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Abstract

Recently it was suggested that (mobile) software agents canprovide an
infrastructure for resource brokering and management in Grids. In this pa-
per we introduce a novel approach based on agent teams. Sincetheyellow
pages-based approach was selected to facilitate resource discovery, we sum-
marize results of our experiments to find an efficient ways of implementing
yellow pageservice in an agent-based system. We also discuss how agents
can find a team that will execute their job.

1 Introduction

Grid computing has emerged as a promising approach to utilizing heterogeneous,
geographically distributed, multi-domain computer resources. Virtualization of
computing resources by Grid computing is expected to provide its users with
highly available and adaptable computing utilities. It is also expected to have
a broad impact in science, businesses and industries. Unfortunately, the uptake
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of the Grid, while speeding-up recently, is still unsatisfactory. One possible rea-
son for this situation is an overly complicated support for resource brokering and
management provided by current Grid software infrastructure.

At the same time, it has been suggested that software agents combined with
ontologies may provide the necessary infrastructure, by infusing Grid with intel-
ligence [8, 16]. Accepting arguments presented there, we have searched for the
existing solutions that match this vision. While the results of our search are sum-
marized in the next section, we can say that in our view all found solutions are
somewhat limited in scope and robustness. Therefore we propose a different ap-
proach that is based on agent teams that collaborate to fulfill user requirements.
In the next section we briefly summarize the state of the art inagent-based Grid
resource management. We follow with the description of our proposed system.
Next, we present how we have designed a resource discovery service and discuss
how the proposed approach can be implemented efficiently. Wecomplete the pa-
per by discussing procedures involved in agents selecting team that will execute
their job, and outlining future research directions.

2 Agents in Grids today

The initial work on agents in Grids can be traced at least to [2], where J. Cao and
colleagues addressed the question of resource discovery inGrids. They proposed a
hierarchical agent-based structure and experimentally evaluated various optimiz-
ing strategies for information distribution. Obviously, while very interesting, this
work addresses only a small sub-area of usage of agents in Grids. Furthermore,
the proposed framework was to be anchored in the PACE infrastructure, which by
now seems to be extinct.

More recently B. Di Martino and O. Rana have proposed MAGDA (Mobile
AGent Distributed Application), a mobile agent toolkit designed to support (1)
resource discovery, (2) performance monitoring and load balancing, and (3) task
execution within the Grid [6]. Here, a dedicated mobile agents visit servers in
the Grid and collect system information (gathered by local static agents) that is
used to optimize distribution of application workload among agents or to move it
from a heavier loaded node to a less loaded one (computational tasks are carried
by mobile agents to nodes where they will be executed). However, the proposed
system does not have an economic model associated with it. Furthermore, it was
implemented using Aglets agent environment which, though recently becoming
an open source product, seem to be slowly turning into a historical reference.

In 2005, S. S. Manvi and colleagues proposed somewhat different approach to
agents in Grids [13]. They started from an economic model andutilized mobile
agents which traverse the network to complete a user defined task. At each visited



node agents find what are local conditions for job execution and if acceptable,
execute their job there (if they are not, they move on). In their work, among
others, authors consider a number of pathway selection scenarios.

Also in 2005, D. Ouelhadj and colleagues considered negotiation (and re-
negotiation) of a Service Level Agreement between agents representing resources
and resource users [14]. Negotiations were to be based on theContract Net Proto-
col, however their paper was focused on higher level functionalities of the system.
Again, this work considers only a specific sub-area of utilization of agents in
Grids.

While interesting, we can see some problems with the proposed approaches.
(1) Most of them are limited in scope and functionality and donot involve eco-
nomical foundations. (2) Some of them rely on agent mobility, while not consid-
ering its cost — since agents carry tasks (and possibly data), their size depends
on the size of transported code and data and thus agent mobility should be used
very judiciously. (3) Proposed infrastructures do not takeinto account full effect
of Grids highly dynamic nature and use single service providers — this leaves
users vulnerable to potential rapid fluctuations of workload of individual nodes,
as well as nodes disappearing and reappearing practically without warning. (4)
Finally, reliance on “barely known” service providers should involve trust (repu-
tation) management.

3 Proposed approach

Let us start from two assumptions that shape our proposed solution. The most ba-
sic one is that we envision the Grid to be an “open environment,” which ultimately
can consist of any computer connected to the Internet [8]. Therefore, we are less
interested in “local Grids” that span a single laboratory ororganization and thus
can be strictly controlled by their administrators.

Second, from a pragmatic and functional perspective, we view the computa-
tional Grid as an environment in which workers (in our caseagent workers) that
want to contribute their resources, and be remunerated for their usage, meet and
interact with users (in our caseagent users) that want to utilize offered services to
complete their tasks.

Taking these two assumptions into account it is easy to see that a single
worker , for example representing a typical “home-user,” has somewhat limited
value. While we recognize success of applications likeSETI@homethat is based
on harnessing power of millions of “home-PC’s,” this application (and a number
of similar ones) has very specific nature. There, the fact that a particular resource
“disappears” during calculations is rather inconsequential, as any data item can
be processed at any time and in any order. Furthermore, data item that was not



completed due to the “vanishing PC” can be completed in the future by another re-
source. This, however, is not the case in business-type applications, where calcu-
lations have to be completed in a specific order and, usually,within a well-defined
time-frame. In other words, in most applications some form of a service-level
agreement (SLA), that assures conditions of job completion has to be involved.
Assuring suchSLAin the case of a “home-PC,” is almost impossible. Therefore,
to address this problem, we introduce virtual organizations, calledagent teams
that are based on the following general assumptions (for more details see [4]):

• agents work in teams (groups of agents)

• each team has a single leader —LMaster agent

• eachLMasterhas a mirrorLMirror agent that can take over its job in case
when it “goes down”

• incoming workers (worker agents) join teams based on individual set of
criteria

• teams (represented by theirLMasters) accept workers based on individual
set of criteria

• decisions about joining and accepting involves multicriterial analysis (per-
formed by so-calledMCDM modules)

• eachworker agentcan (if needed) play the role of anLMaster(and thus of
anLMirror )

• matchmaking is provided through yellow pages [17] and facilitated by the
CIC agent [1]

Combining these assumptions we can develop system represented in Figure 1
as a Use Case diagram.

Let us start from the observation that for an agent team to be visible to potential
users or team members, it must post itsteam advertisementin an easily reachable
way. As described in [17], there are many ways in which information used in
matchmaking can be made available in a distributed system and each one of them
has advantages and disadvantages. In our work we have decided to utilize ayel-
low page-type approach and thusLMasteragents post their team advertisements
within theClient Information Center(CIC). Such advertisements contain both in-
formation about offered resources (e.g. hardware capabilities, available software,
price etc.) and “team metadata” (e.g. terms of joining, provisioning, specializa-
tion etc.). In this wayyellow pagescan be used: (1) byuser agentslooking for
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Figure 1: Use Case diagram of the proposed system

resources satisfying their task requirements, and (2) byworker agentssearching
for a team to join. For example,worker agentrepresenting a computer with in-
stalled Matlab software, may want to join a team specializing in solving problems
utilizing Matlab.

Let us now describe dynamic processes that are depicted in their static form
in Figure 1. To do this let us assume that the system is alreadyrunning for some
time, so that there already exist agent teams and their “advertisements” (describing
both resources they offer and agents they would like to join their team) are posted
within the CIC. First, observe that theUser, represented in Figure 1, can either
be someone who tries to contribute services to the Grid or someone who would
like to utilize services available there. Interestingly, the Use Case diagram shows
that both situations can be modeled in a “UML-symmetric” way. Let us start from
the case of“User-contributor” (processes that take place here are very similar to
these described in [1] that provides further details).

User who wants to contribute resources to the Grid communicates with its
agent (the local agentLAgentthat becomes a worker agent) and formulates con-
ditions for joining an agent team. Note that she may also request creation of a
new team and herLAgentbecoming itsLMaster. TheLAgentrequests from the
CIC list of agent teams that satisfy its predefined criteria. Upon receiving such
a list, due to trust considerations (see [9] for more details) it may remove certain
teams from the list. For instance, if it worked with a given team in the past and



was “unhappy” with “rewards,” it may not want to work with it again. For all the
teams remaining on the list, theLAgentcommunicates with theirLMastersutiliz-
ing FIPA Contract Net Protocol based negotiations [7] and multicriterial analysis
[12] to evaluate obtained proposals. The result of interactions between theLAgent
andLMasters may be twofold: (1) it finds a team that it would like to work with
and joins it, (2) no such team is found (either it is not interested in any offer from
LMastersor noLMastersend an offer). In this situation theLAgentmay decided
to abandon the task and inform about it itsUser. It is also possible that theLA-
gentdecides to become theLMasterof a new team itself. In this case, it prepares
an offer describing (1) who it would like to invite to join itsteam, and (2) what
resources it can provide to users (i.e. what kind of jobs it iswilling to work on);
and send these two “advertisements” to theCIC to be “posted.”

Let us now briefly consider what happens when theUser requests that itsLA-
gent arranges execution of a task (for in-depth discussion see section 5). The
User specifies conditions of task execution (e.g. maximal price). The LAgent
queries theCIC to find out which teams can execute its task. Upon receiving a
list of teams that match the query, theLAgentremoves from it teams that cannot
be trusted. Next, it communicates withLMasters of the remaining teams and uses
FIPA Contract Net Protocol and multicriterial analysis to find the best team to
execute its job. Note that if no team will satisfy conditionsimposed by theUser
then no deal will be reached. In this case theLAgentwill report this situation to
its Userand await further instructions.

Let us now describe the relationships between theLMasterand theLMirror .
When a new team is created, then the “founding agent” becomesits LMaster. The
first agent that joins that team becomes theLMirror (agent that can take over the
team-lead in case when anything happens to theLMaster). Subsequent agents
joining the team will becomeworker agents. We have not decided yet if theLMir-
ror should be also working as aworker agentor if its role should be limited to
mirroring theLMaster; this decision will based on experimental analysis ofLMir-
rors workload and will be performed when the initial feature-complete version of
the system will be implemented. TheLMasterand theLMirror share all infor-
mation that is pertinent to the existence of the team; e.g. list of workers and their
characteristics, list of tasks that have been contracted and have to be executed,
knowledge base that stores information about all past interactions with incoming
users etc. It is assumed that theLMasterand theLMirror check each-others ex-
istence regularly in short time intervals. In the case when the LMasterdoes not
respond to a ping-type ACL message theLMirror contacts the agent environment
infrastructure (Agent Management Systemagent) to check the status of theLMas-
ter. If the LMaster is “gone” it takes over its role. Its first action is to promote
one of worker agents to become itsLMirror and pass to it all necessary informa-
tion. Then it informs all necessary agents about the change (the fact that it is now



the LMasterof the team). Similarly, theLMasterupon finding that theLMirror
agent is “gone” immediately promotes one of worker agents tobecomeLMirror
and passes to it all necessary information. In both cases, promotion of a worker
to a role of anLMasteror anLMirror may require dealing with the task that the
selected worker was executing at the time of its “promotion.” Let us note that the
proposed solution is not bullet-proof. It is conceivable that both theLMasterand
theLMirror will go down “almost simultaneously” (e.g. theLMasterrealizes that
theLMirror is gone, but before it promotes one of its workers to become its new
LMirror it will go down itself) and thus the team will be “destroyed.”However,
such a situation should be relatively rare and our goal is notto create a completely
bullet-proof infrastructure. Rather, our aim is to providethe proposed infrastruc-
ture with a reasonable level of resilience against common failures. Obviously, in a
production environment further levels of defense against team destruction would
have to be developed.

Finally, let us briefly mention a few additional objects thatappear in Figure 1.
The Gathering knowledgefunctions denote collection of information about pro-
cesses happening in the system. TheLMastercollects information about all inter-
actions with incoming task-carrying agents as well as aboutmembers of its team.
In this way it may later decide to not to interact with certainclients or remove
certain workers from its team. Similarly, theLAgentcollects knowledge about
what happened when it utilized services of various teams, aswell as when it was a
worker for various teams. Interestingly, sinceLAgentcan play any role in the sys-
tem, it is quite possible that anLMasterwill turn into anLAgentwho represents
its User trying to find location to execute its task. Will it turn to itsown former
team to do it? Questions like this are going to be answered within theLAgent
MCDM module and theLMaster MCDMmodule.

4 Development of an efficientCIC infrastructure

4.1 LAgent – CIC interactions

As we have seen, regardless of the scenario, interactions with theCIC are crucial
to the functioning of the system. Therefore, let us now discuss interactions that
take place when theLAgentis querying theCIC where to execute its task.

We have assumed that data in our system is to be stored in semantically de-
marcated form. In this context, an ideal situation would be if there existed an
all-agreed “ontology of the Grid.” Unfortunately, while there exists a number of
(separate and incompatible) attempts at designing such an ontology, at this stage
they can be treated only as a “work in progress.” Therefore, instead of selecting
one of them and paying the price of dealing with a large and notnecessarily fitting
our needs ontology (which would then mean that we would have to make changes



in an ontology that we have not conceived and have no control over), we focus
our work on the agent-related aspects of the system (designing and implementing
agent system skeleton) while utilizing simplistic ontologies). Obviously, when
the Grid ontology will be agreed on, our systemwill be readyfor it. Currently,
our ontology of Grid resources is focused on their “computational” aspects, e.g.
processor, memory and available disk space. What follows isa snippet of this,
OWL Lite based, ontology:

@pref ix : <h t t p : / / G r i da ge n t s . s o u r c e f o r g e . ne t / Gr id#> .

: Computer
: a owl : C l a s s .

: hasCPU
: a owl : O b j e c t P r o p e r t y ;
r d f s : range :CPU;
r d f s :domain : Computer .

:CPU
: a owl : C l a s s .

: hasCPUFrequency
: a owl : D a t a P r ope r t y ;
r d f s : comment ” i n GHz” ;
r d f s : range xsd :f l o a t ;
r d f s :domain :CPU.

: hasCPUType
: a owl : O b j e c t P r o p e r t y ;
r d f s : range : CPUType ;
r d f s :domain :CPU.

: CPUType
: a owl : C l a s s .

I n t e l : a : CPUType .
AMDAthlon : a : CPUType .

: hasMemory
: a owl : D a t a t y p e P r o p e r t y ;
r d f s : comment ” i n MB” ;
r d f s : range xsd :f l o a t ;
r d f s :domain : Computer .



: hasUserD iskQuota
: a owl : D a t a t y p e P r o p e r t y ;
r d f s : comment ” i n MB” ;
r d f s : range xsd :f l o a t ;
r d f s :domain : Computer .

: LMaster
: a owl : C l a s s ;

: hasContactAID
: a owl : O b j e c t P r o p e r t y ;
r d f s : range xsd : s t r i n g ;
r d f s :domain : LMaster .

Let us now assume that agentLMaster007has in its team workerPC1410which
has a 3.5 GHz Intel processor, 1024 Mbytes of memory and 600 Mbytes of disk
space available as a “Grid service.” In our ontology it wouldbe represented as:

: LMaster007
: hasContactAID

” monster@e−p l a n t : 1 0 9 9 / JADE” ;
: hasWorker : PC1410 .

: PC2929
: a : Computer ;
: hasCPU
[

a :CPU;
: hasCPUType : I n t e l ;
: hasCPUFrequency ” 3 . 5 ” ;

] ;
: hasUserD iskQuota ” 600 ” ;
: hasMemory ” 1024 ” .

Ontologically demarcated data is stored (by theCIC) in a Jena2.3 repository [11].
To query Jena persisted data we have decided to use the SPARQLlanguage [15].
Let us now assume that theLAgentis looking for a computer (to execute its job)
with an Intel processor of at least 3.0 GHz, at least 512 Mbytes of RAM, and at
least 500 Mbytes of disk space. Then the SPARQL query will have the form:

PREFIX : <h t t p : / / G r i da ge n t s . s o u r c e f o r g e . ne t / Gr id#>

SELECT ? c o n t a c t
WHERE
{

? l m a s t e r



: hasContactAID ? c o n t a c t ;
: a : LMaster ;
: hasWorker

[
: a : Computer ;
: hasCPU

[ a :CPU;
: hasCPUType : I n t e l ;
: hasCPUFrequency ? f r e q ;

] ;
: hasUserD iskQuota ? quo ta ;
: hasMemory ?mem;

] .
FILTER ( ? f r e q >= 3 . 0 )
FILTER ( ? quo ta >= 500)
FILTER ( ?mem>= 512)

}

and the response that points to the above described machine (which satisfies the
search citeria) would look as follows:monster@e-plant:1099/JADE. Spe-
cifically, it points to theLMasterthat has that machine (worker) in its team. Ob-
viously, a complete response would consist of a list of all teams that have among
them at least one machine that satisfies the above described criteria.

4.2 Efficient implementation of theCIC

As it should be obvious, theCIC infrastructure is one of the key components
of our system. Since interactions betweenuser agentsand theCIC are the nec-
essary part of early stages of preparing job execution, oruser agentjoining an
agent team, long delays in responses from theCIC would become a bottleneck
of the system. Therefore theCIC should efficiently handle large number of re-
quests. Since our solution forCIC services was a centralized yellow-page ap-
proach, we have decided to find its optimal implementation. Here, we follow our
earlier studies in efficiency of our agent platform of choice— JADE [10]. In [3]
we have shown, among others, that the best performance in database queries was
observed when a single agent received and enqueued client-requests, while multi-
ple database accessing agents (SQLAgents) dequeued requests and executed them
on the database. Furthermore, all (SQL) query-processing agents and the database
run on separate computers and when fiveSQLAgentswere used, performance gain
of almost33% was reported. We have followed this example and experimented
with four differentCIC architectures. The complete results can be found in [5].
Here we will report only the performance of two best architectures: (1) threaded,



and (2) architecture with distributed database querying agents and an additional
CIC Internal Agent(CICIA).

In the threaded architecture we utilize the well-known task-per-thread para-
digm. We use Java threads and make them accessible to theCIC agentwithin
its container. Each worker thread has its own connection to the database and its
instance of the Jena model. Initialization of these resources is computationally
expensive and that is why instead of spawning new threads, weuse preinitialized
threads in the worker thread pool. TheCIC agent picks requests (query-requests
or yellow-pages-update-requests) from the JADE-providedmessage queue. Note
that each JADE agent comes with its own message queue provided by the JADE
environment. Furthermore, this queue is the only way for theCIC to receive ACL
messages from other agents. TheCIC agent extracts from themessage queue
all messages that require access to the database and enqueues them into another
queue — therequest queue, which we have implemented in Java. It is thisre-
quest queuefrom which free worker threads pull requests for execution.After
executing the query they send obtained responses to their originators. This archi-
tecture is depicted in Figure 2. In the second approach we useCICDbAgents—

thread poolMain CIC Container = single JVM

incoming
request
messages

outgoing
result
messagesworker thread

request
queue

CICAgent
 worker thread

worker thread

JADE-provided
message

queue

Figure 2: Request/result flow in a multi-threadedCIC architecture.

instead of worker threads. Each of these agents resides on a separate computer.
Again, incoming messages are stored in the JADE-providedmessage queueof the
CIC agent. As above, messages that request database access are removed from
themessage queueand enqueued into, implemented in Java,request queue. This
queue acts as a buffer between theCIC agent and theCICDbAgentsand, further-
more, reduces the number of messages stored in the JADEmessage queue(which
size is limited only by local resources).

Incoming requests aredelegatedby theCIC agent (in the form of ACL mes-
sages) to “free”CICDbAgents(push-based approach). Each database agent com-
pletes one task (request) at a time and sends results to theCIC Internal Agent
(CICIA). These results– send as ACL messages—are stored in the JADEmessage
queueof theCICIA). TheCICIA agent removes them from itsmessage queueand
enqueues them into a synchronizedresult-queue, from which they are dequeued
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by theCIC agent and send back to requesters. In other words, the intercommu-
nication between theCICIA and theCIC agent is accomplished through a shared
result-queue(instead of ACL messaging). As it is easy to see, this is also why
(the CICIA and theCIC agent) must run within the same agent container (the
Main CIC Container). The proposed architecture is depicted in Figure 3. Let us
observe that theCIC agent has three behaviors: (1) receive request-message from
its message queueand enqueue it in therequest queue, (2) dequeue request from
the request queueand send it to a “free”CICDbAgent, and (3) dequeue message
from theresult queueand send it to the requester. The sequence diagram of han-
dling the request is presented in Figure 4. In our experiments, to simulate a flow
of incoming requests fromuser agentswe used4 Querying Agents(QA), request-
ing theCIC to perform SPARQL [15] resource queries. It should be noted that
the form of the SPARQL query can change performance of the system. The ARQ
engine used in Jena, is responsible for executing the query on OWL resources
persisted in the database. It translates only parts of the SPARQL query into SQL.
The remaining parts (e.g. FILTER operations) of the SPARQL query are not per-
formed through the SQL query, but locally by the ARQ engine, utilizing local
JVM resources. In our case queries had the following form:

PREFIX : <h t t p : / / G r i da ge n t s . s o u r c e f o r g e . ne t / Gr id#>

SELECT ? mas te r
WHERE {

?comp : cpuClockSpeedMhz ? cpu .
? mas te r : o f f e r s R e s o u r c e ?comp .
FILTER ( ? cpu > 1000)

}

EachQAwas running concurrently on a separate machine, and was sending2, 500
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requests and receiving query-results. Thus in each experiment 10, 000 queries
have been processed by theCIC. Since we have been running multiple experi-
ments (especially when attempting at performance tuning),we have developed
an experimental framework for running tests automatically, while varying their
parameters (e.g. number of worker threads, number ofCICDbAgentsetc.). All
experimental runs were coordinated by theTest Coordinator Agent(TCA). Before
each test, remote JADE agent containers were restarted to provide equal envi-
ronment conditions. Experiments were performed using up to11 Athlon2500+,
512MB RAM machines running Gentoo Linux and JVM1.4.2. Obviously, in case
of threaded solution only a single machine was used to run theCIC infrastruc-
ture. Computers were interconnected with a100 Mbit LAN. The MySQL 4.1.13
database used by Jena persistence mechanism for storingyellow pagesdata was
installed on a separate machine. In all cases the experimental procedure was as
follows:

1. Restart of remote agent containers

2. Experiment participants sendreadymessage to theTCA — just after they
are set-up and ready for their tasks

3. On receiving thereadysignal fromall agents, theTCAsendsstart message
to all QAs, triggering start of the experiment
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4. WhenQAs receive all results back, they send afinishmessage to the coor-
dinator (theTCA)

5. Reception of allfinishsignals ends the experiment

In Figure 5 we represent the total processing time of10, 000 requests by the two
architectures when the number of agents/worker threads increases from 1 to 6.
As it can be seen, the threaded architecture leads to performance gains for up to
three threads. While it can be predicted that if multi-core processors were used,
further performance gain could have been reported, this approach is limited by the
total processing power of the processor. As the number ofCICDbAgentsincreases
up to 6, the performance of the multi-agent approach improves steadily. We can
also observe a leveling-off effect. Therefore, the fact that we were not able to run
experiments with more than 11 computers (and thus the largest number ofCICD-
bAgentswas 6), seems rather inconsequential. Specifically, it can be predicted
that if the number ofCICDbAgentswas to increase further, then the performance
gain would be only marginal. Overall, with 6CICDbAgentsthe performance gain
over the system with only a singleCICDbAgentis of order of 3. Furthermore, the
performance gain over the implementation based on threads is of order 2 (here,
we compare the best threaded solution—with 3 threads—with the multi-agent so-
lution with 6 CICDbAgents).

It should be mentioned that we have also evaluated a modification of the above
architecture, where theCICIA agent becomes both the delegator of requests and
receiver of results. This architecture proved to be slightly faster, however it was



more complicated from the conceptual point of view. Therefore, for the sake of de-
sign readability we have abandoned that idea as the final solution to our problem.
Finally, we have also experimented with few methods for further performance
tuning, but the observed gains (reported in [5] were small enough to conclude that
the above described approaches can constitute the basis forCIC infrastructure
implementation.

5 Selecting the team to execute the job

Let us now describe in more details operations involved in selecting a team that
is to execute a job. As described above, in Section 3, the firststep in this process
is for theUser to provide itsLAgentwith the necessary information such as a job
description, negotiation parameters and, possibly, constraints.

5.1 User Input

User provides itsLAgentwith the job description, negotiation parameters and,
possibly, execution constraints. In Section 3 we have presented our ontologi-
cal representation of computational resources. Here, let us focus our attention
on the negotiation parameters which are expressed using, what we named,Grid
Yellow Pages Ontology. Currently, in our work we utilize three negotiation param-
eters: cost, job start time and job end time. For each of theseparameters the user
specifies its importance by assigning weight that is later used in the multicriterial
analysis (section 5.3). In addition to negotiation parameters we specify execution
constraints, e.g., the maximum price that can be charged forthe job. Further-
more, we assume that if any of job execution parameters should not be taken into
account, then either 0 weight is given or that parameter is not included in the ne-
gotiation parameter-set. Alternatively it is also possible that a given parameter
is constrained but it is not given a weight. This also shows how ontology-based
approach gives us flexible possibilities of expressiveness. The following OWL
Lite code snippet represents how these concepts are combined into the negotia-
tion parameter-set.

### n e g o t i a t i o n p a r a m e t e r s ###

: N e g o t i a t i o n S e t a owl : C l a s s .

: n e g o t i a t i o n P a r a m a owl : O b j e c t P r o p e r t y ;
r d f s :domain : N e g o t i a t i o n S e t ;
r d f s : r ange Nego t ia t i onParam .

: Nego t i a t i onParam a owl : C l a s s .



: paramWeight
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : Nego t i a t i onParam ;
r d f s : r ange xsd :f l o a t .

: Cost a owl : C l a s s ;
r d f s : subClassOf : Nego t i a t i onParam .

: c o s t C o n s t r a i n t
a owl : O b j e c t P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : Cost ;
r d f s : r ange : F l o a t C o n s t r a i n t .

: c o s t V a l u e
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : Cost ;
r d f s : r ange xsd :f l o a t .

: J o b S t a r t T i m e a owl : C l a s s ;
r d f s : subClassOf : Nego t i a t i onParam .

: j o b S t a r t T i m e V a l ue
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : J o b S t a r t T i m e ;
r d f s : r ange xsd : dateTime .

: j o b S t a r t T i m e C o n s t r a i n t
a owl : O b j e c t P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : J o b S t a r t T i m e ;
r d f s : r ange : T i m e C o n s t r a i n t .

: JobEndTime a owl : C l a s s ;
r d f s : subClassOf : Nego t i a t i onParam .

: jobEndTimeValue
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : JobEndTime ;
r d f s : r ange xsd : dateTime .

: j obEndT imeCons t ra in t
a owl : O b j e c t P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : JobEndTime ;
r d f s : r ange : T i m e C o n s t r a i n t .

### g e n e r i c c o n s t r a i n t s ###

: N e g o t i a t i o n P a r a m C o n s t r a i n t a owl : C l a s s .



: F l o a t C o n s t r a i n t a owl : C l a s s ;
r d f s : subClassOf : N e g o t i a t i o n P a r a m C o n s t r a i n t .

: maxFloa tVa lue
a owl : F u n c t i o n a l P r o p e r t y , owl : D a t a t y p e P r o p e r t y ;
r d f s :domain : F l o a t C o n s t r a i n t ;
r d f s : r ange xsd :f l o a t .

: m inF loa tVa lue
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : F l o a t C o n s t r a i n t ;
r d f s : r ange xsd :f l o a t .

: T i m e C o n s t r a i n t a owl : C l a s s ;
r d f s : subClassOf : N e g o t i a t i o n P a r a m C o n s t r a i n t .

: minDateValue
a owl : D a t a t y p e P r o p e r t y , owl : F u n c t i o n a l P r o p e r t y ;
r d f s :domain : T i m e C o n s t r a i n t ;
r d f s : r ange xsd : dateTime .

: maxDateValue
a owl : F u n c t i o n a l P r o p e r t y , owl : D a t a t y p e P r o p e r t y ;
r d f s :domain : T i m e C o n s t r a i n t ;
r d f s : r ange xsd : dateTime .

As shown in the ontology schema, we separated concepts of constraints and para-
meters—they are defined in separate classes. This allows us to reuse constraints
concepts definitions throughout different parameters definitions. For example,
DateConstraint is used by JobStartTime and JobEndTime parameters. Currently,
via constraints, we can define maximum or minimum value for our parameters;
e.g. maximum cost or minimum JobStartTime. Note also that extending this
parameter-set by adding, for instance, penalty for not completing job on time, re-
quires only a relatively simple operation of extending our ontology and making
minimal changes in agent-codes. This being the case, the focus of our work was
on the agent interaction and parameter / constraint utilization, rather than devel-
opment of a truly realistic parameter-set. Let us now assumethat theUserstated
that the cost of the execution is twice as important than the job end time by giving
weight 2 to the cost and weight 1 to the job end time. Then the instance of the
proposed parameter-set would have the form:

@pref ix nego :
<h t t p : / / g r i d a g e n t s . s o u r c e f o r g e . n e t / N e g o t i a t i o n#> .

: N e g o t i a t i o n S e t I n s t a n c e a nego : N e g o t i a t i o n S e t ;
nego : n e g o t i a t i o n P a r a m [

a nego : JobEndTime ;



nego : paramWeight ” 1 .0 ” ˆ ˆ xsd :f l o a t
] , [

a nego : Cost ;
nego : paramWeight ” 2 .0 ” ˆ ˆ xsd :f l o a t

] .

In addition to the job-execution related parameter-set, the user specifies the re-
source describing parameters that are used to query theCIC (see section 3 for
a detailed description and a sample SPARQL query). As a way for the User to
communicate input parameters to itsLAgent, we have implemented a User Agent
GUI (see section 6).

Let us now assume that, in response to the query, theLAgentobtained from
theCIC the list of agent teams that have resources necessary to complete the job
and has filtered these that are not worthy of its trust, and proceed to describe the
LAgent-LMasternegotiations.

Figure 6: Interaction Diagram of FIPA Contract Net Protocol.

5.2 Negotiations

The LAgentutilizes the FIPA Contract Net Protocol to negotiate withLMasters
[7]. In Figure 6 we depict a version of the Contract Net Protocol, as it is pertinent
to our situation. Note that theLAgentnegotiates with more than oneLMasterand
therefore the same set of interactions takes place in all of these negotiations.

In the initial step, theLAgentsends out theCALL-FOR-PROPOSAL(CFP)
message to allLMasterson the final list (after pruning). TheCFP contains the



job description and the execution constraining parameter-set, according to which
LMasters are able to construct their offers (obviously, weights assigned by the
Userto individual parameters are not communicated). In the caseof our simplistic
parameter-set, theCFP message could have the following form:

( CFP : s e n d e r
( agen t− i d e n t i f i e r

: name ua@kameleon : 1 0 9 9 /JADE
: a d d r e s s e s ( sequence h t t p : / / kameleon : 7 7 7 8 / acc )
:X−JADE−agen t−c lassname UserAgent )

: r e c e i v e r (s e t ( agen t− i d e n t i f i e r
: name lmaster@e−p l a n t : 1 0 9 9 / JADE
: a d d r e s s e s ( sequence h t t p : / / e−p l a n t : 7 7 7 8 / acc ) ) )

: c o n t e n t ’ ’ ( ( a c t i o n
( agen t− i d e n t i f i e r : name lmaster@e−p l a n t : 1 0 9 9 /JADE

: a d d r e s s e s ( sequence h t t p : / / e−p l a n t : 7 7 7 8 / acc ) )
( JobRequest : r e s R e q u i r e m e n t s
( OntoData

: ontoDataLang RDF/XML−ABBREV
: o n t o D a t a S t r

\ ’ ’ < r d f :RDF xmlns : g r i d =” . . . ” xmlns : r d f =” . . . ”>
<g r i d : Un i ta ryComputer

r d f : abou t=” j a d e : / / request@kameleon : 1 0 9 9 /JADE”>

< r d f : t ype r d f : r e s o u r c e =
” h t t p : / / . . . / Gr id # ComputerSystem ”/>

<g r i d : cpu>
<g r i d : cpuClockSpeedMhz

r d f : d a t a t y p e =” h t t p : / / . . . / XMLSchema# i n t ”>

1500
</ g r i d : cpuClockSpeedMhz>
</ g r i d : cpu>

</ g r i d : Uni taryComputer>
</ r d f :RDF>\ ’ ’

)
)

: negoParamSet
( N e g o t i a t i o n S e t : n e g o t i a t i o n P a r a m
( sequence ( JobEndTime

: jobEndT imeCons t ra in t ( T i m e C o n s t r a i n t
: maxDateValue\ ”2006−10−12T12 : 0 0 : 0 0\ ” ) ) )

) ) ) ) ’ ’
: r ep l y−wi th R11661315326300
: l anguage f i p a−s l 0
: on to logy Messaging
: p r o t o c o l f i p a−c o n t r a c t−n e t
: c o n v e r s a t i o n−i d C49160611166131532629 )

In this example theLAgentis looking for a single machine with a 1.5 MHz CPU
and specifies the deadline for the job execution by constraining the JobEndTime



negotiation parameter.
On the basis of the receivedCFPand their view of the situation on their teams,

LMasters prepare their proposals and send them back to theLAgent, usingPRO-
POSEmessages. Note that it is possible that some ofLMastersrefuse theCFP
(using aREFUSEmessage). For example, in the time between the last update
of team information in theCIC and theLAgent’s request, some resources “dis-
appeared” and the team cannot complete the task. Furthermore, for a variety of
reasons (e.g. network congestion) some teams may not respond in time. The
positive response message, containing an offer could have the following form:

(PROPOSE
: s e n d e r ( agen t− i d e n t i f i e r

: name lmaster@e−p l a n t : 1 0 9 9 / JADE
: a d d r e s s e s ( sequence h t t p : / / e−p l a n t : 7 7 7 8 / acc )
:X−JADE−agen t−c lassname LMaster )

: r e c e i v e r (s e t ( agen t− i d e n t i f i e r
: name ua@kameleon : 1 0 9 9 / JADE
: a d d r e s s e s ( sequence h t t p : / / kameleon : 7 7 7 8 / acc )
:X−JADE−agen t−c lassname UserAgent ) )

: c o n t e n t ’ ’ (
( r e s u l t

( a c t i o n
( agen t− i d e n t i f i e r

: name lmaster@e−p l a n t : 1 0 9 9 / JADE
: a d d r e s s e s ( sequence h t t p : / / e−p l a n t : 7 7 7 8 / acc )
)

( JobRequest
. . .

)
)
( J o b R e q u e s t O f f e r

: negoParamSet
( N e g o t i a t i o n S e t : n e g o t i a t i o n P a r a m
( sequence
( J o b S t a r t T i m e

: j o b S t a r t T i m e V a l ue\ ’ ’ 2006−10−12T11 : 3 0 : 0 0\ ’ ’ )
( JobEndTime

: jobEndTimeValue\ ’ ’ 2006−10−12T12 : 3 0 : 0 0\ ’ ’ )
( Cost

: c o s t V a l u e \ ’ ’ 120 ’ ’ )
)

)
)

)
) ’ ’
: r ep l y−wi th ua@kameleon : 1 0 9 9 / JADE1166137976099
: in−r ep l y−t o R11661379760930
: l anguage f i p a−s l 0



: on to logy Messaging
: p r o t o c o l f i p a−c o n t r a c t−n e t
: c o n v e r s a t i o n−i d C49160611166137976092

)

The response message informs theLAgentthat theLMasteris willing to complete
the job and devote resources to it within the specified time-frame and that the total
cost will be 120 units. Note that in the Contract Net Protocol, sending aPROPOSE
message constitutes acommitmentof theLMasterto the conditions it specified.

In the current design of the system theLAgentawaits for responses until all
of them arrive or a specific deadline occurs. Note that it is necessary to impose
a deadline to avoid a deadlock; e.g. it is possible that one ofLMasters looses
connection to the Internet and cannot communicate back its offer. If after the
deadline there is no proposal then theLAgentcannot execute the task and reports
this fact back to theUser. Otherwise, if there is at least one offer, theLAgentstarts
evaluating offers. Proposal evaluation is a two-stage process:

• Offers which do not meet execution constraints (e.g. cost, job start time, job
end time) are filtered out. If all offers are filtered out at this stage, due to
constraints, then theLAgentcannot execute the task and reports back to the
User.

• The remaining offers are evaluated using Multi Criterial Analysis (MCA)—
see section 5.3.

The first stage of the process requires an explanation. It is reasonable to ask:
why would anLMastersend an offer that violates constraints that were given to it.
This situation is, on the one hand, result of a simplificationin our current design of
the system; while on the other hand it is a preparation for future system extensions.
The simplification concerns theLAgent, which filters out all offers that violate
constraints. Observe that this may result in very few offers(or no offers at all) left
for consideration. This also prevents theUserfrom specifyingsoft constraintsthat
represent a “strong preference” but violation of which doesnot necessarily mean
that the offer is unacceptable. For instance, I may prefer tohave this job done
tonight, but if I can have it done extremely cheap by tomorrowevening, then I
may be willing to accept this offer. Therefore, this step constitutes preparation for
the future system extension. Its behavior is being preparedfor handling exactly
such job constraints that are “flexible.” In this context it is important to note, that
some constraints may actually remain “sharp” and their violation may result in
an offer being filtered out; currently we have not decided if theLMaster is going
to be informed if a given constraint is flexible or not, but we are being swayed
toward the solution in which theLAgentkeeps this information to itself. Now,
recall that theLMasterhas knowledge of the capability of its team and its “pricing



policy” and when it makes an offer, it is going to be one that can be backed up
by a Service Level Agreement. Let us assume that anLMastermay have a full
load for the next 12 hours, but then has no jobs scheduled. In this case it may
make an offer which is going to violate the timing constraint—as the execution
will start past the suggested deadline—but since it has no tasks scheduled, it may
make an extremely cheap offer. We plan to address these typesof reasoning and
strategizing in the future.

After theMCA is applied to the remaining offers, the specific team is selected
to execute the job. In this case theACCEPT-PROPOSALmessage is sent to the
LMasterof that team. The remaining teams are rejected by sending to them the
REJECT-PROPOSALmessage. The selected team confirms acceptance by send-
ing back anINFORM-DONEmessage. Obviously, the Contract Net Protocol is
also taking care of various “emergency situations;” e.g. failure of the selected
team to respond.

5.3 Multi Criteria Analysis

Let us now describe in more detail the Multi Criterial Analysis-based selection
process. In the current implementation of the system we use the linear additive
model[12]. Note that this model was selected for its simplicity. However, it has to
be stressed that any otherMCAmethod can be applied to evaluate received offers.

In the case of the linear additive model, evaluation is done by multiplying
value scores on each criterion by the weight of that criterion, and then adding all
those weighted scores together. Recall, that we have three criteria that take part in
the MCA process: cost, job start time and job end time. If communication withm

teams resulted inn proposals (m − n teams refused, send us proposals that were
filtered out, or did not respond within the deadline) then criterion scores of thei-th
team are calculated as follows:

Start Time Score:

STSi =

n
∑

j=1

(startTimej − currentTime)

(startTimei − currentTime)

End Time Score:

ETSi =

n
∑

j=1

(endTimej − currentTime)

(endTimei − currentTime)



Cost Score:

CSi =
(

cost i

n
∑

j=1

cost j
−1

)

−1

All scores are normalized and the i-th team final score is calculated as:

Team ScoreTSi = startTimeWeight · STSi

+ endTimeWeight · ETSi + costWeight · CSi

Team with the highest overall score, obtained as a weighted sum of individual
criterion scores, is selected as the “winner.” For the example of the MCA in use,
please refer to the next section.

6 Example

Let us now present an example of how our system works to support a User who
would like to execute a job utilizing the PVM programming library on16 process-
ing nodes of a single computer. First, ourUser would specify resource require-
ments using the GUI interface shown in the Figure 7.

Figure 7: User Agent GUI: Resource requirements.

In the next step, theUserhas to provide itsLAgentwith negotiation parameters
expressing her execution preferences. For example, let us assume that she would
like to meet the deadline of 11:00 hours on 1st of March, 2007.Furthermore
the cost should be no larger that 500 units. Note that the costdoes not matter
as much as the time—the end time weight is 3, while the cost weight is 2; see
Figure 8. Finally, in this example theUserdoes not care too much when the job
starts (weight 1), she clearly wants to meet a specific execution deadline.

From the specified resource requirements theLAgent creates the ontologi-
cal instance of resource requirements and, based on that instance, constructs a



Figure 8: User Agent GUI: Weights and constraints of criteria.

SPARQL query and sends it (as an ACL request message) to theCIC agent. The
CIC executes the query and as a result delivers a list of candidate teams meeting
resource requirements. The answer from theCIC contains a list of contacts to
LMastersrepresenting teams, encapsulated in aResultSet.

Since trust management is not yet implemented, theLAgentstarts Contract Net
Protocol-based negotiations with allLMastersfound on the list. It receives their
offers, filters these that violate constraints and evaluates the remaining ones using
the MCA. Figure 9 shows three teams and their scores evaluated by the MCA.

Figure 9: User Agent GUI: Matched teams and their scores.

As we can see,teamAandteamChave been rejected because they do not meet
the deadline constraint. The remaining four teams have beenevaluated. Despite
of cost proposed by theteamEbeing cheaper by about30%, it was theteamD
that was accepted to do a job because of an earlier job completion time. Note that,
unless instructed otherwise, the decision is made by theLAgentautonomously and



the depiction in Figure 9 is presented only to illustrate theprocess.

7 Concluding remarks

In this paper we have presented our work devoted to development of an agent-
based Grid resource-brokering system. We have focused on three aspects of the
proposed system. First, we have discussed conceptual foundations that led to the
proposed solution. Second, we have outlined the proposed system. Third, we
have summarized our experimental work that lead to a specificway in which we
have implemented theCIC infrastructure. Finally, we have described and practi-
cally illustrated how an agent that wants to select a team to execute its job would
act within our system. Our current work is devoted to implementing processes
involved in agents selecting team to join. We will report on our progress in subse-
quent reports.
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