Utilizing Agent Teams in Grid Resource
Brokering

M. Dominiak M. Ganzhéa} M. Gawinecki
W. Kuranowsk! M. Paprzyckill S. Margeno¥* |I. Lirkov**

June 1, 2007

Abstract

Recently it was suggested that (mobile) software agentpanide an
infrastructure for resource brokering and management idsGin this pa-
per we introduce a novel approach based on agent teams. tBawellow
pagesbased approach was selected to facilitate resource @ggave sum-
marize results of our experiments to find an efficient waysrgdflementing
yellow pageservice in an agent-based system. We also discuss how agents
can find a team that will execute their job.

1 Introduction

Grid computing has emerged as a promising approach toingltzeterogeneous,
geographically distributed, multi-domain computer reses. Virtualization of
computing resources by Grid computing is expected to peovisl users with
highly available and adaptable computing utilities. It isoaexpected to have
a broad impact in science, businesses and industries. tunégely, the uptake

*Work of M. Ganzha, M. Paprzycki, S. Margenov, and I. Lirkowsjsonsored by the Poland-
Bulgaria Academy of Science cooperation grant.

fTechnical University of Warsaw

tSystems Research Institute of the Polish Academy of Science

SElblag University of Humanities and Economics

YSoftware Development Department, Wirtualna Polska

Iwarsaw School of Social Psychology
**Institute for Parallel Processing, Bulgarian Academy déBce

of the Grid, while speeding-up recently, is still unsati$éay. One possible rea-
son for this situation is an overly complicated support &saurce brokering and
management provided by current Grid software infrastmectu

At the same time, it has been suggested that software agemisireed with
ontologies may provide the necessary infrastructure, fwsing Grid with intel-
ligence [8, 16]. Accepting arguments presented there, we baarched for the
existing solutions that match this vision. While the reswoit our search are sum-
marized in the next section, we can say that in our view alhtbsolutions are
somewhat limited in scope and robustness. Therefore weopeoa different ap-
proach that is based on agent teams that collaborate td tidél requirements.
In the next section we briefly summarize the state of the aagent-based Grid
resource management. We follow with the description of coppsed system.
Next, we present how we have designed a resource discovergesand discuss
how the proposed approach can be implemented efficientl}cdelete the pa-
per by discussing procedures involved in agents seleatiaugn tthat will execute
their job, and outlining future research directions.

2 Agents in Grids today

The initial work on agents in Grids can be traced at leastjoNBere J. Cao and
colleagues addressed the question of resource discov@énids. They proposed a
hierarchical agent-based structure and experimentadijuated various optimiz-
ing strategies for information distribution. Obviouslyhike very interesting, this
work addresses only a small sub-area of usage of agentsds.Gfurthermore,
the proposed framework was to be anchored in the PACE infictsire, which by
now seems to be extinct.

More recently B. Di Martino and O. Rana have proposed MAGDAokile
AGent Distributed Application), a mobile agent toolkit dgsed to support (1)
resource discovery, (2) performance monitoring and lodanuéng, and (3) task
execution within the Grid [6]. Here, a dedicated mobile dgerisit servers in
the Grid and collect system information (gathered by lotalis agents) that is
used to optimize distribution of application workload arg@gents or to move it
from a heavier loaded node to a less loaded one (computatasis are carried
by mobile agents to nodes where they will be executed). Heweélre proposed
system does not have an economic model associated withrthefmore, it was
implemented using Aglets agent environment which, thowglemtly becoming
an open source product, seem to be slowly turning into arisiaeference.

In 2005, S. S. Manvi and colleagues proposed somewhateiffepproach to
agents in Grids [13]. They started from an economic modelwditided mobile
agents which traverse the network to complete a user detas&d At each visited

node agents find what are local conditions for job executiuh i acceptable,
execute their job there (if they are not, they move on). Inrtierk, among
others, authors consider a number of pathway selectiorasosn

Also in 2005, D. Ouelhadj and colleagues considered negmtidgand re-
negotiation) of a Service Level Agreement between ageptesenting resources
and resource users [14]. Negotiations were to be based @uthigact Net Proto-
col, however their paper was focused on higher level funetities of the system.
Again, this work considers only a specific sub-area of wtlan of agents in
Grids.

While interesting, we can see some problems with the prapapproaches.
(1) Most of them are limited in scope and functionality andmad involve eco-
nomical foundations. (2) Some of them rely on agent mobhityile not consid-
ering its cost — since agents carry tasks (and possibly dday size depends
on the size of transported code and data and thus agent pahibuld be used
very judiciously. (3) Proposed infrastructures do not teke account full effect
of Grids highly dynamic nature and use single service prenad— this leaves
users vulnerable to potential rapid fluctuations of workloé individual nodes,
as well as nodes disappearing and reappearing practicalpwt warning. (4)
Finally, reliance on “barely known” service providers shbunvolve trust (repu-
tation) management.

3 Proposed approach

Let us start from two assumptions that shape our proposeti@ol The most ba-
sic one is that we envision the Grid to be an “open environghetich ultimately
can consist of any computer connected to the Internet [8¢rdfbre, we are less
interested in “local Grids” that span a single laboratorymganization and thus
can be strictly controlled by their administrators.

Second, from a pragmatic and functional perspective, we the computa-
tional Grid as an environment in which workers (in our cagent workersthat
want to contribute their resources, and be remuneratedhéar isage, meet and
interact with users (in our casgent usersthat want to utilize offered services to
complete their tasks.

Taking these two assumptions into account it is easy to saeakingle
worker, for example representing a typical “home-user,” has soma¢wmited
value. While we recognize success of applications 8Ed |@hom¢hat is based
on harnessing power of millions of “home-PC’s,” this apation (and a number
of similar ones) has very specific nature. There, the fadtahmarticular resource
“disappears” during calculations is rather inconseqaéndéis any data item can
be processed at any time and in any order. Furthermore, téatathat was not

completed due to the “vanishing PC” can be completed in thedlby another re-
source. This, however, is not the case in business-typécagiphs, where calcu-
lations have to be completed in a specific order and, usweltyin a well-defined
time-frame. In other words, in most applications some fofha gervice-level
agreement3LA), that assures conditions of job completion has to be ialv
Assuring suctSLAINn the case of a “home-PC,” is almost impossible. Therefore,
to address this problem, we introduce virtual organizatjaralledagent teams
that are based on the following general assumptions (foerdetails see [4]):

e agents work in teams (groups of agents)
e each team has a single leaderl-Master agent

e eachLMasterhas a mirroiLMirror agent that can take over its job in case
when it “goes down”

e incoming workers \orker agenty join teams based on individual set of
criteria

e teams (represented by théiMasters) accept workers based on individual
set of criteria

¢ decisions about joining and accepting involves multicigleanalysis (per-
formed by so-calleCDM module}

e eachworker agentan (if needed) play the role of &Master(and thus of
anLMirror)

e matchmaking is provided through yellow pages [17] and i@atéd by the
CIC agent [1]

Combining these assumptions we can develop system repedsarFigure 1
as a Use Case diagram.

Let us start from the observation that for an agent team tadilgl® to potential
users or team members, it must postéam advertisemelm an easily reachable
way. As described in [17], there are many ways in which infation used in
matchmaking can be made available in a distributed systeheach one of them
has advantages and disadvantages. In our work we have deoidélize ayel-
low pagetype approach and thudMasteragents post their team advertisements
within the Client Information Cente(CIC). Such advertisements contain both in-
formation about offered resources (e.g. hardware capiabilavailable software,
price etc.) and “team metadata” (e.g. terms of joining, [@iowing, specializa-
tion etc.). In this wayyellow pagesan be used: (1) byser agentsooking for

ﬁ?glrjrisetmon/ Proposition Mirror
formation creation/ update LMaster
prop Recreation
cic
%
,
Recreation ’
,

>
<<extend>> <<extend>>

,
<<extend>>’

. /
\ ’
Collaboration
— Ec?r?(?ilt?oonns - — Communication
User LAgent o LMaster Mirror LMaste
Negotiation
Gathering Gathering
Knowledge knowledge
LAgent
MCDM . .
LDB Agent DB Agent

Figure 1. Use Case diagram of the proposed system

resources satisfying their task requirements, and (2ytnker agentsearching
for a team to join. For exampleyorker agentrepresenting a computer with in-
stalled Matlab software, may want to join a team speciajaimnsolving problems
utilizing Matlab.

Let us now describe dynamic processes that are depicteeiinstiatic form
in Figure 1. To do this let us assume that the system is alreatying for some
time, so that there already exist agent teams and their tagements” (describing
both resources they offer and agents they would like to jo@irteam) are posted
within the CIC. First, observe that theser, represented in Figure 1, can either
be someone who tries to contribute services to the Grid oresoe who would
like to utilize services available there. Interestinghg Use Case diagram shows
that both situations can be modeled in a “UML-symmetric” wlagt us start from
the case ofUser-contributor” (processes that take place here are very similar to
these described in [1] that provides further details).

User who wants to contribute resources to the Grid communicaits itg
agent (the local agehtAgentthat becomes a worker agent) and formulates con-
ditions for joining an agent team. Note that she may alsoesforeation of a
new team and hdrtAgentbecoming itd.Master The LAgentrequests from the
CIC list of agent teams that satisfy its predefined criteria. tJpeceiving such
a list, due to trust considerations (see [9] for more détdilmay remove certain
teams from the list. For instance, if it worked with a giveartein the past and

was “unhappy” with “rewards,” it may not want to work with igain. For all the
teams remaining on the list, th&gentcommunicates with theltMastersutiliz-
ing FIPA Contract Net Protocol based negotiations [7] andtioriterial analysis
[12] to evaluate obtained proposals. The result of intevastbetween theAgent
andLMastes may be twofold: (1) it finds a team that it would like to workthwi
and joins it, (2) no such team is found (either it is not inséed in any offer from
LMastersor noLMastersend an offer). In this situation theéAgentmay decided
to abandon the task and inform about itlitser. It is also possible that thieA-
gentdecides to become theMasterof a new team itself. In this case, it prepares
an offer describing (1) who it would like to invite to join iteam, and (2) what
resources it can provide to users (i.e. what kind of jobs\tilsng to work on);
and send these two “advertisements” to @€ to be “posted.”

Let us now briefly consider what happens whenllser requests that itsA-
gentarranges execution of a task (for in-depth discussion set®ore5). The
User specifies conditions of task execution (e.g. maximal pricEje LAgent
queries theCIC to find out which teams can execute its task. Upon receiving a
list of teams that match the query, thAgentremoves from it teams that cannot
be trusted. Next, it communicates witMastess of the remaining teams and uses
FIPA Contract Net Protocol and multicriterial analysis todfithe best team to
execute its job. Note that if no team will satisfy conditiongosed by theJser
then no deal will be reached. In this case thgentwill report this situation to
its Userand await further instructions.

Let us now describe the relationships betweenlLiiasterand theLMirror .
When a new team is created, then the “founding agent” becaslgslaster. The
first agent that joins that team becomes itiMirror (agent that can take over the
team-lead in case when anything happens toLtdasten. Subsequent agents
joining the team will becomeiorker agentsWe have not decided yet if theMir-
ror should be also working asworker agentor if its role should be limited to
mirroring theLMaster, this decision will based on experimental analysi&ifir-
rors workload and will be performed when the initial featurergbete version of
the system will be implemented. Thélasterand theLMirror share all infor-
mation that is pertinent to the existence of the team; esgofiworkers and their
characteristics, list of tasks that have been contracteldhame to be executed,
knowledge base that stores information about all pastantems with incoming
users etc. It is assumed that thglasterand theLMirror check each-others ex-
istence regularly in short time intervals. In the case whmitMasterdoes not
respond to a ping-type ACL message LiMirror contacts the agent environment
infrastructure Agent Management Systegent) to check the status of th®las-
ter. If the LMasteris “gone” it takes over its role. Its first action is to promote
one of worker agents to become liislirror and pass to it all necessary informa-
tion. Then it informs all necessary agents about the chahgddct that it is now

the LMaster of the team). Similarly, th&Masterupon finding that théMirror
agent is “gone” immediately promotes one of worker agentsekmmel Mirror
and passes to it all necessary information. In both casesqdron of a worker
to a role of anLMasteror anLMirror may require dealing with the task that the
selected worker was executing at the time of its “promaotibet us note that the
proposed solution is not bullet-proof. It is conceivablatthoth the_Masterand
theLMirror will go down “almost simultaneously” (e.g. theMasterrealizes that
the LMirror is gone, but before it promotes one of its workers to becomeeatv
LMirror it will go down itself) and thus the team will be “destroyeddowever,
such a situation should be relatively rare and our goal isonoteate a completely
bullet-proof infrastructure. Rather, our aim is to provttie proposed infrastruc-
ture with a reasonable level of resilience against commiturés. Obviously, in a
production environment further levels of defense agamestnt destruction would
have to be developed.

Finally, let us briefly mention a few additional objects tappear in Figure 1.
The Gathering knowledgéunctions denote collection of information about pro-
cesses happening in the system. TMastercollects information about all inter-
actions with incoming task-carrying agents as well as abmrbers of its team.
In this way it may later decide to not to interact with certalients or remove
certain workers from its team. Similarly, theAgentcollects knowledge about
what happened when it utilized services of various teamsetlsaas when it was a
worker for various teams. Interestingly, sirlcggentcan play any role in the sys-
tem, it is quite possible that drMasterwill turn into an LAgentwho represents
its User trying to find location to execute its task. Will it turn to ibsvn former
team to do it? Questions like this are going to be answerekimihe LAgent
MCDM module and th& Master MCDMmodule.

4 Development of an efficienCI C infrastructure

4.1 LAgent—CIC interactions

As we have seen, regardless of the scenario, interactiahgwaCIC are crucial
to the functioning of the system. Therefore, let us now disanteractions that
take place when thieAgentis querying theCIC where to execute its task.

We have assumed that data in our system is to be stored in Seallgde-
marcated form. In this context, an ideal situation would bthére existed an
all-agreed “ontology of the Grid.” Unfortunately, whiledte exists a number of
(separate and incompatible) attempts at designing suchtafogy, at this stage
they can be treated only as a “work in progress.” Thereforgtead of selecting
one of them and paying the price of dealing with a large anchaogssarily fitting
our needs ontology (which would then mean that we would haveake changes

in an ontology that we have not conceived and have no conte) owe focus
our work on the agent-related aspects of the system (degigmd implementing
agent system skeleton) while utilizing simplistic ontakx). Obviously, when
the Grid ontology will be agreed on, our systevill be readyfor it. Currently,

our ontology of Grid resources is focused on their “compatet!” aspects, e.g.
processor, memory and available disk space. What follovesssippet of this,
OWL Lite based, ontology:

@prefix : <http :// Gridagents .sourceforge . net/ Grid#.

:Computer
:a owl:Class.

‘hasCPU
:a owl:ObjectProperty;
rdfs:range :CPU;
rdfs :domain :Computer.

:CPU
a owl:Class.

:hasCPUFrequency
:a owl:DataProperty;
rdfs :comment "in.GHz”;
rdfs:range xsdfloat;
rdfs :domain :CPU.

:hasCPUType
:a owl:ObjectProperty;
rdfs:range :CPUType;
rdfs :domain :CPU.

:CPUType
a owl:Class.

Intel :a :CPUType.
AMDAthlon :a :CPUType.

:hasMemory
:a owl:DatatypeProperty;
rdfs :comment "inMB”;
rdfs:range xsdfloat;
rdfs :domain :Computer.

hasUserDiskQuota
:a owl: DatatypeProperty;
rdfs :comment "inMB”;
rdfs:range xsdfloat;
rdfs :domain :Computer.

:LMaster
a owl:Class;

:hasContactAlID
:a owl:ObjectProperty;
rdfs:range xsd:string;
rdfs :domain :LMaster.

Let us now assume that agdri¥lasterO07has in its team workePC1410which
has a 3.5 GHz Intel processor, 1024 Mbytes of memory and 60gédlof disk
space available as a “Grid service.” In our ontology it woddrepresented as:

:LMaster007
hasContactAlID

"monster@e-plant:1099/JADE”;
hasWorker :PC1410.

:PC2929
:a :Computer;
:hasCPU
[
a :CPU;
:hasCPUType :lIntel;
:hasCPUFrequency "3.57;
]
hasUserDiskQuota "6007;
:hasMemory "1024".

Ontologically demarcated data is stored (by@i€) in a Jen&.3 repository [11].
To query Jena persisted data we have decided to use the SPRR@lage [15].
Let us now assume that thégentis looking for a computer (to execute its job)
with an Intel processor of at least 3.0 GHz, at least 512 MbgteRAM, and at
least 500 Mbytes of disk space. Then the SPARQL query wilktiae form:

PREFIX : <http :// Gridagents .sourceforge . net/ Grid#
SELECT ?contact
WHERE

{

?Imaster

:hasContactAID ?contact;
a :LMaster;
:hasWorker

[
:a :Computer;
“hasCPU
[a :CPU;
:hasCPUType :Intel;
:hasCPUFrequency ?freq;
1;
:hasUserDiskQuota ?quota;
:hasMemory ?mem;
].
FILTER (?freq >= 3.0)
FILTER (?quota>= 500)
FILTER (?mem>= 512)

}

and the response that points to the above described maetimeh(satisfies the
search citeria) would look as followspnst er @- pl ant : 1099/ JADE. Spe-
cifically, it points to theLMasterthat has that machine (worker) in its team. Ob-
viously, a complete response would consist of a list of @ihte that have among
them at least one machine that satisfies the above describeribc

4.2 Efficient implementation of theCIC

As it should be obvious, th€IC infrastructure is one of the key components
of our system. Since interactions betwaeser agentand theCIC are the nec-
essary part of early stages of preparing job executiomser agengoining an
agent team, long delays in responses fromG@h€ would become a bottleneck
of the system. Therefore tHelC should efficiently handle large number of re-
guests. Since our solution f@IC services was a centralized yellow-page ap-
proach, we have decided to find its optimal implementatiogr.et-we follow our
earlier studies in efficiency of our agent platform of choieeJADE [10]. In [3]

we have shown, among others, that the best performanceabats queries was
observed when a single agent received and enqueued aiguests, while multi-
ple database accessing age®®[(Agentsdequeued requests and executed them
on the database. Furthermore, all (SQL) query-processgiegta and the database
run on separate computers and when 8@ Agentsvere used, performance gain
of almost33% was reported. We have followed this example and experiadent
with four differentCIC architectures. The complete results can be found in [5].
Here we will report only the performance of two best architees: (1) threaded,

and (2) architecture with distributed database queryirentsgand an additional
CIC Internal Agen{CICIA).

In the threaded architecture we utilize the well-known tpsk-thread para-
digm. We use Java threads and make them accessible ©©lthagentwithin
its container. Each worker thread has its own connectioheéadatabase and its
instance of the Jena model. Initialization of these resesiis computationally
expensive and that is why instead of spawning new threadsise@reinitialized
threads in the worker thread pool. TG&C agent picks requests (query-requests
or yellow-pages-update-requests) from the JADE-providedsage queudlote
that each JADE agent comes with its own message queue pdovydhe JADE
environment. Furthermore, this queue is the only way foiGh@to receive ACL
messages from other agents. TBOEC agent extracts from thmessage queue
all messages that require access to the database and entjuemeinto another
gueue — theequest queuewhich we have implemented in Java. It is tings
quest queudrom which free worker threads pull requests for executiédter
executing the query they send obtained responses to thginators. This archi-
tecture is depicted in Figure 2. In the second approach w&€lGBbAgents—

Main CIC Container = single JVM thread pool outgoing
incoming

result
request

messages
messages request [
— queue \
—_— 3 CICAgent worker thread
/

worker thread

|_—7

0

Figure 2: Request/result flow in a multi-threadekC architecture.

instead of worker threads. Each of these agents resides @pagase computer.
Again, incoming messages are stored in the JADE-providessage quels the
CIC agent. As above, messages that request database accemsmaved from
themessage quewand enqueued into, implemented in Jaemuest queueThis
gueue acts as a buffer between @I€ agent and th€ICDbAgentsaand, further-
more, reduces the number of messages stored in the dAd38age quey@hich
size is limited only by local resources).

Incoming requests amelegatedby theCIC agent (in the form of ACL mes-
sages) to “free’'CICDbAgentgpush-based approach). Each database agent com-
pletes one task (request) at a time and sends results tGlGénternal Agent
(CICIA). These results— send as ACL messages—atre stored in the dwB&age
queueof the CICIA). TheCICIA agent removes them from itsessage quewsnd
enqueues them into a synchronizegult-queuefrom which they are dequeued

Main CIC Container = single JVM
incoming (1) enqueue
request

messages

request queue | outgoing
result

messages

(2) dequeue

— } CICAgent »
— \‘ 7) send result ——

(6) dequeue
result

(3) delegation

CICDbAgent

shared
result

queue /
4—@ < CICDbAgent
(5) enqueue \

result (4) send
result CICDbAgent

000

Figure 3: Request/result flow in distributed multi-ageh€ with CICIA.

by the CIC agent and send back to requesters. In other words, the omena-
nication between th€ICIA and theCIC agent is accomplished through a shared
result-queuginstead of ACL messaging). As it is easy to see, this is aleg w
(the CICIA and theCIC agent) must run within the same agent container (the
Main CIC Container) The proposed architecture is depicted in Figure 3. Let us
observe that th€1C agent has three behaviors: (1) receive request-message fro
its message quewsnd enqueue it in theequest queug2) dequeue request from
therequest queuand send it to a “freeCICDbAgent and (3) dequeue message
from theresult queueand send it to the requester. The sequence diagram of han-
dling the request is presented in Figure 4. In our experigjg¢atsimulate a flow

of incoming requests fromser agentsve usedt Querying Agent§QA), request-

ing the CIC to perform SPARQL [15] resource queries. It should be nolted t
the form of the SPARQL query can change performance of thesysThe ARQ
engine used in Jena, is responsible for executing the que®WL resources
persisted in the database. It translates only parts of tARSR query into SQL.
The remaining parts (e.g. FILTER operations) of the SPARQe&ry are not per-
formed through the SQL query, but locally by the ARQ enginijzing local
JVM resources. In our case queries had the following form:

PREFIX : <http :// Gridagents .sourceforge . net/ Grid#
SELECT ?master
WHERE {

?comp :cpuClockSpeedMhz ?cpu.

?master :offersResource ?comp.

FILTER (?cpu> 1000)

}

EachQAwas running concurrently on a separate machine, and wasgend00

UserAgent or ‘TECIC |3|

LMaster h
| |CIC Main Container % |
1

Requestor : : CICAgent : ResultQueue : CiCinternalAgent :| , | CICDbAgent:
Agent | Agent SyncQueue Agent : Agent

L:J I f ' I

i
1: request(cicAction
T

i | 3: inforr}n(result)
]

: 4 4: put(result)

NIl !
u 1 2: request(cicAclio{]) ! ‘
| |
|
|
|
|

i 5: notif
! I >

|

|

|

|

[B I ! |
| | 7 ' |
| \

|

|

|

|

1
1
. 6: result .= get |
1
' |
7: infor:m result | :
< i
i
|

Figure 4: Sequence diagram: Handling request€§y with additionalCIC In-
ternal Agent

requests and receiving query-results. Thus in each expatiid, 000 queries
have been processed by t6¢C. Since we have been running multiple experi-
ments (especially when attempting at performance tunwg)have developed
an experimental framework for running tests automaticallyile varying their
parameters (e.g. number of worker threads, numb&IGDbAgentstc.). All
experimental runs were coordinated by Test Coordinator Agen(fTCA). Before
each test, remote JADE agent containers were restartecowdprequal envi-
ronment conditions. Experiments were performed using udtéthlon2500+,
512MB RAM machines running Gentoo Linux and JVM4.2. Obviously, in case
of threaded solution only a single machine was used to rurCt@einfrastruc-
ture. Computers were interconnected witho@ Mbit LAN. The MySQL 4.1.13
database used by Jena persistence mechanism for syetlog pagesiata was
installed on a separate machine. In all cases the expeminamicedure was as
follows:

1. Restart of remote agent containers

2. Experiment participants semelady message to th€ CA— just after they
are set-up and ready for their tasks

3. On receiving theeadysignal fromall agents, thd CAsendsstart message
to all QAs, triggering start of the experiment

90 T T T T
multi-threaded (VP - number of worker threads) ——
distributed multi-agent with CICIA (VP - number of CICDbAgents) --@--

Py
ad

B [

processing time (s)

N
N
50 S
S
<
N

L

VP - varying parameter

Figure 5: Comparison of threaded and multi-agent architest processing time
of 10,000 queries for varying number of worker threads in multi-tiired archi-
tecture/number o€ICDbAgentsn multi-agent architectures.

4. WhenQAs receive all results back, they senfirash message to the coor-
dinator (theTCA)

5. Reception of affinishsignals ends the experiment

In Figure 5 we represent the total processing tim&®H00 requests by the two
architectures when the number of agents/worker threadeases from 1 to 6.
As it can be seen, the threaded architecture leads to peafa@ngains for up to
three threads. While it can be predicted that if multi-cor@cpssors were used,
further performance gain could have been reported, thisoagp is limited by the
total processing power of the processor. As the numb€tGDbAgentsncreases
up to 6, the performance of the multi-agent approach imgeteadily. We can
also observe a leveling-off effect. Therefore, the fact iwere not able to run
experiments with more than 11 computers (and thus the langesber ofCICD-
bAgentswas 6), seems rather inconsequential. Specifically, it @aprikdicted
that if the number o€ICDbAgentsvas to increase further, then the performance
gain would be only marginal. Overall, withGICDbAgentghe performance gain
over the system with only a sing@ CDbAgents of order of 3. Furthermore, the
performance gain over the implementation based on threadidrder 2 (here,
we compare the best threaded solution—with 3 threads—mémtulti-agent so-
lution with 6 CICDbAgents

It should be mentioned that we have also evaluated a modivircat the above
architecture, where th€ICIA agent becomes both the delegator of requests and
receiver of results. This architecture proved to be sligfatster, however it was

more complicated from the conceptual point of view. Thereféor the sake of de-
sign readability we have abandoned that idea as the finaicolio our problem.
Finally, we have also experimented with few methods forhertperformance
tuning, but the observed gains (reported in [5] were smalugh to conclude that
the above described approaches can constitute the basii@omfrastructure
implementation.

5 Selecting the team to execute the job

Let us now describe in more details operations involved iacsimg a team that
is to execute a job. As described above, in Section 3, thestegtin this process
is for theUserto provide itsLAgentwith the necessary information such as a job
description, negotiation parameters and, possibly, cainss.

5.1 User Input

User provides itsLAgentwith the job description, negotiation parameters and,
possibly, execution constraints. In Section 3 we have pteseour ontologi-
cal representation of computational resources. Here,ddbcus our attention
on the negotiation parameters which are expressed usirg, wd namedGrid
Yellow Pages OntologyCurrently, in our work we utilize three negotiation param-
eters: cost, job start time and job end time. For each of thasmmeters the user
specifies its importance by assigning weight that is latedus the multicriterial
analysis (section 5.3). In addition to negotiation pararseive specify execution
constraints, e.g., the maximum price that can be chargeth&job. Further-
more, we assume that if any of job execution parameters dimamilbe taken into
account, then either 0 weight is given or that parametertisnotuded in the ne-
gotiation parameter-set. Alternatively it is also possitilat a given parameter
is constrained but it is not given a weight. This also shows batology-based
approach gives us flexible possibilities of expressivendsgge following OWL
Lite code snippet represents how these concepts are codhinittethe negotia-
tion parameter-set.

negotiation parameters

:NegotiationSet a owl: Class.

:negotiationParam a owl: ObjectProperty;
rdfs:domain :NegotiationSet;

rdfs:range NegotiationParam.

:NegotiationParam a owl:Class.

:paramWeight
a owl:DatatypeProperty, owl:FunctionalProperty;
rdfs :domain: NegotiationParam
rdfs:range xsdfloat.

:Cost a owl:Class;
rdfs:subClassOf: NegotiationParam .

:costConstraint
a owl:ObjectProperty, owl: FunctionalProperty ;
rdfs :domain: Cost;
rdfs:range: FloatConstraint.

:costValue
a owl:DatatypeProperty, owl: FunctionalProperty;
rdfs :domain: Cost;
rdfs:range xsdfloat.

:JobStartTime a owl: Class;
rdfs:subClassOf :NegotiationParam.

:jobStartTimeValue
a owl:DatatypeProperty, owl:FunctionalProperty;
rdfs :domain: JobStartTime;
rdfs:range xsd:dateTime.

:jobStartTimeConstraint
a owl:ObjectProperty, owl: FunctionalProperty ;
rdfs:domain: JobStartTime;
rdfs:range: TimeConstraint.

:JobEndTime a owl: Class;
rdfs:subClassOf: NegotiationParam .

:jobEndTimeValue
a owl:DatatypeProperty, owl: FunctionalProperty;
rdfs :domain:JobEndTime;
rdfs:range xsd:dateTime.

:jobEndTimeConstraint
a owl:ObjectProperty, owl: FunctionalProperty ;
rdfs :domain: JobEndTime;
rdfs:range: TimeConstraint.

generic constraints

:NegotiationParamConstraint a owl: Class.

:FloatConstraint a owl:Class;
rdfs:subClassOf: NegotiationParamConstraint.

:maxFloatValue
a owl: FunctionalProperty, owl: DatatypeProperty;
rdfs :domain: FloatConstraint;
rdfs:range xsdfloat.

:minFloatValue
a owl:DatatypeProperty, owl: FunctionalProperty;
rdfs :domain: FloatConstraint;
rdfs:range xsdfloat.

:TimeConstraint a owl:Class;
rdfs:subClassOf: NegotiationParamConstraint.

:minDateValue
a owl:DatatypeProperty, owl: FunctionalProperty;
rdfs :domain: TimeConstraint;
rdfs:range xsd:dateTime.

:maxDateValue
a owl: FunctionalProperty, owl: DatatypeProperty;
rdfs :domain: TimeConstraint;
rdfs:range xsd:dateTime.

As shown in the ontology schema, we separated concepts sfragrts and para-
meters—they are defined in separate classes. This allovesresige constraints
concepts definitions throughout different parameters dieins. For example,
DateConstraint is used by JobStartTime and JobEndTimerdeas. Currently,
via constraints, we can define maximum or minimum value farpgarameters;

e.g. maximum cost or minimum JobStartTime. Note also th&reking this

parameter-set by adding, for instance, penalty for not detimg job on time, re-

quires only a relatively simple operation of extending ontodogy and making
minimal changes in agent-codes. This being the case, ths fafcour work was

on the agent interaction and parameter / constraint uitizarather than devel-
opment of a truly realistic parameter-set. Let us now asdimaietheUser stated

that the cost of the execution is twice as important thandbespd time by giving

weight 2 to the cost and weight 1 to the job end time. Then tetace of the
proposed parameter-set would have the form:

@prefix nego:
<http :// gridagents .sourceforge.net/Negotiation#

:NegotiationSetinstance a nego: NegotiationSet ;
nego: negotiationParam |
a nego:JobEndTime ;

nego:paramWeight "1.0""" xsdfloat

a nego:Cost ;
nego:paramWeight "2.0""" xsdfloat
]

In addition to the job-execution related parameter-set,uer specifies the re-
source describing parameters that are used to querZifigsee section 3 for
a detailed description and a sample SPARQL query). As a wathi®User to
communicate input parameters tolitdgent we have implemented a User Agent
GUI (see section 6).

Let us now assume that, in response to the queryl&gentobtained from
the CIC the list of agent teams that have resources necessary tdetertipe job
and has filtered these that are not worthy of its trust, andgeo to describe the
LAgentLMasternegotiations.

Intitator : UserAgent Participant : LMaster

|
|
cfp (job request) m_

|-
. »
I refuse

| N
| <
N dead- |
| < j=n-i propose (offer) lne |

reject-proposal ko I

L
j
e
accept-proposal I=j-k I

N Ll
P failure

<
gl

¢- .

P inform-done |

<

A

Figure 6: Interaction Diagram of FIPA Contract Net Protocol

5.2 Negotiations

The LAgentutilizes the FIPA Contract Net Protocol to negotiate wlifidasters
[7]. In Figure 6 we depict a version of the Contract Net Protpas it is pertinent
to our situation. Note that thHeAgentnegotiates with more than ohdasterand
therefore the same set of interactions takes place in aflesfd negotiations.

In the initial step, thdLAgentsends out th€€ALL-FOR-PROPOSAICFP)
message to allMasterson the final list (after pruning). Th€FP contains the

job description and the execution constraining paramsggraccording to which
LMasters are able to construct their offers (obviously, weightsgaesd by the

Userto individual parameters are not communicated). In the cbsar simplistic

parameter-set, theFP message could have the following form:

(CFP :sender

(agent-identifier
:name ua@kameleon:1099/JADE
addresses (sequence http :// kameleon:7778/acc)
:X-JADE-agent-classname UserAgent)

:receiver (set (agentidentifier
:name Imaster@eplant:1099/JADE
addresses (sequence http:Hmlant:7778/acc)))

:content '’((action

(agent-identifier :name Imaster@eplant:1099/JADE
addresses (sequence http:Hplant:7778/acc))

(JobRequest :resRequirements

(OntoData
:ontoDataLang RDF/XMEABBREV
:ontoDataStr
\"'<rdf:RDF xmlns:grid="..." xmlns:rdf="..."%

<grid: UnitaryComputer
rdf:about="jade ://request@kameleon:1099/JADE"

<rdf:type rdf:resource=

"http ://.../ Grid#ComputerSystem¥

<grid:cpu>
<grid:cpuClockSpeedMhz

rdf:datatype="http ://.../XMLSchema#int¥
1500

</grid:cpuClockSpeedMhz
</grid :cpu>

</grid: UnitaryComputer

</rdf:RDF>\""

)

:negoParamSet
(NegotiationSet :negotiationParam
(sequence (JobEndTime
:jobEndTimeConstraint (TimeConstraint
:maxDateValue\”2006—10-12T12:00:00,")))
))))
‘reply—with R116613153263®
:language fipaslO
:ontology Messaging
:protocol fipa—contract-net
:conversation-id C49160611166131532629)

In this example thé.Agentis looking for a single machine with a 1.5 MHz CPU
and specifies the deadline for the job execution by constigitne JobEndTime

negotiation parameter.

On the basis of the receivé&FP and their view of the situation on their teams,
LMasters prepare their proposals and send them back taAlgent usingPRO-
POSEmessages. Note that it is possible that someMé&stersrefuse theCFP
(using aREFUSEmessage). For example, in the time between the last update
of team information in theCIC and theLAgents request, some resources “dis-
appeared” and the team cannot complete the task. Furtherroora variety of
reasons (e.g. network congestion) some teams may not mspdime. The
positive response message, containing an offer could haliowing form:

(PROPOSE
:sender (agentidentifier
:name Imaster@eplant:1099/JADE
addresses(sequence http:Hmglant:7778/acc)
:X-JADE-agent-classname LMaster)
.receiver (set (agent-identifier
:name ua@kameleon:1099/JADE
:addresses (sequence http://kameleon:7778/acc)
:X-JADE-agent-classname UserAgent))
:content ''(
(result
(action
(agent-identifier
‘name Imaster@eplant:1099/JADE
addresses(sequence http :Hglant:7778/acc)

)
(JobRequest

.
)

(JobRequestOffer
:negoParamSet
(NegotiationSet :negotiationParam
(sequence
(JobStartTime
:jobStartTimeValug’'’'2006—-10-12T11:30:00,"")
(JobEndTime
:jobEndTimeValue ''2006—-10-12T12:30:00,"")
(Cost
:costValue \''120'")
)
)
)
)
)
‘reply—with ua@kameleon:1099/JADE1166137976099
in—reply—to R116613797609®
:language fipa-slO

:ontology Messaging
:protocol fipa—contract-net
:conversation-id C49160611166137976092

)

The response message informsliAgientthat theLMasteris willing to complete
the job and devote resources to it within the specified timei€ and that the total
cost will be 120 units. Note that in the Contract Net Protpsehding #ROPOSE
message constitutescammitmenof the LMasterto the conditions it specified.

In the current design of the system th&gentawaits for responses until all
of them arrive or a specific deadline occurs. Note that it seseary to impose
a deadline to avoid a deadlock; e.g. it is possible that oneMdsters looses
connection to the Internet and cannot communicate backffies. olf after the
deadline there is no proposal then th&gentcannot execute the task and reports
this fact back to th&ser. Otherwise, if there is at least one offer, th&gentstarts
evaluating offers. Proposal evaluation is a two-stagegssic

o Offers which do not meet execution constraints (e.g. cobtsjart time, job
end time) are filtered out. If all offers are filtered out atstetage, due to
constraints, then thieAgentcannot execute the task and reports back to the
User.

e The remaining offers are evaluated using Multi Criteriabdysis MCA)—
see section 5.3.

The first stage of the process requires an explanation. d¢iaisanable to ask:
why would anLMastersend an offer that violates constraints that were given to it
This situation is, on the one hand, result of a simplificatioour current design of
the system; while on the other hand it is a preparation farusystem extensions.
The simplification concerns theAgent which filters out all offers that violate
constraints. Observe that this may result in very few offerso offers at all) left
for consideration. This also prevents thserfrom specifyingsoft constraintshat
represent a “strong preference” but violation of which doeesnecessarily mean
that the offer is unacceptable. For instance, | may prefératee this job done
tonight, but if I can have it done extremely cheap by tomoremgning, then |
may be willing to accept this offer. Therefore, this stepstaates preparation for
the future system extension. Its behavior is being preptmedandling exactly
such job constraints that are “flexible.” In this contexsiimportant to note, that
some constraints may actually remain “sharp” and theiratioh may result in
an offer being filtered out; currently we have not decidedthé<Masteris going
to be informed if a given constraint is flexible or not, but we aeing swayed
toward the solution in which theAgentkeeps this information to itself. Now,
recall that thd_Masterhas knowledge of the capability of its team and its “pricing

policy” and when it makes an offer, it is going to be one that ba backed up
by a Service Level Agreement. Let us assume thatMastermay have a full

load for the next 12 hours, but then has no jobs scheduledhidncase it may
make an offer which is going to violate the timing constratas the execution
will start past the suggested deadline—but since it hassistecheduled, it may
make an extremely cheap offer. We plan to address these ¢ypeasoning and
strategizing in the future.

After theMCAIis applied to the remaining offers, the specific team is $etec
to execute the job. In this case tAECEPT-PROPOSAmessage is sent to the
LMaster of that team. The remaining teams are rejected by sendirteta the
REJECT-PROPOSAInessage. The selected team confirms acceptance by send-
ing back anINFORM-DONEmessage. Obviously, the Contract Net Protocol is
also taking care of various “emergency situations;” e.gurfa of the selected
team to respond.

5.3 Multi Criteria Analysis

Let us now describe in more detail the Multi Criterial Anagtbased selection
process. In the current implementation of the system we hesknear additive
model[12]. Note that this model was selected for its simplicitpwéver, it has to
be stressed that any otHdCA method can be applied to evaluate received offers.
In the case of the linear additive model, evaluation is doyenhltiplying
value scores on each criterion by the weight of that criteramd then adding all
those weighted scores together. Recall, that we have thtegacthat take part in
the MCA process: cost, job start time and job end time. If camization withm
teams resulted in proposals+{: — n teams refused, send us proposals that were
filtered out, or did not respond within the deadline) thetecion scores of thieth
team are calculated as follows:

Start Time Score:

> (startTime; — currentTime)

STS, = 1=

(startTime; — current Time)

—_

End Time Score:

> (endTime; — currentTime)

ETS, ==

(endTime; — currentTime)

—_

Cost Score:
n -1
CS; = <costi Z costj_1>
j=1
All scores are normalized and the i-th team final score isated as:

Team Scorel’S; = startTimeWeight - ST'S;
+ endTimeWeight - ET'S; + costWeight - C'S;

Team with the highest overall score, obtained as a weightedads individual
criterion scores, is selected as the “winner.” For the exarapthe MCA in use,
please refer to the next section.

6 Example

Let us now present an example of how our system works to stppdser who
would like to execute a job utilizing the PVM programmingrlloy on16 process-
ing nodes of a single computer. First, duser would specify resource require-
ments using the GUI interface shown in the Figure 7.

Resouce Requirement
General Software

type: [Unitary Computer |v| name: |P"v'rv1 |
count: 3| version: 3.4 |

CPU Operating System
count:[| 7]
clock speed (M1iz2): 2500/ tvper [Linux

vendor [AMD o name: [Debian |
version: Sid |

architecture: |AMDG64

Spdce

memory (ME): 1024
filesystem (MB): 128

Figure 7: User Agent GUI: Resource requirements.

In the next step, theserhas to provide itk Agentwith negotiation parameters
expressing her execution preferences. For example, letusree that she would
like to meet the deadline of 11:00 hours on 1st of March, 20Bdrthermore
the cost should be no larger that 500 units. Note that the dms$ not matter
as much as the time—the end time weight is 3, while the cosghtes 2; see
Figure 8. Finally, in this example tHdser does not care too much when the job
starts (weight 1), she clearly wants to meet a specific ei@tdeadline.

From the specified resource requirements ltAgent creates the ontologi-
cal instance of resource requirements and, based on thiahags constructs a

User Agent GUI =

Job Request
Required resources
[unitary computer x 8
add
edit
remove
Negotiation Parameters
Wwelght constraint
Start Time: 10900 1 03 2007
End Time: 311:00 1.C3.2007
Cost: 2| 500|

Figure 8: User Agent GUI: Weights and constraints of créeri

SPARQL query and sends it (as an ACL request message) ol@agent. The
CIC executes the query and as a result delivers a list of caredidams meeting
resource requirements. The answer from @€ contains a list of contacts to
LMastersrepresenting teams, encapsulated ResultSet

Since trust management is not yet implemented. fgentstarts Contract Net
Protocol-based negotiations with &Mastersfound on the list. It receives their
offers, filters these that violate constraints and evaludite remaining ones using
the MCA. Figure 9 shows three teams and their scores evdlbgtthe MCA.

B8 Job Execution =B *®
Status: Finished
_Team | StanTime | EndTime | Cost |Meets Constraints | Score| Status
teamA [12:00 1.03.2007 |15:00 1.03.2007 [180 |no rejected
teamB |10:00 1.032.2007 |11:00 1.03.2007 |500 |yes 11.74 |rejected
teamC |00:00 2.03.2007 |03:30 2.03.2007 (520 |no rejected
Matched Teams: ;oamp 09:00 1.03.2007 |10:00 1.03.2007 |400 _lyes 2.2 |accepted |
teamE |03:00 1.03.2007]11:00103.2007 (350 [yes [2.06 [rejected

| Close

Figure 9: User Agent GUI: Matched teams and their scores.

As we can sedeamAandteamChave been rejected because they do not meet
the deadline constraint. The remaining four teams have bealnated. Despite
of cost proposed by theeamEbeing cheaper by abodt%, it was theteamD
that was accepted to do a job because of an earlier job caomptehe. Note that,
unless instructed otherwise, the decision is made bizAgeentautonomously and

the depiction in Figure 9 is presented only to illustrateghacess.

7 Concluding remarks

In this paper we have presented our work devoted to developofean agent-
based Grid resource-brokering system. We have focusedree #spects of the
proposed system. First, we have discussed conceptualdtiand that led to the
proposed solution. Second, we have outlined the proposstémy Third, we
have summarized our experimental work that lead to a speeificin which we
have implemented th€IC infrastructure. Finally, we have described and practi-
cally illustrated how an agent that wants to select a teaméoige its job would
act within our system. Our current work is devoted to implatirey processes
involved in agents selecting team to join. We will report am progress in subse-
quent reports.

References

[1] C.Badica, A. Badita, M. Ganzha, M. Paprzycki, Deygihg a Model Agent-
based E-commerce System. In: Jie Lu et. al. (eds.) E-Selnietigence—
Methodologies, Technologies and Applications, Sprindseylin, 2007,
555-578

[2] J. Cao, D. J. Kerbyson, G. R. Nudd, Performance evalnatioan agent-
based resource management infrastructure for Grid congputi: Proceed-
ings of the First IEEE/ACM International Symposium on CarsEomputing
and the Grid, 2001, 311-318

[3] K. Chmiel, D. Tomiak, M. Gawinecki, P. Kaczmarek, M. Szgmak, M. Pa-
przycki, Testing the Efficiency of JADE Agent Platform. Intoeeedings of
the ISPDC 2004 Conference, IEEE Computer Society PressAlamsitos,
CA, 2004, 49-57

[4] M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, Maprzycki,
Utilizing agent teams in Grid resource management — pralamyi consid-
erations. In: Proceedings of the IEEE J. V. Atanasoff Canfee, IEEE CS
Press, Los Alamitos, CA, 2006, 46-51

[5] M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, Maprzycki,
Efficient Matchmaking in an Agent-based Grid Resource BriokeSystem,
Proceedings of the International Multiconference on Catep8cience and
Information Technology, PTI Press, 2006, 327-335

[6] O. F. Rana, B. Di Martino, Grid performance and resouranagement
using mobile agents, In: Performance analysis and Grid ctimyp 2004,
251-263

[7] FIPA Contract Net Interaction Protocol Specificatiohtt p: // www.
fi pa.org/ specs/fipa00029/ SCO0029H. ht m

[8] I. Foster, N. R. Jennings, C. Kesselman, Brain Meets Braw
Why Grid and Agents Need Each Other, AAMAS'04, July, 2004,
ACM Press, 2004t t p: / / ww. semanti cGi d. or g/ docunent s/
003-foster _i _Gid. pdf

[9] M. Ganzha, M. Gawinecki, P. Kobzdej, M. Paprzycki, C.d&&@, Towards
trust management in an agent-based e-commerce systeral-goisider-
ations, In: A. Zgrzywa (ed.) Proceedings of the MISSI 2006 f&ence,
Wroclaw University of Technlogy Press, Wroclaw, Polands-2236

[10] JADE: Java Agent Development Framework. Skétp://j ade.
cselt.it

[11] Jena—A Semantic Web Framework for Java. Seet p://j ena.
sour cef or ge. net/

[12] J. Dodgson, M. Spackman, A. Pearman, L. Phillips, DTLRItircriteria
analysis manual, UK: National Economic Research Assagia@01

[13] S.S. Manvi, M.N. Birje, B. Prasad, An Agent-based ReseuAllocation
Model for computational Grids, Multiagent and Grid Systerhd), 2005,
17-27

[14] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. SakellariduKrishnakumar, A
multi-agent infrastructure and a service level agreemegotiation protocol
for robust scheduling in Grid Computing. In: Peter M. A. Slet al. (eds.),
Advances in Grid Computing—EGC 2005, Lecture Notes in Cowep8ci-
ence, 3470, Springer-Verlag, 2005, 651-660

[15] SPARQL Query Language for RDF. Seht t p: // www. wW3. or g/ TR/
rdf - sparqgl - query

[16] H. Tianfield, R. Unland, Towards self-organization imultitagent systems
and Grid computing, Multiagent and Grid Systems, 1(2), 289595

[17] D. Trastour, C. Bartolini, C. Preist, Semantic Web Sapfor the Business-
to-Business E-Commerce Lifecycle, Proceedings of thernateonal World
Wide Web Conference, ACM Press, New York, USA, 2002, 89-98

