
Proceedings of the International Multiconference on ISSN 1896-7094
 Computer Science and Information Technology, pp. 47 – 57 © 2007 PIPS

Utilization of Software Agents and Web Services as
Transducers for Legacy Software; Case Study Based on

an SMTP Server

Michal Oglodek
Faculty of Mathematics and Information Sciences

 Warsaw University of Technology
Pl. Politechniki 1

00-661 Warsaw, Poland
moglodek@o2.pl

Maciej Gawinecki, Marcin Paprzycki
Systems Research Institute
Polish Academy of Science

ul. Newelska 6
01-447 Warsaw, Poland

Abstract. There exists a number of ways in which legacy software can be
“wrapped” to become interoperable. Two of currently more popular of them are
utilization of Web Services and software agents. The aim of this paper is to
experimentally compare efficiency of JADE implemented agents, with Web
Services, when used as transducers for an SMTP server.

Keywords: Web Services, Agent-based Computing, Transducers, Legacy
Software, Simple Mail Transfer Protocol, Efficiency.

1 Introduction

One of interesting problems in software development is how to deal with legacy
software developed using different technologies. Even if it sometimes good to keep
and application “isolated,” there is also a need for applications to communicate with
each other (be interoperable). For instance, while companies may opt to develop
their own software standards, there are at least two situations where communicating
with “other” applications is necessary. First, in the case of company-to-company
communication (e. g. when a wholesaler establishes direct link with a retailer). While
this case may be relatively easy to solve by generating a few interfaces, the second
scenario is more complicated. Nowadays, companies merge on regular basis, resulting
in merging their independently created IT support systems, as most likely the IT
system for the “new” company will not be created from scratch.

Let us also note that the question is not only how different (sub)systems can “talk
to each other,” but it is also important to consider effect that the attempted integration
will have on exposing directly internal or external access to a given application. It is
easy to envision, that security concerns (and resulting practical matters) need to be
taken into consideration (e.g. an open port needed to access an application is likely to
result in strict firewall policies). To illustrate this, in Figure 1 we present a problem

47

48 Michal Oglodek, Maciej Gawinecki, Marcin Paprzycki

brought about by an external access to a Java Application. If the company firewall
policy is very strict about open ports, the RMI (which is necessary for the external
client to communicate with the application) is not easily accessible from the outside.

Fig. 1. External access to the application using Java RMI

Here, at least the following concerns regarding direct RMI connection arise:
− firewalls blocking the RMI (company policy, users using public free Internet, or

Internet c afés could have an access problem),
− securing data transmission (sending data / man-in-the-middle attacks),
− no language / platform independence (while a Web Service can be used by clients

written in many different languages).
Nowadays, wrappers and transducers are the most popular ways of approaching

these problems. Here, a transducer is component pattern, which accepts messages
from a requesting system, translates them into the program's native communication
protocol, and passes to an application [2]. It also accepts responses, translates them
back and forwards to the requester. A wrapper, on the other hand, can “inject” code
into an application to allow it to communicate with the requester. In other words, it
can directly invoke API methods, and examine and modify data structures of the
program [2]. Both wrappers and transducers can secure (limit, authorize, etc.) access
to the remote software; extend its functionality and improve performance [4].

In this paper we explore possibilities brought about by utilization of Web Services
and software agents as transducers. Both approaches fit into this role as they use
message-oriented communication and are platform independent. Specifically, we
show how they can be used to expose access to an SMTP server. Note that transducers
are used as we do not have direct access to the server (code injection and method
invocation), and we can relay only on messaging utilizing SMTP.

We proceed as follows. In the next section we briefly introduce Web Services and
software Agents as well as discuss the scenario used in our experiments. We follow
with a head-to-head comparison of both approaches.

 Utilization Software Agents and Web Services 49

2 The scenario

The aim of this paper is to compare Web Services and software agents used as
transducers to expose an SMTP server. Here we follow the general approach proposed
in [14, 15], where we have experimented with performance of software agents in
selected scenarios. Our goal is perform an initial assessment which of the two
approaches is likely to be better to “glue applications.” Obviously, our aim is only to
establish some initial guidelines as to pros and cons of both approaches. We start our
description from introducing the SMTP protocol and its weaknesses.

2.1 Simple Mail Transfer Protocol – weak points

The Simple Mail Transfer Protocol (SMTP) is a standardized protocol for e-mail
transmission [5, 6]. It uses relatively simple, text-based communication. Its simplicity
is advantageous but results in lack of flexibility, and in security and performance
concerns. Let us look into them in some detail.

Security concerns. Sendmail is one of the first mail transfer agents utilizing the
SMTP protocol. It listens for connections using port 25. History of sendmail shows
how exposing port 25 can lead to serious vulnerabilities allowing hackers access to
the shell of the machine running the sendmail/SMTP Server [8]. Therefore, standard
security policies mandate closing port 25. Note that the SMTP-AUTH extension [7],
attempts at assuring that only authorized users are able to send messages (reducing the
spamming problem). While hosting companies require authentication, typical client
applications use simple Base64 algorithm for encrypting authentication data. This
does not protect against eavesdroppers and man-in-the middle attacks

S: 220 www.example.com ESMTP Postfix
C: HELO mydomain.com
S: 250 Hello mydomain.com
C: MAIL FROM:<sender@mydomain.com>
S: 250 Ok
C: RCPT TO:<friend@example.com>
S: 250 Ok
C: DATA
S: 354 End data with <CR><LF>.<CR><LF>
C: Subject: test message
C: From: sender@mydomain.com
C: To: friend@example.com
C:
C: Hello,
C: This is a test.
C: Goodbye.
C: .
S: 250 Ok: queued as 12345
C: QUIT
S: 221 Bye

Fig. 2. Example of SMTP communication: C is a client, S is server.

50 Michal Oglodek, Maciej Gawinecki, Marcin Paprzycki

Lack of flexibility and performance issues. Let us use Figure 2, an example of
communication between of a client and the SMTP server. Here, the client wants to
send an e-mail from the sender@mydomain.com address to the
friend@example.com. During this session client sends 182 characters to the SMPT
server and receives 132 characters back. Real content (sender and recipient addresses,
and the message body) contains only 90 characters, which means that the overhead is
204 characters (92 characters of commands, and 132 of response). While this is a
relatively small cost in the case of sending a single message to a single recipient, it
becomes substantial in the case of 1000+ recipients and large attachment, as in the
following scenario:

An accountant in a corporation needs to send salary information to all employees.
Company uses an external provider for e-mail accounts. The message contains a
long legal text as well as a few big attachments – overall, its size is about 500kB.
There are 1000 employees and each should receive customized information.

Usage of the SMTP protocol would require sending 1000 separate e-mails and would
transferr approximately 1000*500 kB = 500000 kB (around 500 MB of data).

2.2 Extending SMTP functionality with a transducer

Using a transducer it is possible to extend the SMTP server by allowing for
MailTemplate messaging. The idea is to allow client to send (to the SMTP server)
message body (in our scenario 500kB) in a form of a template (with parameter
placeholders) and a set of parameters to be inserted before the mail is actually sent.
This allows for e-mail customization as well as limits use of the network (between the
mail client and the SMTP server). In this work we compare performance of four
possible approaches to communicating with the SMTP server:

• (A1) direct SMTP communication with an external SMTP server,
• (A2) direct SMTP communication with an internal SMTP server,
• (A3) communication using the MailTemplate through a transducer realized by

Web Service deployed on the remote machine with the SMTP Server,
• (A4) communication using the MailTemplate through a transducer realized by

a software agent deployed on the remote machine with SMTP Server.

mailto:sender@mydomain.com
mailto:friend@example.com
mailto:friend@example.com
mailto:friend@example.com
mailto:sender@mydomain.com
mailto:sender@mydomain.com

 Utilization Software Agents and Web Services 51

Intranet

Server Application

Web Service
transducer

RMI

RMI

Internal Client
Application

External Client

Internal Client
Application

SOAP
over HTTP

RMI

Fig. 3. Secure external access to the application using Web Service over HTTP

The Web Service transducer is deployed on the machine running the SMTP Server,
or within the local network where the SMTP Server is located. Web Service utilizes
standard functionality of the SMTP Server through direct communication and exposes
the extended functionality to the external clients (see Figure 3). Note that the main
advantage of Web Services is conformity with most firewall policies and platform
independence. At the same time, their basic drawback is overhead introduced by use
of SOAP data structures. We will return to these issues in what follows.

The agent-based transducer (AgentReceiver), located at the SMTP server, exposes
its functionality to other agents. It uses FIPA ACL messaging to communicate with
AgentSender, which forwards user requests. In our scenario AgentSender prepares the
template, set of parameters and list of receivers; serializes them and sends it, as an
ACL message, to the AgentReceiver. AgentReceiver deserializes message, acts as a
mail-merger that prepares messages (for the SMTP server), authenticates the user and
sends messages out. Furthermore, AgentReceiver informs AgentSender whether
sending e-mails was successful. The other direction of communication mirrors this
scenario. Here, we assume that both agents reside within different platforms, and thus
utilize an agnostic communication protocol (e.g. HTTPS). Finally, note that in our
work we use JADE (Java Agent Development Framework) [9] to implement agents.

3 Comparing Web Services and software agents as transducers

When comparing the four possible approaches we consider their following features:
− broadly understood security (including authentication and authorization),
− message overhead (in the “accountant scenario”),
− flexibility (in the “accountant scenario”),
− performance,
− easiness of implementation and deployment.

52 Michal Oglodek, Maciej Gawinecki, Marcin Paprzycki

3.1 Comparing security

As specified in Section 2.1, the approaches (A1) and (A2) are not really secure. More
precisely, direct access to the SMTP server results in:

a) lack of protection against the man-in-the-middle attack,
b) lack of protection against retrieving the content of the message by sniffers,
c) lack of protection against retrieving and decrypting user name and password

(used for authentication with the SMTP server),
d) lack of conformity with most company security policies,
e) access to the local network of the remote machine.

The latter problem can be solved by closing all ports, but the port for the text-based
HTTP protocol (as most company firewall policies do). A transducer can prevent
exposing the application and the local network to direct attacks. Other problems can
be addressed by use of the secure HTTPS protocol. Note that both JADE agents and
Web Services can use HTTP and HTTPS protocols [12, 13]. The potential drawback
is that, for JADE agents, message transfer based on HTTPS is about 15% slower than
the HTTP MTP [12]. Similarly, the SSL for Web Services will generate overhead [16].
However, one could resign from using SSL to secure the entire transport, and use a
solution that provides security on the message level: the WS-Security [13].

3.2 Comparing message overhead

Both the SMTP and the Web Service generate overhead related to headers. As shown
in Figure 2, sending a single mail results in about 204 characters of overhead. In order
to establish overhead of Web Services, let us consider the following simple SMTP
transducer used for mail sending (in Figure 4). The approximate overhead of the
SOAP header request is 480 bytes.

Performance and flexibility gains come from utilization of a Web Service
transducer that implements the MailTemplate solution and is used in the scenario of
an accountant sending e-mails to employees. Here, instead of sending 500 MB of data
(+ the SMTP overhead) in the standard SMTP approach, only about 500 kB
(+parameters +SOAP overhead) of data will be sent.

Let us now consider an ACL message sent by the SenderAgent to the
ReceiverAgent (see Figure 5). As we can see, the message content is serialized and
encoded using the Base64 algorithm (used as default by JADE). The ACL Message
header contains 336 characters (non-bold text in Figure 5). Here, (the same as above)
90 characters are contained within a Java object send as a content slot of the ACL
message. Serialization of this object generates additional overhead of 415 characters.
Next, JADE applies Base64 encoding to the serialized object and as a result output
contains 756 characters. Therefore, the total overhead is 1002 characters (more than in
the case of a Web Service request).

 Utilization Software Agents and Web Services 53

POST /SmtpTransducer.asmx HTTP/1.1
Host: www.example.com
Content-Type: application/soap+xml; charset=utf-8
Content-Length: length

<?xml version="1.0" encoding="utf-8"?>
<soap12:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">
 <soap12:Body>
 <SendE-mail xmlns="http://tempuri.org/">
 <from>sender@mydomain.com</from>
 <to>friend@mydomain.com</to>
 <subject>test message</subject>
 <body>Hello,
 This is a test.
 Goodbye.
 </body>
 </SendE-mail>
 </soap12:Body>
</soap12:Envelope>

Fig. 4. Example of SOAP Communication for MailTemplate request

(REQUEST
 :sender (agent-identifier
 :name SmtpSender@abc123:1099/JADE
 :addresses (sequence http://192.168.1.100:7778/acc)
 :X-JADE-agent-classname oglodek.project.SmtpSenderAgent)
 :receiver (set (agent-identifier
 :name SmtpReceiver@corn:1999/JADE
 :addresses (sequence http://corn.bunge.pl:7778/acc)))
 :X-JADE-Encoding Base64
 :content " Base64 ENCODED VALUE ”

Fig. 5. Example of ACL Message for MailTemplate request sent from the Sender-
Agent to the ReceiverAgent

Table below summarizes the overhead of each considered approach:

Direct access (A1
and A2)

Access via Web
Service (A3)

Access via JADE
agent (A4)

C haracters sent by the client 182 570 1092

Size of actual content 90 90 90

Overhead 204 480 1002

54 Michal Oglodek, Maciej Gawinecki, Marcin Paprzycki

3.3 Note on (im)possible further flexibility

Note that the MailTemplate approach could benefits from an assumption that the
MailTemplate is not be a data structure, but a mobile executable code, generating a set
of messages to be sent. Such mobile code would be carried by the AgentReceiver ,
migrating from a client machine to the SMTP server. This would allow configuring
mechanism for generating templates at runtime. However, this solution has a set of
problems of its own:
− mobile agent could be dangerous for a target hosting platform (see concept of

malicious code, summarized in [10]),
− overhead of sending template and an agent itself higher than in cases A3 and A4,
− required homogeneity of origin and target platforms; as a result (for the time

being) AgentReceiver would be able to migrate only within JADE platform [11].
Therefore, we have decided to not to pursue this possible solution further.

3.4 Comparing performance

We examined performance of all four approaches by comparing time of sending
e-mail messages of size s to n recipients (one e-mail per recipient). To be precise, by
the size of a message we mean:

a) in approaches with direct access to the SMTP server (A1 and A2): the
average size of an e-mail message body (without header)

b) in approaches with the MailTemplate (A3 and A4): size of the message body
(with parameter placeholders), plus vector of parameters, without header.

In approaches A1 and A2, n messages were send to the SMTP server, whereas in
approaches A3 and A4, a single MessageTemplate was send to the transducer, which
translated it into n requests to the SMTP server. Under these assumptions we have
performed two tests. First, we studied the relation between completion time and
number of recipients (n), assuming constant message size (s ~10 kB). Second, the
number of recipients was fixed (n = 1000), while the relation between sending time
and message size (s) was evaluated. Both tests were performed on the system
consisting of two PC’s: (1) PC with 2 GHz Intel Core Duo; 2.0 GB RAM; running
Microsoft Windows XP; it hosted client applications (in approaches A1-A3) or the
AgentSender ; (2) 4200+ AMD Athlon 64 X2 Dual; 4.0 GB RAM; running Microsoft
Windows Server 2003 R2 64 bit; it hosted the ESMPT Mail Service (version
6.0.3790.3959) and transducers (in A3 and A4): the AgentReceiver or the WebService.
The WebService was implemented in C# .NET under Microsoft .NET Framework 2.0
and was hosted by the IIS 7 web server. Agents have been implemented in JDK 1.6,
and run within JADE 3.5 framework. Finally, both machines were located in a LAN
with 1 Mbit/s download and 512 kbit/s upload bandwidths. The results of the tests are
presented on Figures 6 and 7, respectively.

 Utilization Software Agents and Web Services 55

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100 110

Number of recipents

T
im

e
(s

)

Direct External SMTP Direct Internal SMTP WebService Agent

Number of
recipients

Direct
External
SMTP

Direct
Internal
SMTP

Web Service Agent

1 1.04 0.14 2.13 3.02
10 11.21 1.18 3.21 4.35
20 24.38 2.23 4.42 5.53
50 60.92 5.56 7.58 8.77
100 128.89 10.98 13.64 15.21

Fig. 6. Relation between time (seconds) and number of recipients

We can observe a very large difference between results obtained with the external
SMTP server (A1) and the remaining approaches. This was to be expected as the
external SMTP server requires sending n messages across the network. The situation
changes with the internal SMTP server, where messages are generated “internally”
and no extra time is used sending them (over the network) to the SMTP server. As a
result this solution is the fastest. It is however similar to utilization of transducers,
where the message template is send once to the remote server and the transducer
communicates with the SMTP server locally. The only difference is time used by
SOAP / ACL messaging, and overhead of transducer processing messages. We can
also notice that the Web Service (A3) is slightly more efficient than using software
agents (A4). This can be explained by the bigger overhead of an ACL message request
comparing to a SOAP request. Technology used for implementation of Web Service
(.NET on IIS 7.0) versus Agents and HTTP MTP (Java with internal engine acting as
the HTTP server) can also have some impact on performance.

56 Michal Oglodek, Maciej Gawinecki, Marcin Paprzycki

0

50

100

150

200

250

0 5 10 15

Message size (kB)

T
im

e
(s

)

Direct External SMTP Direct Internal SMTP WebService Agent

Message size
(kB)

Direct
External
SMTP

Direct
Internal
SMTP

Web Service Agent

1 59.42 4.67 15.12 17.43
5 76.38 6.53 20.41 22.21
10 127.65 9.28 25.32 27.15
15 226.21 12.43 31.26 33.13

Fig. 7. Relation between time (seconds) and message size.

3.5 Implementation and deployment issues

Most of modern development tools allow easy use of Web Services. For example
Visual Studio can generate proxy class for a given URL of a Web Service so that one
does not need to deal with SOAP message creation. Similarly, all serialization /
deserialization of objects in a SOAP message will be done automatically by the proxy
class. Hence the developer that has no knowledge about SOAP headers or SMTP
commands can start working with them without any additional learning required. In
the case of the SMTP server one needs to know only the specification of the SMTP
protocol – commands, syntax, order of commands, etc. At the same time
implementing software agents with JADE, especially behavioral programming,
implementing interaction protocols and developing communication ontologies, can be
somewhat more difficult for users that are working with agents for the first time.

4. Conclusions

In this paper we have compared two transducer-based approaches to wrapping legacy
software. One utilized Web Services, while the other was based on software agents.

 Utilization Software Agents and Web Services 57

We have fund that (a) utilization of either of the transducers can have clear positive
effects on performance, flexibility and security of legacy software; and (b) Web
Services seem to be able to handle messaging somewhat more efficiently, by
introducing less overhead. The next step that should be undertaken is extending the
breadth of scenarios under which the performance comparison is undertaken.

References

1. M. Gawinecki, M. Kruszyk, M.Paprzycki, M.Ganzha (2007) Pitfalls of agent system deve-
lopment o the basis of a Travel Support System, In Proceedings of the BIS 2007 Conference
(to appear), http://agentlab.swps.edu.pl/agent_papers/BIS_2007.pdf

2. Micheal R. Genesereth, Steven P. Ketchpel (1994), Software Agents, In Communication of
the ACM, Vol. 37, No. 7 July.
http://citeseer.ist.psu.edu/genesereth94software.html

3. S.Srivatsa Sivan and R. Venkatavaradan (2005), Design Guidelines: Building Web Service
Wrappers for an XML-based System,
http://www.devx.com/enterprise/Article/27882

4. Design Patterns, Elements of Reusable Object-Oriented Software, Erich Gamma, Richard
Helm, Ralph Johnson, John Vlissides , Addison Wesley.

5. RFC 821, http://www.faqs.org/ftp/rfc/pdf/rfc821.txt.pdf
6. RFC 1123, http://www.faqs.org/ftp/rfc/pdf/rfc1123.txt.pdf
7. RFC 2554, http://www.faqs.org/ftp/rfc/pdf/rfc2554.txt.pdf
8. Hacking: The Art of Exploitation, 2nd Edition, Jon Erickson.
9. JADE (Java Agent DEvelopment Framework), http://jade.tilab.com/
10. Łukasz Nitschke, Marcin Paprzycki, Michał Ren, Mobile Agent Security,
http://agentlab.swps.edu.pl/agent_papers/NATO_2006.pdf
11. Inter-Platform Mobility Project, https://tao.uab.cat/ipmp/
12. Jose A. Exposito, Joan Ametller, Sergi Robles , How to use the new HTTP MTP with JADE,
http://jade.tilab.com/doc/tutorials/HTTP_UAB.html
13. Mike Lehman Securing Web Services,
http://www.oracle.com/technology/oramag/oracle/05jan/o15web.html
14. K. Chmiel, M. Gawinecki, P. Kaczmarek, M. Szymczak, M. Paprzycki: Efficiency of JADE
Agent Platform, Scientific Programming, vol. 13, no. 2, 2005, 159-172.
15. K. Chmiel, D. Tomiak, M. Gawinecki, P. Kaczmarek, M. Szymczak, M. Paprzycki: Testing
the Efficiency of JADE Agent Platform, In: Proceedings of the ISPDC 2004 Conference, IEEE
Computer Society Press, Los Alamitos, CA, 49-57.
16. Use of SSL Creates Performance Overhead for Browsers,
http://support.microsoft.com/kb/15003

http://support.microsoft.com/kb/15003
http://support.microsoft.com/kb/15003
http://support.microsoft.com/kb/15003
https://tao.uab.cat/ipmp/
https://tao.uab.cat/ipmp/
https://tao.uab.cat/ipmp/
http://agentlab.swps.edu.pl/agent_papers/NATO_2006.pdf
http://agentlab.swps.edu.pl/agent_papers/NATO_2006.pdf
http://agentlab.swps.edu.pl/agent_papers/NATO_2006.pdf
http://jade.tilab.com/
http://jade.tilab.com/
http://jade.tilab.com/
http://www.faqs.org/ftp/rfc/pdf/rfc2554.txt.pdf
http://www.faqs.org/ftp/rfc/pdf/rfc2554.txt.pdf
http://www.faqs.org/ftp/rfc/pdf/rfc2554.txt.pdf
http://www.devx.com/enterprise/Article/27882
http://www.devx.com/enterprise/Article/27882
http://www.devx.com/enterprise/Article/27882

