

[2] Huaglory Tian�eld and Rainer Unland. Towards self-organization in
multi-agent systems and grid computing. Multiagent and Grid Systems,
1(2):89�95, 2005.

[3] Junwei Cao, Darren J. Kerbyson, and Graham R. Nudd. Use of agent-
based service discovery for resource management in metacomputing en-
vironment. In Euro-Par '01: Proceedings of the 7th International Euro-
Par Conference Manchester on Parallel Processing, pages 882�886, Lon-
don, UK, 2001. Springer-Verlag.

[4] Mateusz Dominiak, Wojciech Kuranowski, Maciej Gawinecki, Maria
Ganzha, and Marcin Paprzycki. Utilizing agent teams in grid resource
management - preliminary considerations. In Proceedings of the J. V.
Atanasov COnference, October 2006.

[5] Mateusz Dominiak, Wojciech Kuranowski, Maciej Gawinecki, Maria
Ganzha, and Marcin Paprzycki. E�cient matchmaking in an agent-
based grid resource brokering system. In XXII Autumn Meetings of
Polish Information Processing Society, to appear, November 2006.

[6] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, K. Krishnaku-
mar, and Amnon Meisels. A multi-agent infrastructure and a service
level agreement negotiation protocol for robust scheduling in grid com-
puting. In Advances in Grid Computing - EGC 2005, volume 3470/2005
of Lecture Notes in Computer Science, pages 651�660, Germany, 2005.
Springer Verlag.

BIBLIOGRAPHY 41

[7] David Trastour, Claudio Bartolini, and Chris Preist. Semantic web
support for the business-to-business e-commerce lifecycle. In WWW
'02: Proceedings of the 11th international conference on World Wide
Web, pages 89�98, New York, NY, USA, 2002. ACM Press.

[8] Costin Badica, Adriana Badita, Maria Ganzha, and Marcin Paprzycki.
Developing a model agent-based e-commerce system. In Jie Lu et. al.
(eds.) E-Service Intelligence - Methodologies, Technologies and Applica-
tions (to appear), 2006.

[9] Common Information Model (CIM) Standards.
http://www.dmtf.org/standards/cim.

[10] SPARQL Query Language for RDF. http://www.w3.org/tr/rdf-sparql-
query.

[11] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Represent-
ing agent interaction protocols in uml. In First international workshop,
AOSE 2000 on Agent-oriented software engineering, pages 121�140, Se-
caucus, NJ, USA, 2001. Springer-Verlag New York, Inc.

[12] Bernhard Bauer, Joerg P. Mueller, and James Odell. Agent uml: a
formalism for specifying multiagent software systems. In First inter-
national workshop, AOSE 2000 on Agent-oriented software engineering,
pages 91�103, Secaucus, NJ, USA, 2001. Springer-Verlag New York, Inc.

[13] Jena A Semantic Framework for Java. http://jena.sourceforge.net.

[14] Katie Portwin and Priya Parvatikar. Building and man-
aging a massive triple store: An experience report.
http://xtech06.usefulinc.com/schedule/paper/18.

[15] Krzysztof Chmiel, Dominik Tomiak, Maciej Gawinecki, Pawel Karcz-
marek, Michal Szymczak, and Marcin Paprzycki. Testing the e�ciency
of jade agent platform. In ISPDC '04: Proceedings of the Third In-
ternational Symposium on Parallel and Distributed Computing/Third
International Workshop on Algorithms, Models and Tools for Parallel
Computing on Heterogeneous Networks (ISPDC/HeteroPar'04), pages
49�56, Washington, DC, USA, 2004. IEEE Computer Society.

[16] J. Dodgson, M. Spackman, A. Pearman, and L. Phillips. DTLR multi-
criteria analysis manual. UK: National Economic Research Associates,
2001.

List of Figures

3.1 Diagram of classes in Grid Yellow Pages Ontology. 12
3.2 Diagram of object properties in Grid Yellow Pages Ontology. . 12
3.3 Interaction protocol diagram for CIC Request Protocol. 17
3.4 Class diagram of Messaging Ontology. 19
3.5 CIC Agent registered in DF. 21
3.6 Request/result �ow in a multi-threaded CIC architecture. . . 23
3.7 Request/result �ow in local multi-agent CIC. 23
3.8 Messages �ow in distributed multi-agent CIC. 24
3.9 Experimental results of CIC architectures. 26
3.10 Throughput of local multi-agent CIC architecture. 27
3.11 Throughput of distributed multi-agent CIC architecture. . . . 27
3.12 Throughput of multi-threaded CIC architecture. 28
3.13 Request/result �ow in dist. multi-agent CIC with CICIA. . . 29
3.14 Handling of requests by CIC with CICIA. 30
3.15 Comparison of CIC architectures. 31
3.16 Comparison of distributed CIC architectures. 32

4.1 Interaction Diagram of FIPA Contract Net Protocol. 35
4.2 User Agent GUI: Resource requirements. 37
4.3 User Agent GUI: Weights and constraints of criterions. 38
4.4 User Agent GUI: Matched teams and their scores. 38

Listings

3.1 Description of cic-resource-querying service 21
3.2 Description of cic-resource-registration service 22

List of Acronyms

ACL Agent Communication Language

AUML Agent Uni�ed Modeling Language

CIC Client Information Centre

CICIA Client Information Centre Internal Agent

CIM Common Information Model

DF Directory Facilitator

FIPA Foundation for Intelligent Physical Agents

JADE Java Agent DEvelopment Framework

FIPASL FIPA Semantic Language

LMaster Local Master Agent

LSlave Local Slave Agent

MCA Multi Criteria Analysis

OWL Web Ontology Language

RDF Resource Description Framework

SPARQL Protocol And RDF Query Language

QA Querying Agent

UA User Agent

Appendix A

Grid Yellow Pages Ontology

Base : http :// g r idagen t s . s ou r c e f o r g e . net /YellowPages#
@pref ix ye l lowPages : <http :// g r idagen t s . s ou r c e f o r g e . net /YellowPages#> .
@pref ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix owl : <http ://www.w3 . org /2002/07/ owl#> .
@pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .

<http :// g r idagen t s . s ou r c e f o r g e . net /YellowPages> a owl : Ontology .

######################
Team Advertisement
######################

yel lowPages :TeamAd a owl : Class ;
r d f s : comment "Team advert i sement ."^^xsd : s t r i n g ;
r d f s : subClassOf owl : Thing ;
r d f s : subClassOf [
a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y "1"^^xsd : i n t ;
owl : onProperty yel lowPages : teamMaster

] .

ye l lowPages : teamMaster a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s :domain yel lowPages :TeamAd ;
r d f s : range yel lowPages :AID .

yel lowPages : o f f e r sRe s ou r c e a owl : ObjectProperty ;
r d f s :domain yel lowPages :TeamAd ;
r d f s : range yel lowPages : GridResource .

ye l lowPages :AID a owl : Class ;
r d f s : comment "Agent ID e n t i f i e r ."^^xsd : s t r i n g ;
r d f s : subClassOf owl : Thing ;
r d f s : subClassOf [
a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y "1"^^xsd : i n t ;
owl : onProperty yel lowPages : a idSt r

] .

ye l lowPages : a idSt r a owl : DatatypeProperty , owl : Funct iona lProperty ;
r d f s :domain yel lowPages :AID ;
r d f s : range xsd : s t r i n g .

46 Grid Yellow Pages Ontology

##################
Grid Resources
##################

yel lowPages : GridResource a owl : Class .

ye l lowPages : ComputerSystem a owl : Class ;
r d f s : subClassOf yel lowPages : GridResource .

ye l lowPages : ComputerSystemConcept a owl : Class .

ye l lowPages : C lus te r a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystem .

yel lowPages : UnitaryComputer a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystem ;
r d f s : subClassOf [
a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y "1"^^xsd : i n t ;
owl : onProperty yel lowPages : totalCPUCount

] .

ye l lowPages : totalCPUCount a owl : DatatypeProperty ;
r d f s :domain yel lowPages : UnitaryComputer ;
r d f s : range xsd : i n t .

ye l lowPages : cpu a owl : ObjectProperty ;
r d f s :domain yel lowPages : UnitaryComputer ;
r d f s : range yel lowPages :CPU .

yel lowPages : runningOS a owl : ObjectProperty ;
r d f s :domain yel lowPages : UnitaryComputer ;
r d f s : range yel lowPages : Operat ingSystemInfo .

ye l lowPages : hostedFi leSystem a owl : ObjectProperty ;
r d f s :domain yel lowPages : UnitaryComputer ;
r d f s : range yel lowPages : Fi leSystem .

yel lowPages : Fi leSystem a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystemConcept .

ye l lowPages : ava i l ab l eSpace a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s : comment " in MB"^^xsd : s t r i n g ;
r d f s :domain yel lowPages : Fi leSystem ;
r d f s : range xsd : i n t .

ye l lowPages :CPU a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystemConcept ;
r d f s : subClassOf [
a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y "1"^^xsd : i n t ;
owl : onProperty yel lowPages : cpuCount

] .

ye l lowPages : cpuVendorName a owl : DatatypeProperty ;
r d f s :domain yel lowPages : CPUVendor ;
r d f s : range xsd : s t r i n g .

ye l lowPages : cpuClockSpeed a owl : DatatypeProperty , owl : Funct iona lProperty ;
r d f s : comment " in MHz"^^xsd : s t r i n g ;
r d f s :domain yel lowPages :CPU ;

47

r d f s : range xsd : i n t .

ye l lowPages : cpuCount a owl : DatatypeProperty ;
r d f s :domain yel lowPages :CPU ;
r d f s : range xsd : i n t .

ye l lowPages : cpuVendor a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s :domain yel lowPages :CPU ;
r d f s : range yel lowPages : CPUVendor .

ye l lowPages : cpuArch a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s :domain yel lowPages :CPU ;
r d f s : range yel lowPages : CPUArchictecture .

ye l lowPages : CPUVendor a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystemConcept ;
r d f s : subClassOf [
a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y "1"^^xsd : i n t ;
owl : onProperty yel lowPages : cpuVendorName

] .

ye l lowPages : CPUArchictecture a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystemConcept ;
r d f s : subClassOf [
a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y "1"^^xsd : i n t ;
owl : onProperty yel lowPages : cpuArchName

] .

ye l lowPages : cpuArchName a owl : DatatypeProperty ;
r d f s :domain yel lowPages : CPUArchictecture ;
r d f s : range xsd : s t r i n g .

ye l lowPages : X86 a owl : Class ;
r d f s : subClassOf yel lowPages : CPUArchictecture .

ye l lowPages : X86_64 a owl : Class ;
r d f s : subClassOf yel lowPages : X86 .

ye l lowPages : Operat ingSystemInfo a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystemConcept ;
r d f s : subClassOf [
a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y "1"^^xsd : i n t ;
owl : onProperty yel lowPages : operat ingSystem

] .

ye l lowPages : freePhysicalMemory
a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s : comment " in MB"^^xsd : s t r i n g ;
r d f s :domain yel lowPages : Operat ingSystemInfo ;
r d f s : range xsd : i n t .

ye l lowPages : freeVirtualMemory
a owl : DatatypeProperty , owl : Funct iona lProperty ;
r d f s : comment " in MB"^^xsd : s t r i n g ;
r d f s :domain yel lowPages : Operat ingSystemInfo ;
r d f s : range xsd : i n t .

ye l lowPages : i n s t a l l e dSo f twa r e a owl : ObjectProperty ;
r d f s :domain yel lowPages : Operat ingSystemInfo ;

48 Grid Yellow Pages Ontology

r d f s : range yel lowPages : Software .

ye l lowPages : operat ingSystem a owl : ObjectProperty ;
r d f s :domain yel lowPages : Operat ingSystemInfo ;
r d f s : range yel lowPages : OperatingSystem .

yel lowPages : OperatingSystem a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystemConcept .

ye l lowPages : osType a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s :domain yel lowPages : OperatingSystem ;
r d f s : range xsd : s t r i n g .

ye l lowPages : osVers ion a owl : Funct ionalProperty , owl : DatatypeProperty ;
r d f s :domain yel lowPages : OperatingSystem ;
r d f s : range xsd : s t r i n g .

ye l lowPages :Windows a owl : Class ;
r d f s : subClassOf yel lowPages : OperatingSystem .

yel lowPages : Unix a owl : Class ;
r d f s : subClassOf yel lowPages : OperatingSystem .

yel lowPages : Linux a owl : Class ;
r d f s : subClassOf yel lowPages : Unix .

ye l lowPages : Software a owl : Class ;
r d f s : subClassOf yel lowPages : ComputerSystemConcept ;
r d f s : subClassOf [
a owl : R e s t r i c t i o n ;
owl : c a r d i n a l i t y "1"^^xsd : i n t ;
owl : onProperty yel lowPages : softwareName

] .

ye l lowPages : softwareName a owl : DatatypeProperty ;
r d f s :domain yel lowPages : Software ;
r d f s : range xsd : s t r i n g .

ye l lowPages : so f twareVer s ion
a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s :domain yel lowPages : Software ;
r d f s : range xsd : s t r i n g .

##################################
Ins tance s o f CPU Arch i t e c tu r e s
##################################

yel lowPages : Generic_x86 a yel lowPages : X86 ;
ye l lowPages : cpuArchName "x86"^^xsd : s t r i n g .

ye l lowPages : Alpha a yel lowPages : CPUArchictecture ;
ye l lowPages : cpuArchName "Apha"^^xsd : s t r i n g .

ye l lowPages : PowerPC a yel lowPages : CPUArchictecture ;
ye l lowPages : cpuArchName "PowerPC"^^xsd : s t r i n g .

ye l lowPages :SPARC a yel lowPages : CPUArchictecture ;
ye l lowPages : cpuArchName "SPARC"^^xsd : s t r i n g .

ye l lowPages :PA_RISC a yel lowPages : CPUArchictecture ;
ye l lowPages : cpuArchName "PA−RISC"^^xsd : s t r i n g .

49

yel lowPages :MIPS a yel lowPages : CPUArchictecture ;
ye l lowPages : cpuArchName "MIPS"^^xsd : s t r i n g .

ye l lowPages : IA_64 a yel lowPages : CPUArchictecture ;
ye l lowPages : cpuArchName "IA−64"^^xsd : s t r i n g .

ye l lowPages :EMT64 a yel lowPages : X86_64 ;
ye l lowPages : cpuArchName "EMT64"^^xsd : s t r i n g .

ye l lowPages :AMD64 a yel lowPages : X86_64 ;
ye l lowPages : cpuArchName "AMD64"^^xsd : s t r i n g .

############################
Ins tance s o f CPU Vendors
############################

yel lowPages : I n t e l a yel lowPages : CPUVendor ;
ye l lowPages : cpuVendorName
" I n t e l "^^xsd : s t r i n g .

ye l lowPages : IBM a yel lowPages : CPUVendor ;
ye l lowPages : cpuVendorName
"IBM"^^xsd : s t r i n g .

ye l lowPages :AMD a yel lowPages : CPUVendor ;
ye l lowPages : cpuVendorName "AMD"^^xsd : s t r i n g .

Appendix B

Messaging Ontology

Base : http :// g r idagen t s . s ou r c e f o r g e . net /Messaging#
@pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
@pref ix msg : <http :// g r idagen t s . s ou r c e f o r g e . net /Messaging#> .
@pref ix jade : <http :// jade . c s e l t . i t / beangenerator#> .
@pref ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix owl : <http ://www.w3 . org /2002/07/ owl#> .

<http :// g r idagen t s . s ou r c e f o r g e . net /Messaging> a owl : Ontology ;
owl : imports <http :// jade . c s e l t . i t / beangenerator> .

#################
Agent Act ions
#################

msg : CICAction a jade :JADE−CLASS ;
r d f s : comment "Base c l a s s o f a c t i on s handled by CIC agent ."^^xsd : s t r i n g ;
r d f s : subClassOf jade : AgentAction .

msg : CICQueryResource a jade :JADE−CLASS ;
r d f s : comment "Action o f query ing f o r r e s ou r c e s in ye l low pages . "

^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICAction .

msg : resourceQuery a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s :domain msg : CICQueryResource ;
r d f s : range msg : OntoQuery .

msg : CICTeamAction a jade :JADE−CLASS ;
r d f s : comment "Base c l a s s f o r team r e l a t e d a c t i on s on ye l low pages .

Provides au then t i c a t i on data ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICAction .

msg : teamURI a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s :domain msg : CICTeamAction ;
r d f s : range xsd : s t r i n g .

msg : teamPassword a owl : DatatypeProperty , owl : Funct iona lProperty ;
r d f s :domain msg : CICTeamAction ;
r d f s : range xsd : s t r i n g .

msg :CICAddTeam a jade :JADE−CLASS ;

51

r d f s : comment "Action o f adding team advert i sement to ye l low pages . "
^^xsd : s t r i n g ;

r d f s : subClassOf msg : CICTeamAction .

msg : teamAd a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s : comment "Team advert i sement ."^^xsd : s t r i n g ;
r d f s :domain msg :CICAddTeam ;
r d f s : range msg : OntoData .

msg : CICUpdateTeam a jade :JADE−CLASS ;
r d f s : comment "Action o f updating team advert i sement in ye l low pages . "

^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICTeamAction .

msg :CICRemoveTeam a jade :JADE−CLASS ;
r d f s : comment "Action o f removing team advert i sement from ye l low pages . "

^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICTeamAction .

msg : CICAddResource a jade :JADE−CLASS ;
r d f s : comment "Action o f adding r e sou r c e to team advert i sement

in ye l low pages ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICUpdateTeam .

msg : resourceAd a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s : comment "Resource advert i sement ."^^xsd : s t r i n g ;
r d f s :domain msg : CICAddResource ;
r d f s : range msg : OntoData .

msg : CICRemoveResource a jade :JADE−CLASS ;
r d f s : comment "Action o f removing a r e s ou r c e from team advert i sement

in ye l low pages ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICUpdateTeam .

msg : resourceAdURI a owl : DatatypeProperty , owl : Funct iona lProperty ;
r d f s : comment "URI o f r e s ou r c e advert i sement ."^^xsd : s t r i n g ;
r d f s :domain msg : CICRemoveResource ;
r d f s : range xsd : s t r i n g .

##################
Action Resu l t s
##################

msg : Act ionResult a jade :JADE−CLASS ;
r d f s : comment "Base c l a s s f o r a l l a c t i on r e s u l t s ."^^xsd : s t r i n g ;
r d f s : subClassOf jade : Concept .

msg : OntoQueryResult a jade :JADE−CLASS ;
r d f s : comment "Base c l a s s f o r r e s u l t o f onto logy query ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : Act ionResult .

msg : Se lectQueryResu l t a jade :JADE−CLASS ;
r d f s : comment "Resu l tSet o f SELECT query ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : OntoQueryResult .

msg : s e l e c tQueryResu l t a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s :domain msg : Se lectQueryResu l t ;
r d f s : range msg : OntoData .

msg : AskQueryResult a jade :JADE−CLASS ;
r d f s : comment "Boolean r e s u l t o f ASK query ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : OntoQueryResult .

52 Messaging Ontology

msg : askQueryResult a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s :domain msg : AskQueryResult ;
r d f s : range xsd : boolean .

msg : Descr ibeQueryResult a jade :JADE−CLASS ;
r d f s : comment "RDF graph r e s u l t o f DESCRIBE query ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : OntoQueryResult .

msg : descr ibeQueryResu l t a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s :domain msg : Descr ibeQueryResult ;
r d f s : range msg : OntoData .

msg : ConstructQueryResult a jade :JADE−CLASS ;
r d f s : comment "RDF graph r e s u l t o f CONSTRUCT query ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : OntoQueryResult .

msg : constructQueryResult a owl : ObjectProperty , owl : Funct iona lProperty ;
r d f s :domain msg : ConstructQueryResult ;
r d f s : range msg : OntoData .

msg : Act ionFa i lu re a jade :JADE−CLASS ;
r d f s : comment "Base c l a s s f o r a l l a c t i on f a i l u r e s ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : Act ionResult .

msg : f a i l u r eMsg a owl : DatatypeProperty , owl : Funct iona lProperty ;
r d f s : comment "Message d e s c r i b i n g type o f f a i l u r e ."^^xsd : s t r i n g ;
r d f s :domain msg : Act ionFa i lu re ;
r d f s : range xsd : s t r i n g .

msg : CICFailure a jade :JADE−CLASS ;
r d f s : comment "Base c l a s s f o r a l l CIC ac t i on f a i l u r e s ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : Act ionFa i lu re .

msg : CICInte rna lFa i lu re a jade :JADE−CLASS ;
r d f s : comment " In t e r na l CIC f a i l u r e ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICFailure .

msg : TeamDoesNotExist a jade :JADE−CLASS ;
r d f s : comment " Sp e c i f i e d team does not e x i s t ."^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICFailure ;
jade :JADE−JAVA−CODE " pub l i c void t e s t () {}"^^xsd : s t r i n g .

msg : InvalidTeamPassword a jade :JADE−CLASS ;
r d f s : comment "Authent icat ion f a i l e d because o f i n v a l i d team password . "

^^xsd : s t r i n g ;
r d f s : subClassOf msg : CICFailure .

msg : TeamAlreadyExists a jade :JADE−CLASS ;
r d f s : subClassOf msg : CICFailure .

############
Concepts
############

msg : OntoQuery a jade :JADE−CLASS ;
r d f s : comment " S e r i a l i z e d onto logy query l i k e SPARQL or RDQL.

See oneOf f o r complete l i s t ."^^xsd : s t r i n g ;
r d f s : subClassOf jade : Concept .

msg : ontoQueryStr a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s : comment " S e r i a l i z e d onto logy query ."^^xsd : s t r i n g ;

53

r d f s :domain msg : OntoQuery ;
r d f s : range xsd : s t r i n g .

msg : ontoQuerySyntax a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s :domain msg : OntoQuery ;
r d f s : range [
a owl : DataRange ;
owl : oneOf ("SPARQL"^^xsd : s t r i n g "RDQL"^^xsd : s t r i n g)

] .

msg : OntoData a jade :JADE−CLASS ;
r d f s : comment " S e r i a l i z e d onto logy data l i k e RDF/XML or RDF/XML−ABBREV.

See oneOf f o r complete l i s t ."^^xsd : s t r i n g ;
r d f s : subClassOf jade : Concept .

msg : ontoDataStr a owl : DatatypeProperty , owl : Funct iona lProperty ;
r d f s : comment " S e r i a l i z e d onto logy data ."^^xsd : s t r i n g ;
r d f s :domain msg : OntoData ;
r d f s : range xsd : s t r i n g .

msg : baseURI a jade :JADE−SLOT , owl : DatatypeProperty ,
owl : Funct iona lProperty ;

r d f s :domain [
a owl : Class ;
owl : unionOf (msg : OntoData msg : OntoQuery)

] ;
r d f s : range xsd : s t r i n g ;
jade :JADE−NAME "myBaseURI"^^xsd : s t r i n g ;
jade :JADE−UNNAMED−SLOT " true"^^xsd : boolean .

msg : ontoLang a owl : Funct iona lProperty , owl : DatatypeProperty ;
r d f s : comment " S e r i a l i z a t i o n language ."^^xsd : s t r i n g ;
r d f s :domain msg : OntoData ;
r d f s : range [
a owl : DataRange ;
owl : oneOf ("RDF/XML"^^xsd : s t r i n g "RDF/XML−ABBREV"^^xsd : s t r i n g

"N3"^^xsd : s t r i n g "N−TRIPLE"^^xsd : s t r i n g "TURTLE"^^xsd : s t r i n g)
] .

Appendix C

CIC behaviours

Here we present Java code snippets of behaviors that are part of CICIA and
CIC Agent. All behaviors are de�ned as static inner classes.
/∗∗
∗ Receives c l i e n t r e que s t s from jade message queue and
∗ puts them in l o c a l r e que s t queue fo r proces s ing tak ing
∗ i n to account p r i o r i t y o f the r eque s t .
∗/

private class Reques t sL i s t ene r extends Cycl icBehaviour {

public void ac t i on () {
ACLMessage msg = myAgent . r e c e i v e (getRequestMsgTemplate ()) ;
i f (msg != null) {
try {

requestQueue . put (msg) ;
} catch (QueueLimitException e) {

log . warning ("Request queue l im i t reached . ") ;
}

}
else {

block () ;
}

}

} // c l a s s Reques tLis tener

/∗∗
∗ Delega tes c l i e n t r e que s t s to f r e e db agents f o r execu t ion .
∗/
stat ic class RequestsDelegator extends Cycl icBehaviour {

private MyQueue requestQueue ;
private MyQueue releasedDbAgents ;
private AgentPool dbAgents ;
private AID r e s u l t sR e c e i v e r ;

/∗∗
∗ Assoc ia te s t h i s behav ior with requestQueue and releasedDbAgents queues .
∗ @param ap AgentPool from where db agents are to be taken .
∗ @param releasedDbAgents Db agents t ha t r e c en t l y re turned r e s u l t s .
∗ @param requestQueue RequestQueue to be read from .

55

∗ @param re su l t sRe c e i v e r Agent which i s going to process r e s u l t s
∗ from db agents .
∗/
public RequestsDelegator (AgentPool ap , MyQueue releasedDbAgents ,

MyQueue requestQueue , AID r e s u l t sR e c e i v e r) {
this . dbAgents = ap ;
this . re leasedDbAgents = releasedDbAgents ;
this . requestQueue = requestQueue ;
this . r e s u l t sR e c e i v e r = r e s u l t sR e c e i v e r ;

// be n o t i f i e d about new re que s t s to be handled
requestQueue . a s s o c i a t e (this) ;
// be n o t i f i e d about db agents r e c en t l y re turn ing r e s u l t s
re leasedDbAgents . a s s o c i a t e (this) ;

}

public void ac t i on () {
// check f i r s t i f we have a v a i l a b l e db agents
i f (re leasedDbAgents . s i z e () > 0 | | dbAgents . ge tFreePoo lS i ze () > 0) {

ACLMessage msg = (ACLMessage) requestQueue . get () ;
i f (msg != null) {

// check f i r s t i f db agent has been r e c en t l y r e l e a s ed
AID db = (AID) releasedDbAgents . get () ;
i f (db == null) {

// acqu i re new lock
db = dbAgents . acquireAgent () ;

}

// forward reque s t to db agent
prepareDbRequestMsg (msg , myAgent . getAID () , r e s u l t sRe c e i v e r , db) ;
myAgent . send (msg) ;

}
else {

// nothing to do , r e l e a s e l o c k s i f any
AID db = (AID) releasedDbAgents . get () ;
i f (db != null) {

dbAgents . r e l ea seAgent (db) ;
}
else {

// no r e c en t l y r e l e a s ed agents , nothing to do
block () ;

}
} // i f (msg != nu l l)

}
else {

// no f r e e db agents
block () ;

} // i f (re leasedDbAgents . s i z e () > 0 | | dbAgents . ge tFreePoo lS i ze () > 0)
}

} // c l a s s Reques tsDe legator

/∗∗
∗ Li s t ens f o r incoming r e s u l t s from db agents
∗ and puts them in r e s u l t queue .
∗/

stat ic class DbResu l t sL i s tener extends Cycl icBehaviour {

private Logger myLog ;
private MyQueue resultQueue ;

56 CIC behaviours

public DbResu l t sL i s tener (MyQueue resultQueue) {
this . resu ltQueue = resultQueue ;

}

public void onStart () {
myLog = Logger . getMyLogger (myAgent . ge tC la s s () . getName ()) ;
myLog . c on f i g (" L i s t en ing f o r db r e s u l t s . . . ") ;

}

public void ac t i on () {
ACLMessage msg = (ACLMessage)myAgent . r e c e i v e (getReplyMsgTemplate ()) ;
i f (msg != null) {
try {

resu ltQueue . put (msg) ;
} catch (QueueLimitException e) {

myLog . s eve r e ("Should never happen ! ") ;
}

}
else {

block () ;
}

}

} // DbResu l t sLis tener

/∗∗
∗ Reads r e s u l t from r e s u l t queue , r e l e a s e s db agent , sends r e s u l t
∗ to c l i e n t .
∗/

stat ic class Resul t sSender extends Cycl icBehaviour {

private Logger myLog = Logger . getMyLogger (CICAgent . class . getName ()) ;
private MyQueue resultQueue ;
private ResultHandler r e su l tHand l e r ;
private MyQueue releasedDbAgents ;

public Resul t sSender (MyQueue resultQueue , ResultHandler re su l tHand le r ,
MyQueue releasedDbAgents) {

this . resu ltQueue = resultQueue ;
this . r e su l tHand l e r = re su l tHand l e r ;
this . re leasedDbAgents = releasedDbAgents ;

// be n o t i f i e d about new r e s u l t s to be sent
resu ltQueue . a s s o c i a t e (this) ;

}

public void ac t i on () {
ACLMessage msg = (ACLMessage) resu ltQueue . get () ;
i f (msg != null) {
try {

// r e l e a s e db agent
re leasedDbAgents . put (msg . getSender ()) ;

} catch (QueueLimitException e) {
myLog . s eve r e ("This should never happen ! ") ;

}
// send r e s u l t
r e su l tHand l e r . handleResult (msg) ;

}
else {

block () ;
}

57

}

} // c l a s s Resu l t sSender

Warszawa, 27 Pa¹dziernik 2006

O±wiadczenie

O±wiadczam, »e prac¦ magistersk¡ pod tytuªem �Intelligent Software Agents
in Resource Management on the Grid�, której promotorem jest Prof. Marcin
Paprzycki wykonaªem samodzielnie, co po±wiadczam wªasnor¦cznym pod-
pisem.

..................

