Developing and Utilizing Ontology of Golf Based
on the Open Travel Alliance Golf Messages

Agnieszka Cieslik!, Maria Ganzha?, and Marcin Paprzycki?

! Department of Mathematics and Information Technology, Warsaw University of
Technology, Warsaw, Poland
2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland,
Maria.Ganzha@ibspan.waw.pl

Abstract. While the vision of the Semantic Web is an extremely appeal-
ing one, its success depends not only on development of new ontologies
that represent various aspects of the world. Pragmatic view suggests that
such activities have to go hand-in-hand with facilitating support for ex-
isting domain-specific real-world standards. One of such interesting stan-
dards that is systematically gaining popularity in the travel industry, is
the Open Travel Alliance (OTA) messaging. Specifically, the OTA stan-
dardizes the way that businesses in the travel industry can communicate
with each other. The aim of this chapter is to outline our efforts leading
toward (re)engineering an ontology of golf (understood as a leisurely ac-
tivity) anchored in the OTA golf messaging specification. Furthermore
we discuss how such ontology could be used in a Travel Support System.
Here, in addition to general scenarios, details concerning implementation
of needed translators are presented.

Key words: ontology of golf, Open Travel Alliance, Travel Support
System, ontological engineering, travel ontology utilization

1 Introduction

Let us start with a simple story. In late February of 2011, professor Hoffman
from Stuttgart, Germany has to go to a conference in Florida. Professor Hoff-
man loves to play golf and would like to combine the conference with a few
rounds of golf. Due to the rapid development of agent technology, prof. Hoffman
on his laptop has the newest release of MPMGO7 Personal Agent—his personal
assistant. Furthermore, for some time already, he is using SRIPAS Travel Sup-
port System (TSS) for all his travel needs. To be able to arrange his trip, he
informs his Personal Agent (PA) about dates of his trip and asks it to arrange
all necessary details. The PA knows travel preferences of professor Hoffman and
uses them to formulate a request to the T'SS. The TSS communicates with var-
ious Travel Service Providers (e.g. airlines, hotels, golf courses) to make travel
arrangements. Furthermore, since prof. Hoffman is one of its regular clients it
can utilize this knowledge to (a) filter and sort potential offers, and (b) to make
suggestions that go beyond the core of the query (e.g. to suggest a specific restau-
rant in Orlando that prof. Hoffman is likely to be interested in). In the latter

2 A. Cieglik, M. Ganzha, M. Paprzycki

the TSS utilizes also knowledge mined from behaviors of its other clients. The
proposal is returned to the PA of prof. Hoffman, that uses its own knowledge
about his preferences to further filter and sort responses (it is the PA that may
know that, due to the recently increased cholesterol level, prof. Hoffman stopped
eating US Diner style food that he was fond off). Some of the decisions may be
completed by the PA, some may involve prof. Hoffman himself. Some offers can
be accepted immediately, while some may require further communication with
the T'SS. All communications between the PA and the T'SS are utilized by the
TSS to modify its profile of prof. Hoffman to serve him better in the future. As
a result of these activities the itinerary is completed and prof. Hoffman can go to
Orlando, present his work at the conference and play golf. During and after his
trip he may communicate with his PA to provide explicit feedback about travel
arrangements. This information is used by the PA to update prof. Hoffman’s
profile.

This futuristic story contains a number of issues that we try to address in
our ongoing project, in which we are developing an agent-based Travel Support
System. Its key features have been summarized in [23, 13, 16, 14] and in refer-
ences to our earlier work collected there. In this chapter we will focus only on
selected new developments, related to communication between various entities
involved in making travel arrangements, as well as utilization of ontologies. Work
presented here extends and complements material presented in [7, 8].

1.1 World of travel

The story of prof. Hoffman allows us to identify three key groups of key stake-
holders of the world of travel.

— Users, which may be helped by and represented to the outside world by their

Personal Agents (for more information about “agents as a personal assistants,”
see [20]). To check availability of a Marriott Hotel in St Louis, MO, the PA
may interact with the Travel Service Provider, e.g. represented by a Marriott
WWW site, or a Marriott Reservation Agent. Obviously, the PA may also
contact a Travel Support System (which is a generalization of the notion of a
Travel Agency and an example of a infomediary [17]). The TSS can provide,
for instance, a complete travel package (e.g. airline ticket + car rental + hotel
+ golf). Obviously, in the first case content personalization will be facilitated
solely by the PA. Here, we treat various loyalty programs as a part of itinerary
preparation, and not as a form of content personalization. In the second case,
as suggested above, it is likely that the initial content personalization will take
place within the T'SS (fulfilling its role of the infomediary) and the fine tuning
(final filtering) will be done by the PA.
Obviously, Users may also arrange their travel directly, by communicating via
some form of web-interface with entities like the Travel Support System, or
with Travel Service Providers to obtain specific information / reservation. For
simplicity of description, from here on we focus our attention only on Users
represented by their PAs.

Ontology of Golf Based on OTA Golf Messages 3

— Two types of Travel Service Providers (TSP). The first groups represents,
provides information about, and facilitates reservations of specific travel en-
tities (e.g. hotel chains, individual hotels, restaurants, golf course operators).
Second, global reservation systems (e.g. SABRE) that act as reservation ag-
gregators. While these two groups differ to a certain extent (e.g. compare
reservation system of a non-chain hotel San Max in Catania, Italy with the
Amadeus global reservation system), still we can treat them all as end-point
providers of reservations. Note also that while global reservation systems are
somewhat similar to Travel Support Systems, we see the role of Travel Service
Providers to be limited to activities involved in information provisioning and
reservation processing. Finally, existence of loyalty programs, which allows
some TSPs (e.g. Hilton Hotels) to acquire, store and utilize customer data,
matters only as far as internal data processing is concerned (see below).

— Travel Support Systems, which in part play the same role as Travel Service
Providers. Here, we assume that it is unlikely that “anyone” will be able to
access global reservation systems directly (e.g. for security reasons). There-
fore, TSSs will constitute an authorized entry point. They will also provide
integrated, and to some extent personalized services (e.g. a vacation package
to Milan, consisting of: airline reservation + hotel + opera tickets); see above.
As in the case of typical infomediaries, they will not only respond to direct re-
quests of customers, but attempt at selling extra services, selected on the basis
of knowledge of habits of all of their customers (e.g. similarly to Amazon.com
suggesting additional items based on similarities between customers).

Note that while it is obvious that the role of a Travel Support System is
changing because of the Internet, still Users need to be able to have access to
TSPs (e.g. to make reservations) while intermediaries (e.g. the TSSs) will at-
tempt at earning money by providing value-added services. Therefore, regardless
of specific form resulting form the evolution of all of the above identified stake-
holders, the general picture presented here should remain valid for some time to
come.

1.2 Travel-related data storage and processing

Let us now discuss how data is likely to be stored and represented by the three
groups of stakeholders. While there exist arguments to the contrary, we accept
the assumption that utilization of ontologically demarcated data is going to be
a crucial part of future development of the Internet, and more generally, compu-
tational fabric of the world. Therefore, it is easy to see that the ideal situation
would be realization of the vision put forward by the CYC project [21]. Here, a
single ontology of “everything” is to be developed and accepted worldwide. If this
vision would materialize, all problems related to data interoperability would be
gradually solved (by all entities accepting such global ontology). Unfortunately,
even casual observation of the way that the Semantic Web is developing suggests
that this vision is unlikely to materialize for a very long time, if ever (e.g. due
to multilinguality of the world, pragmatic/political needs of individual players,

4 A. Cieglik, M. Ganzha, M. Paprzycki

etc.). Instead, we can expect that (a) some entities will move toward ontologies
very slowly e.g. large existing players (such as global reservation systems), as
well as very small players (such as individual non-chain hotels), (b) some players
will utilize domain and business specific ontologies, e.g. hotel chains may use a
combination of a “hotel as a tourist entity” ontology and a “hotel as a business
entity” ontology, while have no direct use of other travel-related ontologies (e.g.
they may want to be able to make a car reservation for their guests, but they will
not store or process car rental related data and thus will not need ontology of car
rental), (c) Personal Agents that reside on computers of their Users may utilize
simplified ontologies, e.g. ontology of a hotel without concepts related to “ho-
tel as a place for a conference” (including capacity of and equipment available
in meeting rooms). Summarizing, we can expect that different entities within
the “world of travel” will utilize different data representation (ontologically de-
marcated, or not). Furthermore, even if data will be stored in an ontologically
demarcated fashion, different players are likely to use different ontologies. These
ontologies may, but not have to be subsets of a larger, all agreed, comprehensive
ontology of travel-related entities.

In our earlier work, we assumed that the T'SS is going to store information
in semantically demarcated form and use it to facilitate personalized informa-
tion provisioning (see, [23, 13, 16, 14] and references collected there). Moving in
this direction we have developed, and later merged, ontologies of a hotel and a
restaurant. These two ontologies were created on the basis on the concept of a
hotel as represented in travel-related WWW sites and concept of a restaurant
as proposed in the ChefMoz project, respectively [12, 15]. Separately we have
proceeded to develop a comprehensive ontology of air travel (see, [26, 25] for
details), which was also merged with ontologies of hotel and restaurant. This
ontology is available at [6].

Finally, it should be mentioned, that to represent user profiles and in this
way facilitate personalized content delivery, we have adapted, to be used with
ontologies, an overlay-based approach proposed originally in [19, 10]. In our work,
each user is to have his/her preferences represented in a profile incorporated into
the ontology of travel (see, [23, 13, 14, 12] for more details).

1.3 Communication in the world of travel

Thus far, we have argued that the world of travel has, and is likely to have for
some time, at least three main groups of stakeholders. Furthermore, we have
shown different players within the world of travel are likely to utilize different
internal data representations. Thus, one has to ask a question: how will it be
possible for them to communicate. One of the more promising answers has been
proposed by the Open Travel Alliance (OTA) [2]. OTA was created in 2001
with the aim of developing a standard for communication between various en-
tities represented the world of travel. They have designed message sets defining
communication about practically all travel-related activities [4]. Interestingly, as
time passes the OTA messaging standards is gaining popularity. For instance,

Ontology of Golf Based on OTA Golf Messages 5

according to the OTA WWW site, its messaging has been adopted, among oth-
ers, by American and Continental Airlines, Hilton and Marriott Hotels (for a
complete list, see [3]). Specific OTA messages concern particular aspects of a
travel-related activities and are defined as pairs: a request (RQ) message, and a
response (RS) message. Depending on the field of interest, number of such mes-
sage pairs varies, for instance, from three for a golf course related “conversation,”
to ten for the air travel.

Let us now assume that OTA messaging becomes a worldwide travel industry
standard, which seems to be the case. Then the problem of communication be-
tween travel entities becomes solved. It should be clear, that while each of them
may use different data representation, storage, and processing, they all will be
able to communicate utilizing OTA messages. Obviously, this means that each
time messages are to be exchanged, a number of translations needs to take place.

— Within Travel Service Providers, incoming OTA requests have to be translated
into queries matching their internal data representation. Resulting responses
have to be translated “back” into OTA responses and send to requesters.

— For the time being, we assume that travel-related communication between
Users and their Personal Agents does not involve OTA messages. Rather,
Users fill-in a form (e.g. an HTML template) and the resulting querystring is
send to the PA (see, [11] for a discussion of how non-agent entities can com-
municate with software agents). Obviously, we can hope that one day we will
be able to use natural language to communicate with the PA, but we omit
this issue from considerations. The Personal Agent takes the User-query (ex-
pressed in any form) and translates it into an OTA request message, which can
be send either to Travel Service Providers, and/or to Travel Support Systems.
Received OTA responses have to be translated into instances of local ontology,
as this is the data representation used by the PA to process information (e.g.
to rank obtained proposals). Obviously, filtered and ordered responses have to
be translated into user readable form and communicated to the user (for more
details in the case of displaying information on the user device see, [11]).

— The Travel Support System receives OTA requests from Personal Agents rep-
resenting Users. Some of them can be answered directly by the TSS. For in-
stance, since the T'SS gathers data, and keeps it fresh by systematic updates
[16], static elements such as unchangeable characteristics of the golf course can
be found by querying the local database of the T'SS. Specifically, in the current
design of the TSS, ontologically demarcated travel data is kept in the Jena
repository [1]. Therefore, the OTA request message has to be translated into
the SPARQL query [5] and executed. The result may then either be translated
into an OTA response message and send to the PA “as is,” or further processed
(e.g. to propose other travel related items that a given User may be interested
in, and in this way to maximize the profit of the T'SS [16]). The second pos-
sibility is that the original request requires access to Travel Service Providers
(e.g. a request to check availability of a given golf course). Such message can
be forwarded to an appropriate TSP to obtain the necessary data (see above).
The response is then treated as if it was obtained from the local database.

6 A. Cieglik, M. Ganzha, M. Paprzycki

2 OTA golf messages

Let us now focus our attention on a specific case of travel-related communication—
interactions concerning golf treated as a leisurely activity. Here, the OTA stan-
dard identifies three pairs of messages; summarized in Table 2 (see [22] for
a complete description). These messages provide the following functionalities:
(1) finding a golf course with specific characteristics, (2) checking if a course of
interest (e.g. found utilizing the previous message) is available at a specific time
and under a specific set of conditions (e.g. maximum price), and (3) making an
actual reservation of a selected course.

To illustrate the specific form that OTA messages take, in Figure 1 we present
an example on an OTA_ GolfCourseSearchR() message (based on [22]). In this
message a person who is considered physically challenged under the ADA rules,
and requires Wheelchair Accessibility (criterion specified as true). This person is
seeking a course to be played alone (criterion Singles specified as true) and that
has Robert Jones as its Architect (criterion is not required—specified as false).

<?xml version="1.0" encoding="UTF-8"7?>
<OTA _GolfCourseSearchRQ xmlns=
"http://www.opentravel.org/OTA/2003/05"
xmlns: xsi="http://www.w3.o0rg /2001 /XMLSchema—instance"
xsi:schemaLocation=‘‘http://www. opentravel.org/OTA/
2003/05 OTA _GolfCourseSearchRQ . xsd"
EchoToken="''54321" TimeStamp="2003—11-12T10:30:00"
Target="Production" Version="1.001"
SequenceNmbr="2432" PrimaryLangID="en"
ID="FL4902" DetailResponse="true'">
<Criteria>
<Criterion Name="Architect" Value="Robert_Jones"
Required="false"/>
<Criterion Name="Singles _Confirmed" Value="Yes"
Required="true"/>
<Criterion Name="ADA_Challenged" Value="Wheelchair"
Required="true"/>
</Criteria>
</OTA _GolfCourseSearchRQ>

Fig. 1. Example of OTA golf course search request message

In response to the OTA__ GolfCourseSearchR() message depicted in Figure 1,
the OTA__ GolfCourseSearchRS message presented in Figure 2 could have been
received. This message specifies that two golf courses satisfy the selected criteria.
These courses have ID’s FL1234 and FL4321. Both of them satisfy the required
criteria (Wheelchair Accessibility and Singles Confirmed, while only the first one
has been designed by Robert Jones. However, since the Architect criteria was

Ontology of Golf Based on OTA Golf Messages

Table 1. Summary of OTA golf messages

Message type

List of fields

OTA _GolfCourseSearchR()—message
used to find golf courses that satisfy
a given set of criteria; if attribute is
specified as Required (set to Yes) then
only courses that meet that criteria
will be returned; if Required attribute
is set to No, a course that does not
meet that criteria may also be included
in the list

Architect, ADAChallenged, Slope, Metal
Spikes, Caddies available, Yardage, Per-
sonal Carts Permitted, Grass Type, Singles
Confirmed

OTA_GolfCourseSearchRS—response
lists courses that meet the selected
criteria

Golf Course ID, Golf Course address, Con-
tact information—telephone number, List
of requested criteria

OTA _GolfCourseAvailRQ—requests
information about availability of a
specific golf course, satisfying a set of
imposed conditions

Golf Course ID, Tee Time—start and end
date, Number of golfers, Number of holes,
Maximum price for one person

OTA_ GolfCourseAvailRS—response
provides detailed information about
availability

Golf Course ID, Tee Time, Number of
golfers, Number of holes, Maximum price
for one person, List of fees. Fee has name,
information about amount, currency and
taxes

OTA _GolfCourseResR(@—message re-
quests reservation of a given golf course

Information about person who makes reser-
vation (first and last name, address, date
of birth, telephone number), Mean of pay-
ment, Date of game, Number of golfers,
Number of carts, List of fees

OTA _GolfCourseResRS—confirms
(or denies) reservation of a given golf
course

Reservation ID, Information about person
who makes reservation (first and last name,
address, date of birth, telephone number),
Mean of payment (credit cart information),
Date of game, Number of golfers, Number
of carts, List of fees, Information concerning
cancellation penalties and date and time by
which a cancellation must be made

7

not required, also the course designed by Jack Nicklaus can be correctly included

in the response.

Assuming that one of these courses has been selected, it is likely that one
would like to check its availability at a specific date and time, as well as satis-
faction of various additional conditions (e.g. maximum price). This is achieved
through the GolfCourseAvailR(Q) and GolfCourseAvailRS pair of messages. Fi-

nally, if the course is available and conditions are satisfied, a GolfCourseResRQ

8 A. Cieglik, M. Ganzha, M. Paprzycki

<?xml version="1.0" encoding="UTF-8"7?>
<OTA _GolfCourseSearchRS xmlns=
"http://www.opentravel.org/OTA/2003/05"
xmlns: xsi="http://www.w3.o0rg /2001 /XMLSchema—instance"
xsi:schemaLocation=‘‘http://www.opentravel.org/OTA
/2003/05 OTA GolfCourseSearchRS.xsd ’’
EchoToken="54321" TimeStamp="2003—11—-12T10:30:15"
Target="Production" Version="1.002"
SequenceNmbr="2433" PrimaryLangID="en">
<Success/>
<GolfCourses>
<GolfCourse ID="FL1234" Name=‘‘Sea Grass Golf Resort’’'>
<Address>
<CityName>Jupiter </CityName>
<PostalCode >21921</PostalCode>
<County>Palm Beach</County>
<StateProv StateCode="FL"/>
<CountryName Code="US"/>
</Address>
<Phone AreaCityCode="444" PhoneNumber="423—-8954"/>
<Traits>
<Trait Name="Architect" Value=‘‘Robert Jones'’'/>
<Trait Name=‘‘Singles Confirmed’’ Value="Yes"/>
<Trait Name=‘‘ADA Challenged’’ Value="Wheelchair"/>
<Trait Name="Slope" Value="110"/>
<Trait Name="Metal_Spikes" Value="No"/>
<Trait Name=‘‘Caddies Available’’ Value="No"/>
<Trait Name="Yardage" Value="6345"/>
<Trait Name=‘‘Personal Carts Permitted’’ Value="No"/>
<Trait Name="Fivesome" Value="No"/>
<Trait Name=‘‘Grass Type’’ Value="Bermuda"/>
</Traits>
</GolfCourse >
<GolfCourse ID="FL4321" Name=‘‘Beach Side Golf Resort’’>
<Address>
<CityName>Palm Beach Gardens</CityName>
<PostalCode >21932</PostalCode>
<County>Palm Beach</County>
<StateProv StateCode="FL"/>
<CountryName Code="US"/>
</Address>
<Phone AreaCityCode="444" PhoneNumber="423—-2876"/>
<Traits>
<Trait Name="Architect" Value=‘‘Jack Nicklaus’'’'/>
<Trait Name=‘‘Singles Confirmed’’ Value="Yes"/>
<Trait Name=‘‘ADA Challenged’’ Value="Wheelchair"/>
<Trait Name="Slope" Value="112"/>
<Trait Name=‘‘Metal Spikes’’ Value="Yes"/>
<Trait Name=‘‘Caddies Available’’ Value="Yes"/>
<Trait Name="Yardage" Value="7102"/>
<Trait Name="Fivesome" Value="Yes"/>
<Trait Name=‘'‘Grass Type’'’ Value="Rye'"/>
</Traits>
</GolfCourse >
</GolfCourses>
</OTA _GolfCourseSearchRS>

Fig. 2. Example of OTA golf course search response message

Ontology of Golf Based on OTA Golf Messages 9

message could be send, requesting a reservation at a specific time. This message
would then be followed by a GolfCourseResRS message that would confirm the
reservation.

3 Designing the ontology—preliminary considerations

Now, we can discuss how OTA golf messages can be used as a basis for the de-
velopment of an OTA golf course ontology (to be used, among others, within our
TSS). Analysis of OTA golf messages indicated that two core concepts should
be defined. The Golf Course concept identifies a golf course and specifies its
features. This concept is based directly on the content of the first pair of OTA
messages, where golf courses with specific features are sought. It defines an object
(golf course) and its static features and is represented in Table 3.

Table 2. Golf Course concept and its features

Class GolfCourse

Course ID ID originates from the OTA _GolfCourseSearchRS mes-
sage; can be used for getting information about golf
course availability and for making reservations

Address Address of golf course
Contact Contact information (e.g. telephone number)
Features List of golf course features

The second concept, named Golf Course Tee Time, defines information nec-
essary for completing reservation of a golf course. Thus, the Golf Course Tee
Time concept defines dynamic characteristics of a static object specified by the
Golf Course concept. In Table 3 we list features that constitute the necessary
information to define the Golf Course Tee Time concept. Since the “names of
features” listed in the table are self-explanatory, we do not define them further.

Table 3. Golf Course Tee Time concept and its features

Class GolfCourseTeeTime
Course ID

Start date and time

End date and time

Price

Max price for one person
Number of holes

Number of golfers
Number of games

List if fees

10 A. Cieglik, M. Ganzha, M. Paprzycki

After identifying two concepts that constitute the core of the OTA golf on-
tology, we have to address the following question: how does this ontology relate
to the T'SS ontology. In other words, we have to establish which already existing
/ defined concepts can be re-used in the new ontology.

3.1 Common concepts with the T'SS ontology

Ontology re-use is one of important concepts in ontological engineering [9].
Therefore, we have compared the OTA golf ontology and the TSS ontology and
analyzed which concepts can, and should, be re-used. Note that, as seen below,
similarity of concepts can sometime be misleading as in actuality their repre-
sent different notions. Separately, one should keep in mind that the OTA golf
ontology, should be made integrable with the TSS ontology. To help achieving
this goal both ontologies should share as many concepts as possible. Thus, upon
analysis of the TSS ontology we have identified the following existing concepts
that could be re-used.

Outdoor Location—geographical location is associated with most objects
populating the T'SS ontology (i.e. restaurant, hotel, airport). Obviously, this
concept is also associated with the golf course. The QutdoorLocation class from
the TSS ontology describes geographical location through a set of geographical
properties, such as: street address, country, city /town, region, zip code, reference
points or location description (see the T'SS ontology available at [6] for a com-
plete listing). In the TSS ontology, the Hotel, the Restaurant and the Airport
classes are sub-classes of the QutdoorLocation class. Therefore, the GolfCourse
class proposed here should also become a subclass of the same OQutdoorLocation
class. This is a natural decision as the Golf Course should be an object of the
same “nature” as the other objects mentioned here.

Discounts—is the concept that, in general, specifies:

— code of the particular discount,
— amount of reduction of the base-price,
— and contains a short description of the discount policy.

However, when dealing with air travel support we have realized that TATA de-
fined special air travel discount codes [26, 25]. Therefore, the question has arisen:
how to integrate these with hotel and restaurant discount codes (including both
OTA-specific and general discounts—these omitted in the OTA specification).
For the purpose of integration of ontologies, “domain-specific” discounts codes
were distinguished and defined as subclasses of the general DiscountTypes class.
Therefore, in the TSS ontology there exist three classes defining possible dis-
counts:

— OTADiscount Types—discount types originating from the OTA specification
— TATADiscount Types—discount types originating from the TATA specification
— DiscountTypes—general class; all discount types

Obviously, classes OTA Discount Types and TATA Discount Types are subclasses
of the DiscountTypes class. Note that since the proposed ontology of golf is based

Ontology of Golf Based on OTA Golf Messages 11

on OTA messages, discount concepts used in the OTA golf ontology belong to
the OTADiscountTypes class.

The remaining common parts between the TSS ontology and the OTA golf
ontology are:

MeanOfPayment—concept defining possible mean of payment (e.g cash, credit
card, check, etc.),

— AdressRecord—class that in the T'SS ontology describes the address,
Currency—concept that defines what is the currency that the fees are in,

— FareTaz—concept containing information about taxes,

Contacts—class specifying possible ways of contacting an entity (e.g. the tele-
phone number).

4 The OTA golf ontology

Based on the above considerations we can now present definitions of the two
basic classes of the proposed OTA golf ontology. Its remaining features have been
described in detail in [7]. First, in Figures 3 we present the class OutdoorLocation
that the Golf Course concept is a subclass of. Next, in Figure 4, we present the
RDF representation of the Golf Course class.

As discussed above, the GolfCourse class is a subclass of the OutdoorLocation
class and utilizes the Contacts concept (from the TSS ontology). In its definition
we use strings for: id, courseName, architect; and an integer for the slope.

The second concept that belongs to the core of the OTA golf course ontology
is the Golf Course Tee Time. It is presented in Figure 5 (in the RDF notation)
and in Figure 6 in the graphical representation. Finally, in Figure 7 we present
the RDF description of the Price concept.

Observe that while the GolfCourseTee Time class is relatively simple itself (it
consists of strings for: startDate, endDate and golfCourselD; float for mazPrice;
and an integer for numberOfTimes), it utilizes also a fairly extensive concept of a
Fee. This points out to the fact that in addition to the two basic concepts (classes
GolfCourse and GolfCourseTeeTime) we had to define the following additional
concepts / classes:

— Price—concept of price (includes: amount, taxes, currency, etc.)

— Fee—concept of fee (e.g. green fee, cart fee)

— Description—contains all additional descriptions that are needed for the trav-
eler to be able to effectively utilize the information provided by the system

Note that the concept of the Price is similar to that used in the T'SS ontology,
however in the case of a golf course it is much less complicated than in the case
of air travel. Therefore we have decided, for the time being, to leave this concept
golf-specific and return to this issue when the OTA golf ontology is going to be
integrated with the TSS ontology.

12 A. Cieglik, M. Ganzha, M. Paprzycki

base: OutdoorLocation a rdfs:Class;

rdfs :subClassOf geo:SpatialThing;

rdfs :comment ¢‘Outdoor location.

Geographical and urban references.

base:address a rdf:Property;

rdfs :comment ‘‘Address details.’’;

rdfs :domain base: OutdoorLocation ;

rdfs:range adrec: AddressRecord.
base:attractionCategory a rdf:Property;

rdfs :comment ¢‘Nearby attractions.’’;

rdfs :domain base: OutdoorLocation ;

rdfs:range base:AttractionCategoryCode.
base:indexPoint a rdf:Property;

rdfs :comment ‘‘Reference map point.’’;

rdfs :domain base: OutdoorLocation ;

rdfs :range base:IndexPointCode.
base:indexPointDist a rdf:Property;

rdfs :comment ‘‘Distance from the reference map point.’’;

rdfs :domain base: OutdoorLocation ;

rdfs:range base:IndexPointCode.
base:locationCategory a rdf:Property;

rdfs :comment ¢‘Location category.’’;

rdfs :domain base: OutdoorLocation ;

rdfs:range base:LocationCategoryCode .
base:neighbourhood a rdf:Property;

rdfs:label ¢‘Neighbourhood’’;

rdfs :comment ¢‘The neighborhood of the Outdoor location.’’;

rdfs:range xsd:string;

rdfs :domain base: OutdoorLocation .
base:crossStreet a rdf:Property;

rdfs:label ‘‘Cross street’’;

rdfs :comment ‘‘The nearest street that crosses the street that

the travel object is on.’’;

[

rdfs:range xsd:string;
rdfs :domain base: OutdoorLocation .
base: AttractionCategoryCode a rdfs: Class;
rdfs:comment ‘‘Possible categories of places which might be
of interest for visitors/guests and can be
found in the neighborhood.’’.
base:IndexPointCode a rdfs:Class;

rdfs :comment ‘‘Possible reference map points.’’.
base: LocationCategoryCode a rdfs:Class;
rdfs:comment ‘‘Possible location categories.’’.

Fig. 3. OutdoorLocation concept; RDF representation

5 Utilizing OTA golf messages and OTA golf ontology

In section 1.3 we have summarized translations that need to take place when
OTA messages are used to communicate between entities utilizing various forms
of internal representation of travel data. In the remaining parts of this chapter we
will concentrate our attention on translations involving Travel Support System
that utilizes the above defined OTA golf ontology.

To facilitate the necessary translations, we have designed a Translation Agent
(TA). Tts actions are summarized in Table 4 (it should be obvious that the TA,
or its functions could also be used directly by—or within; as a sub-agent of—the
Personal Agent to fulfill its role in User support):

As it can be see in Table 4, in its work the TA utilizes two auxiliary
structures—the Conditions and the Map:

Ontology of Golf Based on OTA Golf Messages 13

base: GolfCourse a rdfs:Class;

rdfs :subClassOf loc: OutdoorLocation ;
rdfs :comment ¢‘Used for city and geographical location description
base:id a rdf:Property;

rdfs :domain base: GolfCourse;

rdfs :range xsd:string.
base:name a rdf:Property;

rdfs :domain base: GolfCourse;

rdfs :range xsd:string.
base:contactInfo a rdf:Property;

rdfs :comment ‘‘Contact information.’’;

rdfs :domain base: GolfCourse;

rdfs :range phc:Contacts.
base:architect a rdf:Property;
rdfs :comment ‘‘Golf course desiner’’;

rdfs :domain base: GolfCourse;

rdfs :range xsd:string.
base:slope a rdf:Property;

rdfs :domain base: GolfCourse;

rdfs :range xsd:integer.
base:availCaddy a rdf:Property;

rdfs :domain base: GolfCourse;

rdfs :range xsd:boolean.
base:permCart a rdf:Property;
rdfs :comment ¢‘Information if personal carts are permitted’’

rdfs :domain base: GolfCourse;

rdfs :range xsd:boolean.
base:yardage a rdf:Property;

rdfs :domain base: GolfCourse;

rdfs :range xsd:float .
base:singlesConfirmed a rdf:Property;

rdfs :domain base: GolfCourse;

rdfs :range xsd:boolean.
base: metalSpikes a rdf:Property;

rdfs :domain base: GolfCourse;

rdfs :range xsd:boolean.
base: grass a rdf:Property;

rdfs :domain base: GolfCourse;

rdfs :range xsd:string;

D]

Fig. 4. Golf Course concept; proposed GolfCourse class

— The Conditions structure contains list of objects of the class Condition and
has the form:

class Condition implements jade.content.Concept

{
String name_; /xname of the feature (e.g. ‘‘Architect’’)x/
boolean required ; /*is given criterion is required?x/
String valueString; /* wvalue (e.g. ‘‘Jan Kowalski’ ’)x/
String operation_; /xoperationx*/

}

Class Condition is used to specify criteria of a requested golf course (criteria
based on the OTA GolfCourseSearchR(@) message). This structure is used to
generate the SPARQL query to be executed on the Jena repository.

— The Map is a structure from the T'SS. In the Golf sub-system it is used to
specify details of the question regarding golf course availability. Map contains
the list of objects of the class MapFEntry and has the form:

class MapEntry implements jade.content.Concept

{

14 A. Cieglik, M. Ganzha, M. Paprzycki

base: GolfCourseTeeTime a rdfs:Class;

base: golfCourselD a rdf:Property;
rdfs :domain base: GolfCourseTeeTime ;
rdfs:range xsd:string.
base:amount a rdf:Property;
rdfs :domain base: GolfCourseTeeTime ;
rdfs :range xsd:float.
base:currencyCode a rdf:Property;
rdfs :domain base: GolfCourseTeeTime ;
rdfs:range xsd:string.
base:startDate a rdf:Property;
rdfs :comment ‘‘Information about date and time in
format yyyy:MM:dd T’ HH:mm:ss ’’;
rdfs :domain base: GolfCourseTeeTime ;
rdfs:range xsd:string.
base:endDate a rdf:Property;
rdfs :comment ‘‘Information about date and time in
format yyyy:MM:dd T’ HH:mm:ss ’’;
rdfs :domain base: GolfCourseTeeTime ;
rdfs:range xsd:string.
base: maxPrice a rdf:Property;
rdfs :domain base: GolfCourseTeeTime ;
rdfs:range xsd:float.
base:numberOfHoles a rdf:Property;
rdfs :domain base: GolfCourseTeeTime ;
rdfs :range xsd:integer.
base:numberOfTimes a rdf:Property;
rdfs :domain base: GolfCourseTeeTime ;
rdfs :range xsd:integer.
base:fee a rdf:Property;
rdfs :domain base: GolfCourseTeeTime ;
rdfs:range fee:Fee.

Fig. 5. Golf Course Tee Time concept; proposed GolfCourseTeeTime

private String key; /*name of parameter (e.g.
private String value; /xvalue of parameter(e.g.

Table 4. TA actions depending on received messages

class

"golfCourseld")x*/
"AW313") %/

Message TA Actions

message TA_translate_from_ OTA-|TA translates the OTAGolfCourseSearchRQ

GolfCourseSearchRQ XML message to the structure Conditions

message TA translate from OTA-|TA translates the OTA GolfCourseSeachRS

GolfCourseSearchRS XML message to the list of instances of the Golf-
Course ontology.

message TA translate from OTA-|TA translates the OTAGolfCourseAvailRS XML

GolfCourseAvailRS message to the list of instances of the GolfCourse-
TeeTime ontology

message TA_ translate_to_ OTAGolf-|TA translates the instances of the GolfCourse

CourseSearchRS ontology to the OTAGolfCourseSearchRS XML
message.

message TA translate to OTAGolf-| TA translates the structure Map to the OTAGolf-

CourseAvail RQ CourseAvailRQ XML message

message Close_system__ action TA finishes its activity

Ontology of Golf Based on OTA Golf Messages 15

GolfCourseTeeTime
startDate | String
maxPrice | Float
endDate | String
numberOfTimesl Integer
gaifCourselD | String

expreDate | String

effectiveDate I String
Discounts

Description

discounts | Instance*
description | Instance*
price I Instance I Price

discountsfiescription®\price

Price
fareAmount | Float
Description taxinclusive | Boolean
Discounts | | name | String amount | Float
nreateDatel Str\ng totalAmount Float
tax |Instance’ FareTax

rode /urr \iax‘

DiscountTypes Currency FareTax

/S

OTADIscountTypes| |IATADIscountTypes

Fig. 6. Golf Course Tee Time concept; graphical representation

Classes Conditions, Condition, Map and MapFEntry extend class jade.con-
tent.Concept and are part of the GolfCourse concept.

16 A. Cieglik, M. Ganzha, M. Paprzycki

base: Price a rdfs:Class;

rdfs :comment ‘‘Description of a price
base:amount a rdf:Property;

rdfs :domain base: Price;

rdfs :range xsd:float .
base:taxInclusive a rdf:Property;

rdfs :domain base: Price;

rdfs:range xsd:boolean.
base:totalAmount a rdf:Property;

rdfs :domain base: Price;

rdfs:range xsd:double;

rdfs:comment ‘‘Total amount (taxes incl.)’
base:fareAmount a rdf:Property;

rdfs :domain base: Price;

rdfs:range xsd:double;

rdfs:comment ‘‘Fare amount (taxes excluded)’’
base:tax a rdf:Property;

rdfs :domain base: Price;

rdfs:range tax:FareTax;

rdfs :comment ‘‘Information about taxes
base:curr a rdf:Property;

rdfs :domain base: Price;

rdfs:range cur:Currency;

rdfs :comment ‘‘The currency information.

D]

)

D]

[

Fig. 7. Price concept; proposed Price class

5.1 Implementing message translations

To be able to complete translations summarized in Table 4, the TA utilizes
classes generated by the Castor [24] and the Jastor [18] software. Let us look
into their utilization in some detail.

Utilization of Castor. Castor is an Open Source data binding framework
for Java. Its Source Code Generator creates a set of Java classes which repre-
sents an object model for an XMLSchema, and its input file is an XSD file.
We used Castor to generate classes for all six OTA messages (see Table 2).
Furthermore, Castor generates classes, not only for messages but also for their
attributes. For instance let us consider a snippet of the XMLSchema file for the
OTA _GolfCourseSearchR (@) message:

<?xml version="1.0" encoding="UTF-8"7>
<xs:schema xmlns:xs="http://www.w3.0org /2001 /XMLSchema"
xmlns="http://www. opentravel .org/OTA/2003/05"
targetNamespace="http: //www.opentravel .org/OTA/2003/05"
<...appropriate headers come here...>
<xs:annotation>
<xs:documentation xml:lang="en"> </xs:documentation>
</xs:annotation>
<xs:element name="OTA _GolfCourseSearchRQ">
<xs:annotation>
<xs:documentation xml:lang="en"> </xs:documentation>
</xs:annotation>
<xs:complexType>
<xs:sequence>
<xs:element name="Criteria">
<xs:complexType>
<xs:sequence
<xs:element name="Criterion" maxOccurs="99">

Ontology of Golf Based on OTA Golf Messages 17

<xs:complexType>
<xs:attributeGroup ref="CriteriaGroup" />
</xs:complexType>
</xs:element>
</xs:sequence>
<...>
</xs:schema>

Here, within the OTA_ GolfCourseSearchR () message there is a list of Criterion,
which is an attribute that has reference to the CriteriaGroup. Now, part of the
XMLSchema file for the CriteriaGroup has the form:

<xs:attributeGroup name="CriteriaGroup">

<...appropriate headers come here...>

<xs:attribute name="Name" type="StringLengthlto32" use="required">
</xs:attribute>

<xs:attribute name="Value" type="StringLengthltol6" use="required">
</xs:attribute>

<xs:attribute name="Required" type="xs:boolean" use="required">
</xs:attribute>

<xs:attribute name="Operation" type="StringLengthltol6" use="optional">
</xs:attribute>
</xs:attributeGroup>

Taking this as an input, Castor generates a class for the Criterion with methods
get and set. The resulting class would have the following form (fragment):

public class Criterion implements java.io.Serializable {
/xx A code representing the criterion on which to filter x/
private java.lang.String _name;
/x* The value of the criterion x/
private java.lang.String value;
/x*x A flag establishing if this criterion
must be met (value |teztit{Yes}) x/
private boolean _required;
/* keeps track of state for field: required x/
private boolean has required;
/*xOther operations to be used as the filter (e.g. GT, LT, etc.). x/
private java.lang.String _operation;
//— Constructors —/
public Criterion() {
super ();
Y //— golfCourse.translations .castor.Criterion ()
//— Methods —/
/*@return the value of field ’'name’. x/
public java.lang.String getName ()

return this._ name;
Y //—— java.lang.String getName ()
/*@return the value of field ’operation '. x/
public java.lang.String getOperation ()

return this. operation;
Y //—— java.lang.String getOperation ()
/* @return the wvalue of field ’‘required ’. */
public boolean getRequired ()
{
return this. required;
} //—— boolean getRequired()
/* @Qreturn the value of field ’wvalue . *

public java.lang.String getValue()

return this. value;
Y //~— java.lang.String getValue()

18 A. Cieglik, M. Ganzha, M. Paprzycki

/*Method hasRequired x/
public boolean hasRequired()

{
return this. has_required;
} //—— boolean hasRequired()
private java.lang.String _operation;

//
//— Constructors —/

public Criterion() {
super ();
} //— golfCourse.translations .castor.Criterion ()

/)~ Methods —/

A — %
VEE

* @return the wvalue of field ’name
*/

public java.lang.String getName ()

{
return this. name;
Y //—— java.lang.String getName()

VEE

* @return the value of field ’operation
*/

public java.lang.String getOperation ()

’

s

return this. operation;
} //— java.lang. String getOperation()

/%

* @return the wvalue of field ’required ’.
*

public boolean getRequired ()

{

return this. required;
} //— boolean getRequired()
VEE
* @return the wvalue of field ’value ’ .
*/
public java.lang.String getValue()
{
return this. value;
} //—— java.lang.String getValue()
VEE
* Method hasRequired
*/

public boolean hasRequired()

{
return this. has required;
} //— boolean hasRequired()

In the class generated for the OTA _ GolfCourseSearchR@Q there are methods
to get and set used to obtain and specify list of Criteria:

public class OTA _GolfCourseSearchRQ implements java.io.Serializable {

.

* Field criteria
*/

private golfCourse.translations.castor.Criteria _criteria;

Ontology of Golf Based on OTA Golf Messages 19

VT

* Returns the wvalue of field ’criteria
*

* @return the wvalue of field ’criteria
*

public golfCourse.translations.castor.Criteria getCriteria ()

{
return this. criteria;
} //— golfCourse.translations .castor. Criteria getCriteria ()

Ve
* Sets the wvalue of field ’criteria
*
* @param criteria the value of field ’criteria
*/

public void setCriteria(golfCourse.translations.castor.Criteria criteria)

{
this. criteria = criteria;
Y //—— woid setCriteria(golfCourse.translations .castor.Criteria)

’

’

’

3

All requested classes generated by Castor have method marshal and static
method unmarshal used to convert Java classes to XML and to transform that
XML back into Java code. Specifically, method marshal converts an instance of
a class to XML. Note that by using the method marshal we can transform only
instances of a class, not the class itself. In the process we instantiate (or obtain
from a factory or from another instance-producing mechanism) that class to give
it a specific form. Next, we populate fields of that instance with the actual data.
Obviously that instance is unique; it has the same structure as other instances
of the same class, but contains distinctive data. For example, when we want to
create the XML file from the OTA _GolfCourseSearchR() message, we have two
classes: TA _GolfCourseSearchR(Q) and Criterion. We must create instances of
these classes and insert data into them. Here, we present only an example of
utilization of the marshall method.

\\ create instance of OTA GolfCourseSearchRQ class
OTA _GolfCourseSearchRQ ota = new OTA _GolfCourseSearchRQ();
\\ set data to this instance

\\ create instance of Criteria

Criteria criteria = new Criteria ();

\\ put data from list of structure Condtion to Criteria
for(Iterator iter = conditions.getAllConditions(); iter.hasNext();)

{

Condition condition = (Condition)iter .next();
\\create instance of class Criterion
Criterion criterion = new Criterion();

criterion .setName(condition.getName ());
criterion.setOperation(condition.getOperation
criterion.setRequired(condition.getRequired ()
criterion.setValue(condition.getValueString ())
criteria.addCriterion (criterion);

)
?;

}

\\ put instance of Criteria to instance of class OTA GolfCourseSearchRQ;
ota.setCriteria(criteria);

}

Afterwards, we can convert these instances to XML:
/*put values to OTA (object of class OTA GolfCourseSearchRQ)x/

Writer writer = new StringWriter ();

20 A. Cieglik, M. Ganzha, M. Paprzycki

try { /* convert object to stream (XML text)x/
ota.marshal (writer);

}
catch(MarshalException e) {...}
catch(ValidationException e) {...}

And we get the following XML:

<?xml version="1.0" encoding="UTF-8"7>
<OTA _GolfCourseSearchRQ xmlIns="http://www.opentravel.org/OTA/2003/05"
xmlns:xsi="http: //www.w3.o0org /2001 /XMLSchema—instance"
xsi:schemaLocation=
"http://www.opentravel.org/OTA/2003/05_OTA GolfCourseSearchRQ. xsd"
EchoToken="54321"
TimeStamp="2003—-11—-12T10:30:00"
Target="Production" Version="1.001"
SequenceNmbr="2432"
PrimaryLangID="en" ID="FL4902"
DetailResponse="true">
<Criteria>
<Criterion Name="Architect" Value=‘‘Robert Jones’’ Required="false" />
<Criterion Name="Slope" Value="110"
Required="true" Operation="LessThan" />
</Criteria>
</OTA _GolfCourseSearchRQ>

On the other hand, method unmarshal converts XML to an instance of a
Java class. For example, let us assume that we want to extract information from
the OTA GolfCourseSearchR() XML message. Then the method that does it
has the following general form:

Reader reader = new StringReader (text);

try {
OTA GolfCourseSearchRQ ota = (OTA GolfCourseSearchRQ)
OTA _GolfCourseSearchRQ. unmarshal(reader);
} catch(MarshalException e) {

}: . .catch (ValidationException e) {
Here, the unmarshal method is invoked with the extracted information as
its parameter. As a result, an instance of the OTA _ GolfCourseSearchR(@ class

is created. Now, we can use the get method to get data from this class (from
XML).

Utilization of Jastor The second generator Jastor is used to generate classes
for ontologies (similarly to the way that Castor does for the XMLSchema). Next,
we can use Jastor to convert instances of these classes to instances of ontologies
and transform back instances of ontologies to objects of generated classes. Jastor
generates Java interfaces, implementations, factories and listeners for ontologies.
For instance, for the GolfCourse concept, Jastor has generated four files:

— interface GolfCourse — extends com.ibm.adtech.jastor. Thing

— interface GolfCourseListener — extends com.ibm.adtech.jastor. ThingListener
— class GolfCourselmpl — extends com.ibm.adtech.jastor. ThingImpl

— class GolfCourseFactory — extends com.ibm.adtech.jastor. ThingFactory

Ontology of Golf Based on OTA Golf Messages 21

We used Jastor to generate classes for all ontologies needed in the system:
GolfCourse, GolfCourseTeeTime, Contacts, Description, Price, Fee, Address-
Record, and OutdoorLocation.

For instance, let us consider concept GolfCourseTeeTime, which has param-
eters: golfCourseld (String), amount (float), currencyCode (String), startDate
(String), endDate (String), mazPrice (float), numberOfHoles (integer), num-
berOfTimes (integer), list of fees (Fee). For this concept, Jastor generates the
interface GolfCourseTee Time with methods get/set for properties, and the class
GolfCourseTee TimeImpl that implements this interface. Let us see a snippet of
this interface for the golfCourseld

public interface GolfCourseTeeTime extends com.ibm.adtech.jastor.Thing {

/xx Gets the ’golfCourselD ’ property value
* @return {@link java.lang.String}
* @see #golfCourselDProperty */
public java.lang.String getGolfCourselD ()
throws com.ibm.adtech. jastor.JastorException;

/xxSets the ’golfCourseID ’ property wvalue

* @param {@link java.lang.String}

* @see #golfCourselIDProperty x/

public void setGolfCourselID (java.lang.String golfCourselID)
throws com.ibm.adtech. jastor.JastorException;

VEE
* Gets the ’‘numberOfTimes’ property wvalue
x @return {@link java.math. BigInteger}

* @see F#H#numberOfTimesProperty
*
public java.math.Biglnteger getNumberOfTimes()
throws com.ibm.adtech. jastor.JastorException;

/%

* Sets the ’'numberOfTimes’ property value

* @param {@link java.math. BigInteger}
* @see #numberOfTimesProperty

*/

public void setNumberOfTimes(java.math. BigIlnteger numberOfTimes)
throws com.ibm.adtech. jastor.JastorException;

VEE

* Gets the ’currencyCode’ property value
* @return {@link java.lang.String}
* @see #currencyCodeProperty

*/

public java.lang.String getCurrencyCode()
throws com.ibm.adtech. jastor.JastorException;

VEE
* Sets the ’currencyCode’ property value
* @param {@link java.lang.String}

* @see F#HcurrencyCodeProperty

*

public void setCurrencyCode (java.lang.String currencyCode)
throws com.ibm.adtech. jastor.JastorException;

/%

* Gets the ’amount’ property value

* @return {@link java.lang.Float}
* @see #amountProperty

*

/

public java.lang.Float getAmount ()
throws com.ibm.adtech. jastor.JastorException;

22 A. Cieglik, M. Ganzha, M. Paprzycki

/%

* Sets the ’‘amount’ property value

* @param {@link java.lang.Float}
* @see FH#amountProperty

*

/

public void setAmount(java.lang.Float amount)
throws com.ibm.adtech. jastor.JastorException;

/%

* Gets the ’'numberOfHoles’ property value

* @return {@link java.math. Biginteger}
* @see #numberOfHolesProperty

*/

public java.math.BigInteger getNumberOfHoles ()
throws com.ibm.adtech. jastor.JastorException;

VEE

* Sets the ’‘numberOfHoles’ property wvalue

* @param {@link java.math. Biginteger}
* @see #numberOfHolesProperty

*/

public void setNumberOfHoles (java.math. BigIlnteger numberOfHoles)
throws com.ibm.adtech. jastor.JastorException;

/%

* Gets the 'numberOfGolfers’ property wvalue
x @return {@link java.math. BigInteger}
* @see #numberOfGolfersProperty

*/

public java.math.BigInteger getNumberOfGolfers ()
throws com.ibm.adtech. jastor.JastorException;

/%

* Sets the ’'numberOfGolfers’ property wvalue
* @param {@link java.math. Biginteger}
* @see #numberOfGolfersProperty

*/

public void setNumberOfGolfers(java.math. BigInteger numberOfGolfers)
throws com.ibm.adtech. jastor.JastorException;

VEE

* Gets the ’'maxzPrice’ property wvalue

x @return {@link java.lang.Float}
* @see #mazxPriceProperty

*/

public java.lang.Float getMaxPrice()
throws com.ibm.adtech. jastor.JastorException;

/%

* Sets the ’'maxzPrice’ property wvalue

* @param {@link java.lang.Float}
* @see #mazxPriceProperty

*

/

public void setMaxPrice(java.lang.Float maxPrice)
throws com.ibm.adtech. jastor.JastorException;

/%

* Gets the ’startDate’ property wvalue

* @return {@link java.lang.String}
* @see #startDateProperty

*/

public java.lang.String getStartDate()
throws com.ibm.adtech. jastor.JastorException;

VEE
* Sets the ’startDate’ property wvalue
* @param {@link java.lang.String}

* @see #startDateProperty

Ontology of Golf Based on OTA Golf Messages 23

*/
public void setStartDate (java.lang.String startDate)
throws com.ibm.adtech. jastor.JastorException;

/%

* Gets the ’endDate’ property value

* @return {@link java.lang.String}
* @see #endDateProperty

*/

public java.lang.String getEndDate()
throws com.ibm.adtech. jastor.JastorException;

VEE

* Sets the ’endDate’ property value

* @param {@link java.lang.String}
* @see #endDateProperty

*/

public void setEndDate(java.lang.String endDate)
throws com.ibm.adtech. jastor.JastorException;

VEE

* Get an Iterator the ’'fee’ property wvalues. This Iteartor
* may be wused to remowve all such wvalues.

x @return {@link java.wutil.Iterator} of {@link
x com.ibm.adtech.jastor . Thing}

* @see #feeProperty

public java.util.Iterator getFee()

throws com.ibm.adtech. jastor.JastorException;

VEE
* Adds a value for the ’fee’ property
* @param The {@link com.ibm.adtech.jastor.Thing} to add

* @see #feeProperty

*

void addFee(com.ibm.adtech. jastor.Thing fee)
throws com.ibm.adtech. jastor.JastorException;

/%

* Adds an anonymous wvalue for the ’fee’ property

* @return The anoymous {@link com.ibm.adtech.jastor . Thing} created
* @see #feeProperty

*/

public com.ibm.adtech. jastor.Thing addFee()
throws com.ibm.adtech. jastor.JastorException;

VT
* Adds a value for the ’fee’ property. This
* method is equivalent constructing a new instance of
x {@link com.ibm.adtech.jastor.Thing} with the factory
x and calling addFee(com.ibm.adtech.jastor . Thing fee)
The resource argument have rdf:type
*http 2/ /www.w3. org/2000/01/rdf—schema#Resource.
* That is , this method
* should not be used as a shortcut for creating mew objects in the model.

* @param The {@link om.hp.hpl.jena.rdf.model. Resource} to add
* @see #feeProperty
*/

public com.ibm.adtech. jastor.Thing addFee(
com.hp.hpl.jena.rdf.model. Resource resource)
throws com.ibm.adtech. jastor.JastorException;

Jxx

* Removes a wvalue for the ’fee’ property. This method should not
* be tnvoked while iterator through values.

xIn that case, the remowve() method of the Iterator

* itself should be wused.

* @param The {@link com.ibm.adtech.jastor.Thing} to remowve

24 A. Cieglik, M. Ganzha, M. Paprzycki

* @see #feeProperty

*/

public void removeFee(com.ibm.adtech. jastor.Thing fee)
throws com.ibm.adtech. jastor.JastorException;

Interfaces generated by Jastor for the ontology extend the interface com.ibm.
adtech.jastor. Thing. Classes generated by Jastor extend the class com.ibm.
adtech.jastor. ThingImpl that implements the interface com.ibm.adtech.jastor.
Thing.

Work with Jastor is very similar to work with Castor. First Jastor generates
classes for the ontologies (like Castor does for XMLSchema). Next, we work with
instances of these classes. We can convert an instance of a class generated by
Jastor to an instance of an ontology (like instances of a class generated by Castor
to XML). We can also transform back instances of an ontology to instances of a
class generated by Jastor (like converting XML to instances of a class generated
by Castor). During translation the TA uses classes generated by Castor and
Jastor. Thus the TA has only to take values from the object of one class and put
it to the object of another class.

6 Concluding remarks

The aim of this chapter was three-fold. First, we have outlined our vision of
the future of the world of travel. We have argued, that it will consist of three
main groups of stakeholders, that will utilize their own ways of storing and
processing data. Therefore, for further development of this area, efforts like the
OTA messaging standardization are o particular value. We have used this as a
backdrop against which we have shown how we have reverse engineered an OTA
golf ontology out of OTA golf messages. Finally, we have presented an in-depth
description of translations that have to take place if a system is to to utilize just
proposed OTA golf ontology and at the same time utilize OTA golf messages to
communicate with other travel-related entities. Not only the general approach
was discussed, but also implementation details have been presented. We believe
that approach like the one presented here is needed also for all remaining OTA-
defined standards and we plan to proceed in this direction.

References

1. Jena—RDF persistency engine. http://jena.sourceforge.net/.

2. Open travel alliance. http://www.opentravel.org/.

3. Ota registration program. http://www.opentravel.org/MembersOnly/
RegistrationProgram.aspx.

4. Ota specifications. http://www.opentravel.org/Specifications/Default.aspx.

Sparql—RDF query language. http://www.w3.org/TR/rdf-sparql-query/.

6. Travel support system, software repositories. http://wuw.e-travel.sourceforge.

ot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.
25.

26.

Ontology of Golf Based on OTA Golf Messages 25

A. Cieslik, M. Ganzha, and M. Paprzycki. Developing open travel alliance-based
ontology of golf. In Proceedings of the 2008 WEBIST conference, 2008. to appear.
A. Cieslik, M. Ganzha, and M. Paprzycki. Utilizing open travel alliance-based
ontology of golf in an agent-based travel support system. In L. R. et. al., editor,
Artificial Intelligence and Soft Computing—ICAISC 2008, LNAI, pages 1173-1184,
Berlin, 2008. Springer.

D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

J. Fink and A. Kobsa. User modeling for personalized city tours. Artificial Intel-
ligence Review, (18):33-74, 2002.

M. Gawinecki, M. Gordon, P. Kaczmarek, and M. Paprzycki. The problem of
agent-client communication on the internet. Scalable Computing: Practice and
Ezperience, 6(1):111-123, 2005.

M. Gawinecki, M. Gordon, N. T. Nguyen, M. Paprzycki, and M. Szymczak. Rdf
demarcated resources in an agent based travel support system. In M. G. et. al.,
editor, Informatics and Effectiveness of Systems, pages 303-310, Katowice, 2005.
PTI Press.

M. Gawinecki, M. Gordon, N. T. Nguyen, M. Paprzycki, and Z. Vetulani. chapter
Ontologically Demarcated Resources in an Agent Based Travel Support System,
pages 219-240. Advanced Knowledge International, Adelaide, Australia, 2005.

M. Gawinecki, M. Kruszyk, and M. Paprzycki. Ontology-based stereotyping in a
travel support system. In Proc. of the XXI Fall Meeting of Polish Information
Processing Society, pages 73-85. PTI Press, 2005.

M. Gordon, A. Kowalski, M. Paprzycki, T. Petech, M. Szymczak, and T. Wasowicz.
Internet 2005, chapter Ontologies in a Travel Support System, pages 285-300.
Technical University of Wroclaw Press, 2005.

M. Gordon and M. Paprzycki. Designing agent based travel support system. In
ISPDC’2005:Proc. of the ISPDC 2005 Conference, pages 207-214, Los Alamitos,
CA, 2005. IEEE Computer Society Press.

J. Hagel IIT and J. F. Rayport. The coming battle for customer information.
Technical report, 1997.

http://jastor.sourceforge.net/.

A. Kobsa, J. Koenemann, and W. Pohl. Personalized hypermedia presentation
techniques for improving online customer relationships. The Knowledge Engineer-
ing Review, (16:2):111-155, 2001.

P. Maes. Agents that reduce work and information overload. Commun. ACM,
37(7):30-40, 1994.

http://www.cyc.com/.

OTA_MessageUserGuide2006V1.0, 2006.

A. F. Salam and J. Stevens, editors. chapter Utilizing Semantic Web and Soft-
ware Agents in a Travel Support System, pages 325-359. Idea Publishing Group,
Hershey, USA, 2006.

http://www.castor.org/.

M. Vukmirovic, M. Paprzycki, and M. Szymczak. Designing ontology for the open
travel alliance airline messaging specification. In M. B. et. al., editor, Proceedings of
the 2006 Information Society Multiconference, pages 101-105. Josef Stefan Institute
Press, 2006.

M. Vukmirovic, M. Szymczak, M. Ganzha, and M. Paprzycki. Utilizing ontologies
in an agent-based airline ticket auctioning system. In V. L. et. al., editor, Proceed-
ings of the 28th ITI Conference, pages 385-390, Piscatway, NJ, 2006. IEEE.

