Implementing Rule-Based Automated Price Negotiation in
an Agent System

Costin Badica
(University of Craiova, Romania
badica_costin@software.ucv.ro)
Maria Ganzha
(Systems Research Institute, Polish Academy of Science Warsaw, Poland
Elblag University of Humanities and Economy, Elblag, Poland
maria.ganzha@ibspan.waw.pl)
Marcin Paprzycki
(Systems Research Institute, Polish Academy of Science Warsaw, Poland
Warsaw School of Social Psychology, Warsaw, Poland
paprzyck@ibspan.waw.pl)

Abstract: The idea of automating e-commerce transactions attracts a lot of interest
among researchers and IT practitioners, and multi-agent systems are claimed to be
one of promising software technologies for achieving this goal. Since price negotiations
are one of crucial aspects of e-commerce transactions, in this paper we present a rule-
based implementation of automated price negotiations utilized in a multi-agent system
that models an e-commerce environment. We start by summarizing state-of-the-art in
rule-based approaches to automated negotiations. We follow with a brief description
of the conceptual architecture of our system and a simplified scenario that involves
multiple buyer agents participating in multiple English auctions performed in parallel.
A detailed discussion of the design and implementation of price negotiations, using
JADE and JESS, and presentation of sample experiments complete the paper.

Key Words: multiagent system, electronic commerce transaction, rule-based repre-
sentation

Category: 1.2.11, K.4.4, 1.2.4

1 Introduction

Progress in development of the Internet as a global e-commerce network resulted
in a shift from simple “business Web presence” to advanced use of e-commerce
technologies. As a result extra attention has been devoted to automating e-
commerce transactions ([Laudon 2004]). At the same time it is easy to see that in
existing e-commerce systems humans make most important decisions in various
activities taking place along the lifeline of any e-commerce transaction. However,
software agents are claimed to be one of the best technologies for automating
e-commerce processes [Kowalczyk and al.2002]. It is expected that intelligent
agents will be able to substantially reduce (if not eliminate) need for human
involvement in all but most crucial decisions. Following this belief, we have

undertaken a project to contribute to the development of such an agent system,
with the main goal to develop and implement—using agent tools—a large-scale
model of an e-commerce environment [Ganzha et al. 2004].

Commercial transactions can be conceptualized as consisting of four phases
(here, we slightly modify results presented in [Wooldridge 2002, Laudon 2004]):
(i) pre-contractual phase including activities like need identification, product bro-
kerage, merchant brokerage, and matchmaking; (ii) negotiation where negotia-
tion participants negotiate according to the rules of a particular price negotiation
mechanism and using their private negotiation strategies; (iii) contract ezecution
including activities like: order submission, logistics, and payment; and (iv) post-
contractual phase that includes activities like collecting managerial information
and product or service evaluation. In e-commerce information technologies are
utilized to various degree to mediate each one of these processes. Focus of this
paper is on the negotiation phase taking place within a multi-agent e-commerce
system. In this context we are particularly interested in utilizing rule-based ap-
proaches to represent and execute negotiation mechanisms and present our ap-
proach to design and implementation of flexible rule-based price negotiations.

We start our presentation with an overview of the state-of-the-art of rule-
based approaches used in automated negotiations. We follow with a brief sum-
mary of the conceptual architecture of our agent-based system, together with a
sample scenario. In the next section we discuss the design and implementation
of price negotiations, emphasizing their following aspects: (i) representation of
a particular negotiation mechanism (i.e. an English auction) using a taxonomy
of JESS rules; (ii) structure of the negotiation host—a software entity that is
responsible for management of the negotiation process; and (iii) behavior and
communication of negotiating agents: host and participants. We conclude pre-
sentation of our system by describing two experiments: (i) a simple experiment—
that highlights agent interactions and rule activations and (ii) a more complex
experiment with multiple agents and multiple parallel negotiations performed
simultaneously, which allows us to look into scalability of the implementation.
In conclusions we point to future research directions.

2 Overview of Automated and Rule-Based Negotiations

Let us start from a definition of negotiations according to [Lomuscio et al. 2002,
Jennings et al. 2001]. Negotiation is a process by which a group of agents com-
municate to try to come to a mutually acceptable agreement on some matter. It
is one of important methods for establishing agent cooperation. Understood in
this way, negotiation mechanism consists of two parts:

— negotiation protocol—convention under which negotiation operates,

— negotiation strategies—specification of the sequence actions the agent plans
to make during negotiation and that are supposed to lead to a desired out-
come.

Since we are interested in software agents, let us recall that one of their main
characteristics is autonomy. Therefore, to automate negotiation, their complete
formalization has to be developed. One of first steps toward such a formalization
is classification of negotiation scenarios and one of first attempts at achieving
this goal can be found in work of Wurman and colleagues [Wurman et al. 2001].
Here, a mathematical characterization of auction rules designed to parameter-
ize the auction design space was introduced. The proposed parametrization was
organized along three axes: i) bidding rules—stating when bids may be posted,
updated or withdrawn; ii) clearing policy—stating how the auction commands
resource allocation (including auctioned items and money) between auction par-
ticipants (this corresponds roughly to agreement making in our approach); iii)
information revealing policy—stating how and what intermediate auction infor-
mation is supplied to participating agents. This work has influenced a number
of later projects (see below) and was the foundation of the Michigan AuctionBot
project (e.g. [Wurman et al. 1998]).

In [Reeves et al. 1999] authors presented an improvement of the declarative
language, which has been originally used in the Michigan AuctionBot Project
([Wurman et al. 1998]). This language has been used to create scenarios config-
uring negotiations. Three important research questions have been addressed in
this work: (1) how can one represent information to allow automatic inference of
negotiation structures; (2) how can one automate negotiations in a way that will
closely drive a realistic automated platform (the Michigan Internet AuctionBot);
(3) how can one use auction results to form a final contract? In the language
prototype, described in [Reeves et al. 1999], authors have proposed concepts and
vocabulary to reason about several aspects of the negotiation process: (1) high-
level knowledge about alternative negotiation structures, (2) general-case rules
about auction parameters, (3) rules to map the auction parameters to a specific
auction platform (e.g. the Michigan Internet AuctionBot), and (4) special-case
rules for specific domains, including rules from potential buyers and sellers about
capabilities, constraints, and preferences. However, it should be noted that work
of Reeves and colleagues was primarily focused on general contract forming,
rather then price negotiations.

In another continuation of work originated in [Wurman et al. 1998], expe-
riences gained during the Michigan Internet AuctionBot project were used in
design and implementation of a new rule-based scripting language (AB3D) for
expressing auction mechanisms [Lochner and Wellman 2004]. According to its
authors, AB3D allows initialization of auction parameters, definition of rules for
triggering auction events, declaration of user variables and definition of rules

for controlling bid admissibility. The latest version of AB3D implementation is
available for download at [AB3D]. It has to be noted that, at this stage of devel-
opment, the proposed language does not seem to have a declarative semantics,
has not been standardized, and its only specification is its implementation and
the description found in [Lochner and Wellman 2004].

In our work we follow a rule-based framework for enforcing specific nego-
tiation mechanisms introduced in ([Bartolini et al. 2005, Bartolini et al. 2002]).
First, we have to point out that in these papers we find a slightly different un-
derstanding of the term “negotiation mechanism.” There, this term denotes what
above has been specified as the negotiation protocol. In their work, authors of
[Bartolini et al. 2005, Bartolini et al. 2002], present a complete framework for
implementing portable agent negotiations that consists of: (1) negotiation in-
frastructure, (2) generic negotiation protocol, and (3) taxonomy of declarative
rules. The negotiation infrastructure defines roles of negotiation participants and
of a host. Participants exchange proposals within a “negotiation locale” managed
by the host. The generic negotiation protocol defines three phases of a negotia-
tion: admission, exchange of proposals and formation of an agreement, in terms
of how, when and what types of messages should be exchanged between the
host and negotiation participants. Negotiation rules are used for enforcing the
negotiation mechanism. Rules are organized into a taxonomy: rules for partici-
pants admission to negotiations, rules for checking validity of proposals, rules for
protocol enforcement, rules for updating the negotiation status and informing
participants, rules for agreement formation and rules for controlling the nego-
tiation termination. Unfortunately, the proposed approach was implemented in
a very restricted and rigid way and it is difficult to envision this demonstrator
system as a starting point of an implementation of a truly generic price negotia-
tions environment. It is the aim of this paper to show an alternative design and
implementation of a modified version of this approach.

The proposal for formalizing negotiations introduced in [Tamma et al. 2002]
goes beyond the framework of [Bartolini et al. 2005, Bartolini et al. 2002]. Its
authors suggest usage of an ontology-based approach to expressing negotia-
tion protocols. Specifically, whenever an agent is admitted to negotiation it is
to obtain a specification of the negotiation rules in terms of a shared ontol-
ogy. In some sense, the negotiation template proposed by [Bartolini et al. 2005,
Bartolini et al. 2002] and used by our implementation (see [Badica et al. 2005d])
is a “simplified” negotiation ontology and the participants must be able to “un-
derstand” slots defined in the template. This approach has been exemplified with
a sample scenario and taken further in [Tamma et al. 2005] by investigating how
the ontology can be used to tune the negotiation strategy of participating agents.
However, paper [Tamma et al. 2002] contains neither implementation details,
nor experimental results. Furthermore, we were not able to obtain a complete

version of the ontology proposed in the paper.

As mentioned above, the negotiation mechanism consists not only of the ne-
gotiation protocol, but also of the negotiation strategy. In [Lomuscio et al. 2002]
authors presented an interesting overview of issues related to negotiation strate-
gies. The main goal of this discussion was to identify possible parameters that
can be used to classify negotiation mechanisms. As a result of such classification,
it was possible to provide a conceptual framework within which protocols and
strategies for negotiation could be classified and reasoned about.

Another group of approaches to address issues related to defining agent
strategies was based on defeasible logic. First, a formal executable approach
for defining the strategy of agents participating in negotiations using defeasible
logic programs was reported in [Dumas et al 2002] and [Governatori et al. 2001].
An English auction and bargaining with multiple parties were used as an illus-
tration. Here, sets of rules for describing strategies of participating agents were
presented. While paper [Governatori et al. 2001] contains no implementation de-
tails and no experimental results; both these papers influenced other projects.

In [Skylogiannis et al. 2004] a preliminary implementation of a system of
agents (building on the architecture introduced in [Dumas et al 2002]) that ne-
gotiate using strategies expressed in defeasible logic was described. The imple-
mentation is demonstrated with a bargaining scenario involving one buyer and
one seller agent. The buyer strategy is defined by a defeasible logic program.
Furthermore, defeasible logic programs expressed courteous logic programs pro-
posed in [Reeves et al. 1999] and yet supported efficient reasoning, which sug-
gest that they might be the appropriate representation formalism of negotiation
strategies. Interestingly, the proposed approach used a defeasible logic engine—
DR-DEVICE that was implemented by translating defeasible rules into JESS
rules. It should be mentioned, that our analysis of available tools also resulted
in selecting JESS as the rule engine.

Finally, let us mention two more projects related to utilization of rule-based
mechanisms in agent negotiations. The CONSENSUS system that enables agents
to engage in combined negotiations was presented in [Benyoucef et al. 2002].
CONSENSUS allows agents to negotiate different complementary items on sep-
arate servers on behalf of human users. Each CONSENSUS agent uses a rule
base partitioned into: i) basic rules that determine the negotiation protocol, ii)
strategy rules that determine the negotiation strategy, and iii) coordination rules
that determine the knowledge for assuring that either all of the complementary
items or none are purchased. Note that in CONSENSUS the rule-based approach
is taken beyond mechanism and strategy representation to capture also coordi-
nation knowledge. While this work supports general usefulness of rule-based
approach to negotiations, it lacks a rule-based representation of the negotiation
mechanism and thus is somewhat limited in applicability.

Another interesting work is the open environment for automated negotiations
specifically targeted auctions—auction reference model (ARM), and its asso-
ciated declarative auction specification language (DAL); see, [Rolli et al. 2005,
Rolli and Eberhart 2005]. It should be noted that, while not explicitly using
rules, a DAL specification actually models the flow of an auction using a rule-
based approach. DAL constructs comprise: views, validations, transitions and
agreement generators, where views are analogous to visibility rules, validations
are analogous to validity and protocol enforcement rules, transitions are analo-
gous to update rules and agreement generators are analogous to agreement for-
mation and negotiation life-cycle rules. The proposed approach is quite interest-
ing; however, it is also very tightly linked to SQL (it uses SQL statements embed-
ded in the representation). While SQL is declarative in nature, it is tightly linked
to a relational implementation, which reduces flexibility of the proposed method.

Overall, while there is a large body of work devoted to automatic price nego-
tiations arising in the context of agent systems, none of them seems to be fully
satisfactory. Therefore our aim is to modify and extend work of Bartolini, Jen-
nings and Preist ([Bartolini et al. 2005, Bartolini et al. 2002]) in the direction of
flexibility and robustness. Before we present details of our design and implemen-
tation of price negotiations, let us start from an overview of our model system.

3 System Architecture Overview

Conceptually, our system models a distributed marketplace in which agents per-
form functions typically observed in e-commerce ([Ganzha et al. 2004]). There
are two “sides” of commerce conceptualized in our design. On the one hand, e-
shops are represented by shop and seller agents, while on the other, product buy-
ers are represented by client and buyer agents. In Figure 1 we present Use Case
diagram of the complete system. Outside bounds of the system we can see a User-
Client who attempts at buying product(s) and a User-Seller who tries to sell
products in her e-store. Let us now briefly summarize the most important agents
appearing in the system and their functionalities (for a complete discussion of
the system see [Badici et al. 2005¢, Badica et al. 2005e, Badica et al. 20051]).
User-Client is represented by the Client Agent (CA). The CA is completely
autonomous and as soon as the desire to purchase product P is communicated
by the User-Client, it will work without supervision until either P is purchased
or, due to the market circumstances (e.g. prices are to high), purchase is aban-
doned. The CA communicates with the Client Information Center (CIC) agent
which stores complete information which e-shops sell which products. The CA
utilizes its trust assessment of each e-store to select these that it will interact
with [Badica et al. 2006c]. For each selected store, the CA delegates a single
Buyer Agent (BA) with a mission to get involved in price negotiations and if

|C|ient Information Center - CIC

Requesting Product
information Registration
% CciC
< _’@
Buying Client Seller side &
Shop Decision
- Sale finalization Making
Organization
of buying
Trust information i Selling

process
<<include>=7 Shop
L Creation
Shop
Gatekeeper
Preparing
negotiation
Warehouse

<2if1c|ude>>

Client side

Client Decision
Making

v

Info about
Buyer Seller quantity of a
product
User-Client User-Seller

Figure 1: Use Case diagram of the proposed agent-based e-commerce system

successful, possibly attempt at making a purchase—in our system successful
price negotiations result in a product reservation for a specific time period; after
which products that have not been actually purchased are returned to the pool
of products available for sale. Since multiple BAs representing the same CA can
win price negotiations (at separate e-stores) and report to the C'A conditions
of possible transaction, it is the C'A that decides if either of available offers is
good enough to make a purchase. In the system we have designed, Buyer Agents
can either migrate to the negotiation host or be created locally on the request
of the CA (for more information about agent mobility see [Badica et al. 20051]).
Overall, BAs can participate in price negotiations only if the Gatekeeper Agent

(GA) allows this. This time it is the GA that utilizes trust information to evalu-
ate if a given BA should be admitted (e.g. BAs that win price negotiations but
do not make a purchase may be barred from subsequent negotiations; for more
information about trust management see [Badicd et al. 2006¢]). The GA is one
of agents that represent the e-store and is created by the Shop Agent (SA). The
SA is the “central manager” of the e-shop. Facilitating the selling process, the
SA utilizes the GA, as well as a Warehouse Agent (WA) that is responsible for
inventory and reservation management; and a number of Seller Agents (SeA)
that negotiate price with admitted BAs.

In our experiments, reported in this paper, we consider a simplified scenario
that involves a single Shop Agent and n Client Agents CA;, 1 < i < n. The
SA is selling m products P = {1,2,...,m}. We assume that each client agent
CA;, 1 <i<mn,is seeking a set P; C P of products (we therefore restrict our
attention to the case where all sought products are available through the SA).
The SA is using m Seller Agents SeA;, 1 < j < m and each SeA; is responsible
for selling a single product j. Each C'A; is using buyer agents BA;; to purchase
products from the set P;. Each BA;; is responsible for negotiating and buying
exactly one product £ € P;, 1 < ¢ < n. To attempt at making a purchase
Buyer Agents BA;;, migrate to the SA and engage in negotiations (here we omit
trust related issues—all agents are admitted; furthermore, only agent mobility
based approach is used); a BA;x, that was spawned by the Client Agent C A;,
will engage in negotiation with seller SeAy, to purchase product k. Since, in
the context of this paper, we are interested only in price negotiations, we omit
here all issues related to post-negotiation actions of the system (these have been
reported in [Badicd et al. 2005¢, Badica et al. 2005e, Bidicd et al. 2005f]). Note
that this simple scenario is sufficient for the purpose of our paper, i.e. to discuss
details of design and implementation of our rule-based system and to show how a
number of rule-based automated negotiations can be performed concurrently. In
the proposed setting, each Seller Agent SeA; plays the role of a negotiation host
defined in [Bartolini et al. 2005, Bartolini et al. 2002] (see below). As a result,
in our system, we have exactly m instances of the framework described there.
Each instance is managing a separate "negotiation locale”; while all instances are
linked to a single Shop Agent. For each instance we have one separate set of rules
together with a negotiation template that describes the negotiation mechanism
implemented by that host. Note that each seller may use a different negotiation
mechanism (e.g. a different form of an auction, or an auction characterized by
different parameters, such as the starting price or the bidding increment).

4 Design and Implementation

Let us now discuss in detail the design and the implementation of the system.
As noted above, the starting point of our work is the rule-based framework for

automated negotiation proposed in [Bartolini et al. 2005, Bartolini et al. 2002]
(and briefly described in section 2, above). In this paper we focus our attention
on the following aspects of price negotiations: (i) how rules can be utilized to
represent a negotiation mechanism (an English auction in particular); (ii) how
the negotiation host agent is structured into sub-agents; (iii) how rules are ex-
ecuted by the negotiation host in response to various messages received from
negotiation participants, (iv) how rule firing control is switched between various
sub-agents of the negotiation host, and (v) how the generic negotiation protocol
and participant agent strategies were implemented using JADE agent behaviors
and ACL message exchanges between the host and participants.

4.1 Rule-based Representation of English Auctions

Let us start our discussion by showing how rules can be utilized for represent-
ing a particular negotiation mechanism—English auction. Technically, English
auction is a single-item, first-price, open-cry, ascending auction ([Laudon 2004,
Wooldridge 2002]). In an English auction there is a single item (or a collection
of items treated as a single item) sold by a single seller, and multiple buyers
bidding against each other for buying that item. Usually, (1) there is an estab-
lished initial price, (2) a seller reservation price that must be met by the winning
bid for the item to be sold, and (3) a minimum value of the bid increment (a
new bid must be higher than the currently highest bid plus that minimal bid
increment in order to be accepted), and (4) all bids are visible to all auction
participants. There are two possible mechanisms for ending the bidding phase
of the negotiation. First, there is a total time limit for the auction; e.g. auction
will end at 13:47. This mechanism is often used in Internet-based auctions; e.g.
in eBay or Allegro. Second, there is a certain period of inactivity; e.g. in art
auctions at Sotheby’s, when the auctioneer says: “going once, going twice, sold,”
and any new bid causes the “inactivity clock” to be restarted. Since the first sce-
nario involves so called “sniping” (and makes the whole process somewhat more
complicated), for the time being we have decided to follow the second approach
and defined the “time window” as the time of inactivity that causes auction to
end.

4.1.1 Negotiation template

Bartolini, Jennings and Preist [Bartolini et al. 2005, Bartolini et al. 2002] define
the negotiation template as a set of parameters and constraints of a given ne-
gotiation. An example of such a constraint in the case of an English auction
is the minimum value of the bid increment (a constant during a given English
auction). In Table 1 we summarize all values that parameterize our approach to

Table 1: English auction parameters

Parameter Visibility

Initial price Public
Minimum value of the bid increment|Public

Period of inactivity Public

Seller reservation price Private to Seller

the English auction as well as their visibility (for instance the Seller reservation
price is visible only to the Seller Agent).

In the process of preparing negotiations (see Figure 1) the BA obtains from
the GA the template that contains all necessary information. Such a (buyer)
template, represented in XML, could look like this:

<?xml version="1.0" encoding="IS0-8859-1" 7> <MyTemplate>
<NegotiationType>SingleItemEnglishAuction</NegotiationType>
<BidIncrement>5.0</BidIncrement>
<CurrentlyHighestBid>0.0</CurrentlyHighestBid>
<TerminationWindow>300</TerminationWindow>

</MyTemplate>

It specifies that the negotiation type is: SingleltemEnglishAuction, bid in-
crement is 5.0 units, starting bid is going to be 0.0 units and the window of
inactivity that will terminate an auction is 300 seconds. The template that is
sent by the GA to the SeA, when commanding it to start negotiations, has the
same form, contains the same information as that sent to the BA, plus the Seller
reservation price.

4.1.2 Negotiation rules

Negotiation rules are organized into a taxonomy and are used for enforcing a par-
ticular negotiation mechanism. We have rules for checking the validity of propos-
als, rules for protocol enforcement, rules for updating negotiation status and in-
forming participants, rules for agreement formation and rules for controlling the
negotiation termination ([Bartolini et al. 2005, Bartolini et al. 2002]). Whenever
a new proposal is submitted by a participant, the proposal goes through a pro-
cessing flow that first, checks its syntactic compliance with the negotiation rules
and then utilizes its semantics in the negotiation process.

Let us illustrate the approach by presenting two sample rules in a pseudo-
code notation that is independent of any implementation-level language.

POSTING-BUYER rule specifies that a buyer participant can post a proposal
whenever there is an offer already posted by a seller participant. A proposal is
called wvalid if it is syntactically well-formed and semantically compliant with the
negotiation template. A proposal is called posted if it can be posted depending
on the type of proposals that were previously posted by other participants (i.e.
the negotiation reached a state that allows the proposal to be posted).

POSTING-BUYER
IF
There is a valid proposal Pr of a participant with role buyer A
There is an active proposal of a participant with role seller
THEN
Proposal Pr is posted

IMPROVEMENT-BUYER rule specifies that a buyer participant must post
a proposal with a price that overbids the currently highest bid by at least a given
increment (that is a parameter of the auction and specified in the template). Note
that a proposal that passed the improvement tests is called active.
IMPROVEMENT-BUYER
IF
Bid increment is Inc A
Currently highest bid is B A
Proposal Pr with price P was posted by a participant with role buyer A
P> B+ Inc

THEN
Proposal Pr is active

In our approach, constraints describing English auctions were encoded as a
modularized set of JESS rules (see below). These rules were then used to ini-
tialize rule inference engines encapsulated by the negotiation host. Let us now
discuss in more details how price negotiations were actually implemented.

4.2 The Negotiation Host—Seller agent

ProposalValidator

- mProposalvalidator

jade:core:Agent
Y

MegotiationTerminator

- mMegatiationTerminator
- myAgent

MegotiationLocale

- mMegaotiationLocale

- myAgent

HostAgent

- myAgent

- mAgreementiaker

AgreementMaker

- mvAgent

- mProtocolEnforcer

ProtocolEnforcer

- minformationUpdater

InformationUpdater
JiN

Figure 2: The class diagram showing the structure of the Seller agent

Note, first, that in our system the negotiation host originally defined in
[Bartolini et al. 2005, Bartolini et al. 2002] became a Seller agent. It means that
the Seller plays two roles, that of a negotiator and that of the negotiation man-
ager. This decision may seem inappropriate in the context of e-commerce—to
avoid any suspicion of inappropriate behavior, the host should be independent.
However, this is not a problem since we are developing a model system only.
Moreover, the proposed solution is much more resource conscious (e.g. messages
do not have to be send to a separate host) and we believe it fits better with our
e-commerce model—as the negotiation manager is part of the store infrastruc-
ture, it is natural for it to have a tight relation with the seller-negotiator. Finally,
we will try to distinguish the two roles by referring to the host when considering
management of price negotiations and Seller agent, when talking about specific
actions of the Seller.

All agents in the system have been implemented as ordinary JADE agents
(i.e. they extend the base class for all JADE agents — jade.core. Agent). The
host encapsulates the negotiation controlling sub-agents that are implemented
as ordinary Java classes (in what follows, we shall call them host components;
see Figure 2): Proposal Validator, Protocol Enforcer, Information Updater, Ne-
gotiation Terminator and Agreement Maker. Therefore, each host component is
an ordinary member object within the host, defining a handle() method that is
activated whenever a given component must react to check the compliance of a
submitted proposal with the category of rules it is responsible for.

Enforcement of a negotiation mechanism involves a complex activation pat-
tern of negotiation rules. For the case of the English auction, the activation
pattern is: i) the Proposal Validator is activated when a new proposal is submit-
ted (see below); if the proposal is not valid then it is rejected; ii) if the proposal is
valid then the Proposal Enforceris activated (by the host — see below); if protocol
enforcement rules are violated then the proposal is rejected; iii) if the proposal
is compliant with protocol enforcement rules then it becomes accepted and the
Information Updater is activated — its role is to update negotiation status and
to inform negotiation participants. Separately, iv) the Negotiation Terminator
is activated when a timing event occurs — e.g. if there was no activity for time
longer than that specified by the “period of inactivity” parameter; furthermore, if
negotiation termination is detected then the Agreement Maker is triggered— its
role is to check if the agreement can be formed (e.g. if the Seller reservation price
was satisfied), or if no actual agreement was reached and to inform interested
parties about the situation.

To achieve its functions the host encapsulates also two member objects rep-
resenting the Negotiation locale and the Blackboard (see Figure 2): Negotiation
Locale and Blackboard “boxes”. The Negotiation Locale object holds the negoti-
ation template and the list of participant agents that were admitted to a given

negotiation (obtained from the Gatekeeper agent—see above) and involves Java-
based parts of the host. The Blackboard object encapsulates a JESS rule engine
(class jess.Rete) that is initialized with negotiation rules. Whenever the category
of negotiation rules is checked by one of the host components, the rule engine
is activated (i.e. its ezecuteCommand() method with the (run) command line
given as an input parameter, is activated).

Handler methods of host components are activated by invoking the action()
method that is present in the implementation of host behaviors. Each handler
method delegates the call to the responsible component. In other words, the
message received from the BA is stored in a local variable and then passed as a
parameter among host components, as needed. Finally, that component activates
the rule engine via the myAgent member object that points to the parent host
agent; as described in the previous paragraph (see also Figure 2).

Note that each category of negotiation rules is part of a separate JESS mod-
ule. For simplicity, we have decided to name JESS modules comprising a given
category of JESS rules similarly to the host component that is responsible for
enforcing them (e.g. rules POSTING-BUYER and IMPROVEMENT-BUYER
are part of the Protocol Enforcer JESS module). As a result, rules of a given
module are fired by activating handle() methods of appropriate components of
the negotiation host.

Note also that for representing valid, posted and active proposals we utilize
JESS templates; however, their definitions are not included below, only sample
JESS rules that use them are shown.

Let us now show how the above presented rules POSTING-BUYER and
IMPROVEMENT-BUYER look like when actually implemented in JESS.

(defrule Protocol-Enforcer::POSTING-BUYER
?fact <- (Protocol-Enforcer::valid-proposal
(proposal-id ?id)
(submitter 7s)
(role Buyer)
(auctionGoods ?a)
(price ?p)
(proposal-time 7t)
)
(Blackboard::active-proposal
(proposal-id ?id2)
(submitter 7s2)
(role Seller)
(auctionGoods ?a)
(price ?p2)
(proposal-time 7t2)
)
=>
(assert
(Protocol-Enforcer: :posted-proposal
(proposal-id ?id)
(submitter ?s)
(role Buyer)
(auctionGoods 7a)
(price ?p)
(proposal-time 7t)

)
(retract ?fact)

)

(defrule Protocol-Enforcer::IMPROVEMENT-BUYER
(Blackboard: :negotiation
(negotiation-id ?7)
(negotiation-type ?)
(auctionGoods ?a)
(seller-proposal ?)
(bid-increment ?bid-inc)
(termination-window ?)
(currently-highest-bid ?h)
(buyer ?)
)
?fact <- (Protocol-Enforcer::posted-proposal
(proposal-id ?id)
(submitter ?s)
(role ?r)
(auctionGoods 7a)
(price ?p)
(proposal-time 7t)
)
(test (>= ?p (+ ?h ?bid-inc)))

(assert
(Blackboard: :active-proposal
(proposal-id ?id)
(submitter 7?s)
(role ?r)
(auctionGoods ?a)
(price ?p)
(proposal-time ?t)
)
)

(retract ?7fact)

4.3 Controlling Rule Execution

Within each host we use a single JESS rule engine that is shared by all of its com-
ponents, rather then implementing each host component as a separate rule en-
gine. The advantage is that we now have a single rule engine per negotiation host
rather than 6 engines as suggested in [Bartolini et al. 2005, Bartolini et al. 2002].
Furthermore, this means that in the case of m price negotiations taking place
concurrently, we will utilize m instances of the JESS rule engine, instead of 6m
instances necessary in [Bartolini et al. 2005, Bartolini et al. 2002].

While the solution of sharing a single JESS engine by all host components
had the advantage of optimizing the implementation, it also posed some extra
problems in controlling how rules are executed. We therefore decided to utilize
JESS modules for partitioning rules and facts managed by the rule engine. There
is one JESS module for storing the blackboard facts and a separate JESS module
for storing rules used by each host component (see previous section for example
of JESS rules residing in specific JESS module).

Blackboard facts are instances of JESS deftemplate statements and they rep-
resent: (1) the negotiation template; (2) the active proposal that was validated by

the Proposal Validator and the Proposal Enforcer components; (3) Seller reser-
vation price (not visible to other participants); (4) negotiation participants; (5)
the negotiation agreement that is eventually generated at the end of a negoti-
ation; (6) the information digest that is visible to negotiation participants; (7)
the period of inactivity; and (8) the value of the current highest bid. Note that
these facts have been currently adapted to represent English auctions (and will
be appropriately modified to represent other price negotiation mechanisms).

Each JESS module is controlled by the corresponding host component. When-
ever the component handles a message, it activates the rules for enforcing an
appropriate negotiation mechanism. Taking into account that all rules pertinent
to a given host are stored internally in a single JESS rule-base (attached to a
single JESS rule engine), the JESS focus statement is used to control the firing of
rules located in a specific focus module. In this way JESS facility for partitioning
the rule-base into disjoint JESS modules proves very useful to efficiently control
separate activation of each category of negotiation rules.

Note also that JADE behaviors are scheduled for execution in a non-preemp-
tive way and this implies that firings of rule categories are correctly serialized
and thus they do not cause any synchronization problems when accessing JESS
facts stored by the shared JESS engine. This fact also supports our decision to
utilize a single rule engine for each host.

4.4 Generic Negotiation Protocol and Agent Behaviors

The generic negotiation protocol states a minimal set of constraints on the se-
quences of messages exchanged between the host and participants during a ne-
gotiation. This generic protocol is further specialized using the negotiation rules,
so we can conceptually consider that a negotiation mechanism is defined by the
following “equation:” negotiation mechanism = generic negotiation protocol +
negotiation rules.

According to [Bartolini et al. 2005, Bartolini et al. 2002], the negotiation
host coordinates the interaction of negotiation participants by managing a ne-
gotiation process that consists of three phases: (1) admission, (2) proposal sub-
mission and (3) agreement formation. As noted above, in our system the ad-
mission phase has been removed from the negotiation process itself. Instead
of a sub-agent (component) of a host that dealt with admission, we created
a full-blown Gatekeeper agent that is responsible for this and other functions
[Badica et al. 2005¢, Badica et al. 2005e]). When a Buyer agent is accepted to
the negotiation, it receives from the Gatekeeper agent the negotiation protocol
and the template and, after receiving strategy from its Client agent, awaits start
of negotiations. Buyer agents enter the phase of submitting proposals after they
were dispatched to the negotiation. Specifically, Buyer agents that were granted
admission are “simultaneously” released by the Seller that sends them a start

message and they—possibly immediately—start submitting bids according to
their private strategies [Ganzha et al. 2004].

The generic negotiation protocol states also that a participant will be notified
by the negotiation host if its proposal was either accepted (with an ACL AC-
CEPT-PROPOSAL) or rejected (with an ACL REJECT-PROPOSAL). In the
case when a proposal was accepted, the negotiation state is updated by the host
(for example, in an English auction, the currently highest bid is appropriately
increased) and the remaining participants are notified accordingly with ACL
INFORM messages about the new state of the negotiation.

Finally, the agreement formation phase can be triggered at any time during
the negotiation. When the agreement formation rules signal that an agreement
was reached, the protocol states that all participants involved in the agreement
will be notified by the host with ACL INFORM messages. The agreement for-
mation (based on the “time of inactivity” parameter) check is implemented as a
timer task (class java.util. TimerTask) that is executed in the background thread
of a java.util. Timer object.

Let us now illustrate the above processes by a sample message exchange
that occurs during a negotiation when a Buyer agent submits a proposal that is
accepted by the Seller agent.

Let us assume that Buyer agent By is bidding for product 1 and Seller agent
S1 is selling product 1. Note that in our implementation, name of the specific
product does not need to be a part of the bidding process and BAs are released
to a specific negotiation that involves a specific product (it is the GA that is
responsible for assuring that only BAs interested in product 1 participate in
negotiation that involves product 1). If Buyer agent B1; wants to post a bid of
20.0 units, its message will have the following form:

(PROPOSE
:sender (agent-identifier

:name B11_QToshiba:1099/JADE

:addresses (sequence http://Toshiba:7778/acc))

:receiver (set (agent-identifier :name S1@Toshiba:1099/JADE))

:content "B1l_QToshiba:1099/JADE},Buyer?%20.0"
:language PlainText :ontology Proposal)

The negotiation host first checks if this bid is valid and compliant with pro-
tocol enforcement rules (see above, section 4.1.2). Validity assumes checking the
contents of the message—the :content field. In this particular case the contents
indicates the name of the submitter—B;;, its role—Buyer and the bid value—
20.0. Assuming that the value of the currently highest bid is 11.0 and that the
minimum bid increment is 5.0, the bid is and accepted. The Seller agent S;
response will look as follows:

(ACCEPT-PROPOSAL
:sender (agent-identifier

:name S1@Toshiba:1099/JADE
:addresses (sequence http://Toshiba:7778/acc))

:receiver (set (agent-identifier :name B11_QToshiba:1099/JADE))
:content "S1%SingleItemEnglishAuction’%1%5.0%20.0%90000%S1%B11_@Toshiba:1099/JADE"
:language PlainText :ontology AcceptUpdatedTemplate)

As a result, bid submitted by the Buyer agent Bj; becomes the current
highest bid. This information is posted within the Blackboard and send to all
remaining Buyer agents (to Ba; in this particular case) as an ACL INFORM
message that looks like this:

(INFORM
:sender (agent-identifier

:name S1@Toshiba:1099/JADE

:addresses (sequence http://Toshiba:7778/acc))

:receiver (set (agent-identifier :name B21_QToshiba:1099/JADE))

:content "S1%SingleItemEnglishAuction%1%5.0%20.0%90000%S1%B11_@Toshiba:1099/JADE"
:language PlainText :ontology InformUpdatedTemplate)

4.5 Participants Strategy

Strategies of participant agents are defined in accordance with the negotiation
mechanism (i.e. English auctions in this particular setting). Basically, the strat-
egy defines if and when a participant should submit a proposal and what are
the values of the proposal parameters depending on various factors including:
current, status of the negotiation, values of the negotiation parameters, partici-
pant agent goals, etc. Since our main current goal is to implement a complete
agent system, with all defined functionalities, for the time being we opted for a
very simple strategy: each Buyer Agent submits a first bid immediately after it is
released to the negotiation and subsequently, whenever it gets a notification that
another participant issued a proposal that was accepted by the Seller. The value
of the bid is equal the sum of the currently highest bid and an increment value
that is private to the participant (and higher than the minimal increment). Each
participant has its own valuation of the negotiated product. If the value of the
new considered bid exceeds this value then the proposal submission is canceled
(given product became “too expensive” for a given BA). Note that in the case
of an English auction there is no particular strategy for the Seller Agent as it
plays only a passive role.

At present, agent strategies were implemented in Java as participant agent
behaviors ([JADE]). In the future we will design the system in such a way that
strategies will be flexible and dynamically loadable (possible in the rule-based
form similar to, for instance, [Dumas et al 2002, Governatori et al. 2001], or as
dynamically loadable modules, as suggested in [Ganzha et al. 2004]). This will
provide us with the required flexibility needed to easily add and tune multiple
strategies. Obviously, in practice, this form of strategy representation is going to
be required only for more involved forms of price negotiations (where utilization
of complicated strategies makes sense in the first place).

5 Experiments and Discussion

In this section we discuss two experiments performed with the above described
sample implementation. First, we consider a simple experiment involving only a
few agents with the goal of highlighting agent interactions. Second, we consider
a simple “scalability” testing experiment involving multiple agents and multiple
negotiations that run in parallel.

5.1 Experiment 1

In the first experiment we consider an e-shop that is selling 2 products, both
products have a Seller reservation price of 50 and during an English auction
require a minimum bid increment of 5. There are 2 clients C'; and Cs, each
seeking both products. Client C; has a reservation price of 52 for product 1, a
reservation price of 61 for product 2 and a bid increment of 9. Client C5 has a
reservation price of 54 for product 1, a reservation price of 63 for product 2 and
a bid increment of 11. Client C1 is using buyers B1; and Bis, while client Cs is
using buyers Bs; and Bsy. Some of the messages exchanged between agents in
this experiment are shown in Figures 3 and 4 (note that only sellers and buyers
are shown on that figure—other agents are not shown, as they do not play any
active role in price negotiations). While figures 3 and 4 show messages exchanged
between agents during negotiation, their content is not visible. Therefore we pro-
vide an explanation of message exchanges in table 2. The table header contains
buyer names together with their reservation prices and bid increments.

In table 2 we can find some interesting details. First, when buyer Bs; is about
to make its first bid, buyer B; had already submitted its first bid and that bid
was accepted. Second, the negotiation between S; and agents By; and Be; ended
without a winner. The highest accepted bid was 49 from B;; but this value is
lower than the reservation price 50 of S;. According to their strategies, none
of the participants Bi; and Bs; is able to issue a higher bid that is still lower
than their own reservation prices. Third, negotiation between So and agents By
and Bsys ended with agent Bss becoming a winner and the highest bid being 60.
Finally, note that bid 11 of buyer B2y was rejected because at the time this bid
was submitted there was already a highest bid of 9 accepted, and thus, the rule
saying that the minimum value of the bid increment is 5 was violated. However,
by the time Bsy submitted its bid, it was not aware that the other participant
Bio also posted a bid and this bid was accepted.

5.2 Experiment 2

In this experiment we considered m = 10 products and n = 12 clients seeking
all of them, i.e. P, = P for all 1 < i < 10. The auction parameters were the

nifferd@ahile: 1099/JADE - Sniffer Agent

NEIEECIC00N | -

FROFOSEAFFEO ()

FROPOSEAFTE2(0

=

ROPOSEA7763 (
ACCEPT|PROFOSALTO 109)

PROFOSEFTEE()

ACCEPT-FROPDFALITIGI(

INFORMAZFED ()

ACCERT-PROFOSALIG4} 265 3

I

o

ROPOSEN788(|)

INFORM-AEZE ()

FROFOSERIS3()

[«]

1 IHRORR: 18700 _
|| L il [B] >

Figure 3: Negotiation stage — part 1

Table 2: Explanation of message exchanges shown in figures 3 and 4

Bi1 52 9 Ba; 54 11 Bi2 61 9 Baz 63 11
request admission [request admission request admission [request admission
admission granted O|admission granted 9||admission granted 0|admission granted 0
bid 9 bid 20 bid 9 bid 11
accept bid 9 accept bid 20 accept bid 9 inform 9
inform 20 inform 29 inform 20 bid 20
bid 29 bid 40 bid 29 reject bid 11
accept bid 29 accept bid 40 accept bid 29 accept bid 20
inform 40 inform 49 inform 40 inform 29
bid 49 bid 49 bid 40
accept bid 49 inform 60 accept bid 40
inform 49
bid 60
accept bid 60 win 60
win 60

same for all auctions: reservation price 50 and minimum bid increment 5. Clients
reservation prices were randomly selected from the interval [50,72] and their bid
increments were randomly selected from the interval [7,17].

In this experiment 143 agents were created: 1 shop SA, 10 sellers SeA;,
1 < i < 10, 12 clients CA;, 1 < i < 12, and 120 buyers BA;, 1 < i < 12,
1 < k < 10, and 10 English auctions were run concurrently. One separate
JESS rule engine was also created for each English auction (therefore a total

snifferS@ahile: 1099/JADE - Sniffer Agent

Actions About
7 s 2 =]
EEEROEE D dood
Lk
| PROPOSEZ07OE(|) -
H 2] =
i =2
|| 23
: PROPOSE:0422(|)
| =a
- ACCEFT-PROPOSALIOSHSC)
: 26
| FROPOSESPEND ()
|| a7
3 ACCEPTPROPOSALI0GIO.)
i e P
i =
|| a0
| ACCEPT-PROPO$AL31342 .
INHORM:31838 (3 "
A a4z =
i a3
ACCEFTFROPOSALEGIA)
a4 >
INFORM:3 1584
- (S »
a8
| a7
FROFOSE:F2263 (.)
a8
ACCEFT-FROFPOSALZZILE o
a0 >
50
INFORM:33523
il 51 — >
WAgent: S1

Figure 4: Negotiation stage — part 2

of 10 JESS rule engines were run in parallel on a single computer). The aver-
age number of messages exchanged per negotiation was approximately 100 and
all auctions finished successfully. This means that a total of more than 1000
messages was exchanged during negotiations. While the total number of agents
and messages is still small (for instance in comparison with these reported in
[Chmiel et al. 2004]), this experiments indicates that the proposed approach has
good potential for supporting experiments on large-scale.

Figure 5 shows messages exchanged between the seller SeA; and buyers BA;,
1 <i <12 that were captured with the help of the JADE sniffer agent.

6 Conclusions and Future Work

In this paper we discussed rule-based representations of mechanisms for auto-
mated negotiation in a model multi-agent e-commerce system. Our discussion
was supplemented by providing design details and some initial experimental re-
sults obtained using our own implementation of a rule-based price automated
negotiation framework. The results support the claim that rules are a feasi-
ble and scalable technology for approaching flexible automated negotiation in
e-commerce.

» sniffer 3@ahile: 1099/JADL - Snifler Agent
Actions About

|4 MY eea H e

rhdrosteesea |)

i3

MECEFEFROFORALT (|84) »

Qe s aasen |

InEIORE |asaT
|

|

Eporosipa(_)

PROPOSESRATIL 3

-Tf.m sesrag |) ~

iy —

Figure 5: Negotiation of a seller with 12 buyers in an English auction

As future work we plan: (i) to complete re-integration of the rule-based frame-
work into our re-designed agent-based model e-commerce system; (ii) to asses
the generality of our implementation by extending it to include other price nego-
tiation mechanisms; (iii) to conceptualize representation and ways of efficient im-
plementation of multiple strategy modules; (iv) to investigate the applicability of
rule-markup languages ([RuleML]) for devising an open rule-representation of ne-
gotiation mechanisms. We will report on our progress in subsequent publications.

Acknowledgement

Work of Maria Ganzha and Marcin Paprzycki has been partially sponsored by
the Maria Curie IRG grant (project E-CAP).

Work of Costin Badica has been partially supported by the CNCSIS 94/2005
grant (project HiperProc).

References

[AB3D] AB3D Home Page. See http://ai.eecs.umich.edu/AB3D/

[Badica et al. 2006a] Badica, C., Ganzha, M., Paprzycki, M.: "Rule-Based Automated
Price Negotiation: an Overview and an Experiment”; Proc. of Int. Conf. on Artif.
Intel. and Soft Comp., ICAISC, Zakopane, Poland. Lect. Notes in Artif. Intel. 4029,
Springer, Berlin, (2006) 1050-1059.

[Badica et al. 2006b] Badica, C., Baditd, A., Ganzha, M., Iordache, A., Paprzycki,
M: "Implementing rule-based mechanisms for agent-based price negotiations”; Pro-
ceedings of the 215 Annual ACM Symposium on Applied Computing, SAC, Dijon,
France. ACM Press, New York, NY, (April 2006) 96-100.

[Badica et al. 2006c|] Badica, C., Ganzha, M., Gawinecki, M., Kobzdej, P., Paprzycki,
M.: "Toward Trust Management in an Agent-Based E-Commerce System—TInitial
Considerations”; Proceedings of the MISSI 2006 Conference, Wroclaw University
of Technlogy Press, Wroclaw, Poland, (2006) 225-236

[Badica et al. 2005a] Badica, C., Ganzha, M., Paprzycki, M., Pirvanescu, A.: ”"Combin-
ing Rule-Based and Plug-in Components in Agents for Flexible Dynamic Negotia-
tions”; M. Péchoudek, P. Petta, L.Z. Varga (eds.): Proc. of CEEMAS’05, Budapest,
Hungary; Lect. Notes in Artif. Intel. 3690, Springer, Berlin (September 2005) 555-
558.

[Badica et al. 2005b] Badica, C., Ganzha, M., Paprzycki, M., Pirvinescu, A.: "Exper-
imenting With a Multi-Agent E-Commerce Environment”; Proc, of PaCT 2005,
Krasnoyarsk, Russia. Lect. Notes in Comp. Sci. 3606, Springer, Berlin (2005) 393-
401.

[Badica et al. 2005c] Badicd, C., Ganzha, M., Paprzycki, M.: "Mobile Agents in a
Multi-Agent E-Commerce System”; Proc. of the 7t" SYNASC Conference, Tim-
igoara, Romania. IEEE Computer Society Press, Los Alamitos, CA (2005), 207-
214.

[Badica et al. 2005d] Badica, C., Badita, A., Ganzha, M., Iordache, A., Paprzycki, M.:
"Rule-Based Framework for Automated Negotiation: Initial Implementation”; A.
Adi, S. Stoutenburg, S. Tabet (eds.): Proc. RuleML, Galway, Ireland. Lect. Notes
in Comp. Sci. 3791, Springer Verlag (November 2005) 193-198.

[Badica et al. 2005¢] Badici, C., Ganzha, M., Paprzycki, M.: "UML Models of Agents
in a Multi-Agent E-Commerce System”; Proc. ICEBE, Beijing, China. IEEE Com-
puter Society Press, Los Alamitos, CA, (2005) 56-61.

[Badica et al. 2005f] Badica, C., Ganzha, M., Paprzycki, M.: "Two Approaches to Code
Mobility in an Agent-based E-commerce System”; C. Ardil (ed.): Enformatika, 7
(2005) 101-107.

[Bartolini et al. 2005] Bartolini, C., Preist, C., Jennings, N.R.: ”A Software Framework
for Automated Negotiation”; Proc. of SELMAS. Lect. Notes in Comp. Sci. 3390,
Springer, Berlin (2005) 213-235.

[Bartolini et al. 2002] Bartolini, C., Preist, C., Jennings, N.R..: ?Architecting for Reuse:
A Software Framework for Automated Negotiation”; Proc. of AOSE: Int. Workshop
on Agent-Oriented Software Engineering, Bologna, Italy. Lect. Notes in Comp. Sci.
2585, Springer, Berlin, (2002) 88-100.

[Benyoucef et al. 2002] Benyoucef, M., Alj, H., Levy, K., Keller, R.K.: A Rule-Driven
Approach for Defining the Behaviour of Negotiating Software Agents”; J.Plaice et
al. (eds.): Proc. of DCW. Lect. Notes in Comp. Sci. 2468, Springer, Berlin (2002)
165-181.

[Chmiel et al. 2004] Chmiel, K., Tomiak, D., Gawinecki, M., Karczmarek, P., Szym-
czak, Paprzycki, M.: "Testing the Efficiency of JADE Agent Platform”; Proc. of
the 3"¢ International Symposium on Parallel and Distributed Computing, Cork,
Ireland. IEEE Computer Society Press, Los Alamitos, CA, USA (2004) 49-57.

[Dumas et al 2002] Dumas, M., Governatori, G., ter Hofstede, A.H.M., Oaks, P.: 7A
Formal Approach to Negotiating Agents Development”; Electronic Commerce Re-
search and Applications, 1, 2 (Summer), Elsevier Science (2002) 193-207.

[FIPA] FIPA: Foundation for Physical Agents. See http://www.fipa.org.

[Ganzha et al. 2004] Ganzha, M., Paprzycki, M., Pirvinescu, A., Biadica, C., Abraham,
A.: ?”JADE-based Multi-Agent E-commerce Environment: Initial Implementation”;
Analele Universitatii din Timigoara, Seria Matematica-Informaticd, XLII (Fasc.
special) (2004) 79-100.

[Governatori et al. 2001] Governatori, G., Dumas, M., ter Hofstede, A.H.M., and Oaks,
P.: A formal approach to protocols and strategies for (legal) negotiation”; Henry
Prakken (ed.): Proc. of the 8*" Inter. Conf. on Artif. Intel. and Law, IAAIL, ACM
Press, (2001) 168-177.

[JADE] JADE: Java Agent Development Framework. See http://jade.cselt.it.

[Jennings et al. 2001] Jennings N. R. , Faratin P., Lomuscio A. R. , Parsons S., Sierra
C. and Wooldridge M.: Automated Negotiation: Prospects, Methods and Chal-
lenges. In: Int Journal of Group Decision and Negotiation, 2001, Keynote Paper.

[JESS] JESS: Java Expert System Shell. See http://herzberg.ca.sandia.gov/jess/.

[Kowalczyk and al.2002] Kowalczyk, R., Ulieru, M., Unland, R.: Integrating Mobile
and Intelligent Agents in Advanced E-commerce: A Survey. In: Agent Technologies,
Infrastructures, Tools, and Applications for E-Services, Proceedings NODe’2002
Agent-Related Workshops, Erfurt, Germany. LNAI 2592, Springer-Verlag, pp.295-
313, 2002.

[Laudon 2004] Laudon, K.C., Traver, C.G.: ”E-commerce. business. technology. soci-
ety” (2" ed.). Pearson Addison-Wesley, (2004).

[Lochner and Wellman 2004] Lochner, K.M., Wellman, M.P.: "Rule-Based Specifica-
tion of Auction Mechanisms”. Proc. AAMAS’04, ACM Press, New York, USA,
(2004).

[Lomuscio et al. 2002] Lomuscio, A.R., Wooldridge, M., Jennings, N.R.: "A classifica-
tion scheme for negotiation in electronic commerce”; F. Dignum, C. Sierra (Eds.):
Agent Mediated Electronic Commerce: The European AgentLink Perspective,
Lect. Notes in Comp. Sci. 1991, Springer, Berlin (2002) 19-33.

[Reeves et al. 1999] Reeves, D.M., Grosof, B.N., Wellman, M.P., and Chan, H.Y.: "To-
ward a declarative language for negotiating executable contract”; AAAI-99 Work-
shop on Artif. Intel. in Electr. Comm. AIEC, (1999).

[Rolli and Eberhart 2005] Rolli, D., Eberhart, A.: ”A Descriptive Auction Language.
Electronic Markets”; Electronic Markets — The International Journal, (2005).
[Rolli et al. 2005] Rolli, D., Luckner, S., Gimpel, A.: "An Auction Reference Model
for Describing and Running Auctions”; 7 Internationale Tagung Wirtschaftsinfor-

matik, Bamberg, Germany, (2005).

[RuleML] RuleML Initiative. See http://www.ruleml.org.

[Skylogiannis et al. 2004] Skylogiannis, T., Antoniou, G., Bassiliades, N.: "A System
for Automated Agent Negotiation with Defeasible Logic-Based Strategies — Prelim-
inary Report”; Boley, H., Antoniou, G. (eds): Proc. RuleML’04, Hiroshima, Japan.
Lect. Notes in Comp. Sci. 3323 Springer, Berlin (2004) 205-213.

[Tamma et al. 2005] Tamma, V., Phelps, S., Dickinson, I., Wooldridge, M.: "Ontologies
for Supporting Negotiation in E-Commerce”; Engineering Applications of Artificial
Intelligence, 18, Elsevier (2005) 223-238.

[Tamma et al. 2002] Tamma, V., Wooldridge, M., Dickinson, I: ”An Ontology Based
Approach to Automated Negotiation”; Proc. AMEC’02: Agent Mediated Electronic
Commerce, Lect. Notes in Artif. Intel. 2531, Springer, Berlin, (2002) 219-237.

[Wooldridge 2002] Wooldridge, M.: ?An Introduction to MultiAgent Systems”, John
Wiley & Sons, (2002).

[Wurman et al. 1998] Wurman, P.R., Wellman, M.P., Walsh, W.E.: "The Michigan
Internet AcutionBot: A Configuarable Auction Server for Human and Software
Agents”; Proc. of the Second Int. Conf. on Autonomous Agents. Agents’98, Min-
neapolis, USA. ACM Press, New York, USA, (1998) 301-308.

[Wurman et al. 2001] Wurman, P.R., Wellman, M.P., Walsh, W.E.: A Parameteriza-
tion of the Auction Design Space”; Games and Economic Behavior, 35, 1/2, (2001)
271-303.

[Wurman et al. 2002] Wurman, P.R., Wellman, M.P., Walsh, W.E.: ”Specifying Rules
for Electronic Auctions”; AI Magazine, 23, 3, (2002) 15-23.

