
Developing a Model Agent-based Airline Ticket
Auctioning System

Mladenka Vukmirovic1, Maria Ganzha2, and Marcin Paprzycki3

1 Montenegro Airlines, Industry Development Department
Beogradska 10, 81000 Podgorica, Serbia and Montenegro

mladenka.vukmirovic@mgx.cg.yu
2 Elbląg University of Humanities and Economy,

ul. Lotnicza 2, 82-300 Elbląg, Poland
ganzha@euh-e.edu.pl

3 Computer Science Institute, SWPS, 03-815 Warsaw, Poland
marcin.paprzycki@swps.edu.pl

Abstract. Large body of recent work has been devoted to multi-agent systems
utilized in e-commerce scenarios. In particular, autonomous software agents par-
ticipating in auctions have attracted a lot of attention. Interestingly, most of these
studies involve purely virtual scenarios. In an initial attempt to fill this gap we
discuss a model agent-based e-commerce system modified to serve as an airline
ticket auctioning system. Here, the implications of forcing agents to obey actual
rules that govern ticket sales are discussed and illustrated by UML-formalized
depictions of agents, their relations and functionalities.

1 Introduction

Broadly understood e-commerce is often viewed as a paradigmatic application area of
software agents [11]. In this context software agents are tofacilitate higher quality in-
formation, personalized recommendation, decision support, knowledge discovery etc.
When developed and implemented, agent systems are to be, among others, adaptive,
proactive and accessible from a broad variety of devices [13]. Such systems are also to
deal autonomously with information overload (e.g. large number of e-shops offering the
same product under slightly different conditions—price, delivery, warranty etc.). In this
context, modern agent environments (such as JADE [9]) can support implementation of
quasi-realistic model e-commerce scenarios [8]. Moreover, advances in auction theory
have produced a general methodology for describing price negotiations [6, 7]. Combi-
nation of these factors gives new impetus to research on automating e-commerce and
autonomous software agents are cited as a potentially fruitful way of approaching this
goal [10].

Unfortunately, the picture is far from perfect. While thereexist a large number of
attempts at developing agent-based systems, they are mostly very small-scale demon-
strator systems—later described in academic publications. In the meantime, some ap-
plications utilize the agent metaphor, but not existing agent tools and environments.
Separately, it is almost impossible to find out if agent systems exist in the industry;
e.g. establish the true role of the Concordia agent system within the Mitsubishi Corp.

2

Finally, and this is very important in the context of the current paper, most of work
devoted to either automatic price negotiations (see [6, 7],or multi-agent e-commerce
systems (see [8, 10, 11]) involves “virtual realities.” In other words, auctions are con-
ceived, for instance, as a general case of an English auctionused to negotiate prices of
productP, while for multi-agent systems buyer agents are send by users U1 andU2 to
e-shopsS1, S2, . . . ,Sn to buy productsP1 andP2. As a result, proposed systems do not
have much to do with real-life. When virtual agents compete to purchase non-existent
products, their behaviors are also virtual, as they are not grounded in any possible actual
application.

The aim of this paper is to make an initial attempt at bridgingthe gap between theory
and practice. We start with a model agent system presented in[1–4, 8]. In this system
we have modeled a distributed marketplace that hosts e-shops and allows e-buyers to
visit them and purchase products. Buyers have an option to negotiate with representa-
tives of e-stores to choose the shop from which to make a purchase. Conversely, shops
may be approached by multiple buyers and through auction-type mechanisms, have an
option to choose the “best?’ potential buyer. Furthermore,this system attempts at rem-
edying the well-known conflict between agent intelligence and mobility. By precisely
delineating which agent modules have to be transferred and when should this happen
we were able to reduce network utilization. Since this system is theoretical in the above
described sense, in this paper we will discuss its modification required to apply it to a
more realistic airline ticket auctioning scenario. What wefound particularly interest-
ing was that this could have been achieved with only relatively minimal changes in the
overall system.

Before proceeding let us make explicit some of the assumptions made in our current
work. (1) In the original system e-stores weredriverswithin the marketplace — buyers
could purchaseonlyproducts that were available for sale through existing e-stores. This
being the case, we have decided, in the initial phase of our work, to accept this approach
(while planning to remove this limitation in the future). Therefore, currently multiple
“travel agencies” sell tickets to a variety of popular destinations. They obey basic rules
of airline ticket trading, but it is only “them” who decide which tickets to sell. In other
words, if the user of the system would like to fly from Hattiesburg, MS to Tri Cities,
WA, she may not find such a connection. At the same time, connections between Ams-
terdam and Detroit, MI may be sold by every e-store. While this assumption may seem
limiting, we would like to point out that success of priceline.com (and other auction
places that sell airline tickets) makes our model scenario “realistic enough.” (2) We are
still utilizing theCIC agent that stores both “yellow-pages” (what?) and “white-pages”
(who?) information as the approach to matchmaking [12]. However, we see interesting
extensions of its role in the system (e.g. by allowing it to study market trends and sell
this information to interested sellers — see below). (3) In all situations where it was
possible we utilize existing structures that have been described in [1–4, 8] and inter-
ested readers should consult these sources for further details. This being the case we
can focus current paper on modifications introduced by grounding the system in the
real-life rules that govern the air-ticket sales.

3

2 Description of System

<<include>>

Reservation Agent

Client

Creation of
Reservation FlightOffer Agent

Admitting to
negotiations

Shop Decision
Making

Creation List
of Offers

Shop

Looking for
information

GDS

PNR
processing

Buying

 Client Decision
Making

User−Client

Looking for info
"where to buy"

Registration

CIC

Communication

Buyer

User−Merchant

Notification
about result Selling

Seller

Gatekeeper

Creation List of
Participants

Gathering
statistics

Negotiations

Information center

Purchasing side Seller side

Fig. 1. Use case diagram

We describe our system through its UML-based formalizations. We start with the
use case diagram depicted in Figure 1. Here we can see all agents present in the sys-
tem, their interactions and their interactions with external systems — e.g. the Global
Distribution System (GDS). This system stores all information about flights, num-
ber of available seats, booking classes and so on. In reality, there exist several GDS
servers available to airlines to offer their inventory for sale; e.g. AMADEUS, SABRE,
Worldspan, Galileo etc. In our work we base our description on the actual function-
ing of the AMADEUS GDS through which more than 200 airlines offer their services.
Note, however, that replacing AMADEUS with a different server, or adding additional
external servers to the system would not require substantial changes in its functioning
and in functioning of its constituent agents (e.g. theFlight Offer Agentwould only have
to communicate with multiple external servers).

We can distinguish three major parts of the system. (1) Theinformation center area
where white-page and yellow-page data is stored and serviced by theCIC agent. Let
us note that every request for which theCIC had to send a “negative answer” (i.e. no
such travel is available for sale) is stored. As indicated above, in the future this data
can be utilized (purchased) byShop Agents to decide which tickets should be offered
to address existing and/or changing market-demand. (2) Thepurchasing sidewhere
agents and activities representing user-buyer are depicted, and (3) theseller sidewhere
the same is presented for the user-merchant. In the modified system, in comparison with
the original one [4], we not only have the externalGDSbut also two new agents: the
FlightOffer Agentand theReservation Agent. Together they replace the functionalities
provided in the original design by theWarehouse Agent. Let us now describe in more

4

detail these agents that are substantially different or new to the system (in comparison
with these described in [4, 8]).

2.1 Shop Agent

Shop Agent(SA) acts as the representative of the user-merchant and, at thesame, time
as aControl Centerof the Sale Process. In the current stage of conceptualization of
the system we follow the path selected in the original e-commerce system, where the
user-merchant was specifying the input provided to the system. Thus we assume that
user-merchant inputs all necessary data: departure airport code, destination airport code,
booking class, fare basis code, initial rule by which seats are to be offered for sale. For
example, if user-seller wants to sell out seats that would have been offered for Advanced
Purchase Excursion Fare—APEX, but time limit for this fare has expired, user-seller
would specify the number and the period for which he wants to offer seats on flights.
This info is used in availability check and price retrieval.The period is needed to set
bounds within which flights will be offered. Optionally user-merchant can specify flight
number as well. This narrows down the availability list and may be necessary in the case
when there is more then one flight per day between two given destinations. Furthermore
this can be used also in the case when, for instance, user-merchant wants to offer seats
on morning flights, but not on the evening flights. So, she specifies which flight num-
ber(s) can be chosen from. In this way, all other possible flight numbers are excluded.

In the near future we plan to extend functionality of our system. In particularly,
while at present our system acts only as a “distributor” of a predefined set of tickets,
we would like to modify it in such way that theSAcould start distributing (acquire and
put for auction) not only what user-merchant wants to sell but also what user-clients
are looking for. Observe that we have already introduced a mechanism to facilitate this
goal. Since theCIC agent stores information about all unfulfilled user-clientqueries, an
SAwill be able to obtain an access to this data (e.g. purchase it), analyze it and decide
that, for instance, there is a growing need for tickets between Warsaw and Delhi and
offer these for sale.

Statechart diagram of theShop agentis depicted in Figure 2. At first theSAcreates
theGatekeeper Agent(which plays here exactly the same role as described in [4]) and
waits for a user-merchant order. After receiving such an order theSAcreatesFlightOf-
fer Agent, which communicates with theGDSand gathers needed information to create
list of offers for theShop Agent(oneFlightOffer Agentis created for each route to be
serviced and exists for as long as tickets for a given route are sold by theSA). List of
offers includes information about every itinerary: data aboutboth (inbound and out-
bound) flight numbers, number of seats and class of service for both flights etc. On the
basis of this listShop AgentcreatesSeller Agent(s) (one for every itinerary), introduce
them to theGatekeeperand enters a complex state calledControl Center. Note here
thatSeller Agents play exactly the same role as that described in [4]; they areto interact
with incomingBuyer Agents and through some form of price negotiation mechanism
(e.g. an auction) select theBuyer that may purchase the ticket. In theControl Center
state theSAis listening to itsSeller Agent(s). After receiving a message from one of the
Seller Agents theShop Agentacts depending on content of that message.

5

[there are seats] do / send(GA,Se_ID)

Introducing

[else] exit / send(CIC,itinerary)
do / create(Se_ID)

Creation/Updating of a Seller Agent

do / Analysis of situation

MCDM

Waiting for a FlightOffer Agent answer

entry / transform(ordering)

Creation FlightOffer Agent

[no more seats]

[empty answer]

Notification of User−Merchant

Waiting for a User−Merchant order

do / send(CIC, GA’s address)

Creation of a GA

[no further action]

do / kill(Se_ID)

Cleaning

Control Center

no more working SeA

time is overCounting time

do / create(ID_RA)

Creation of a Reservation Agent

msgSeA

do / add to KB

Registering result

[reservation impossible]
exit / kill(ID_RA)
do / send(BA,refuse)

Refusing

[done]

msgRA

Sale finalization

msgBA [confirm]

[reject]

Cancelling sale

Listening

[new template]

do / send(GA,new template,Se_ID)

Changing the template of negotiations

[order for FOA]do / send(FOA,itinerary)

Requests FlighOffer Agent

Fig. 2. Shop Agent statechart diagram

1. If theSellerinforms about a winner of price negotiations theShop Agentwaits for
the correspondingBuyer Agentto confirm that it plans to actually buy the ticket.
Here, we have to stress, that in our general e-commerce modelit is natural that
multiple Buyer Agents visit multiple e-stores [8]. Specifically, separateBuyervis-
its each e-shop that offers a given product (in our case a ticket satisfying needed
itinerary). The end of price negotiation means that theBuyershould consult with
theClient Agent. Therefore, theSAdoes not know if the auction winner will actu-
ally attempt at making a purchase.

2. If theBuyer Agentconfirms it wants to buy ticket, theShop Agentcreates aReser-
vation Agent(RA), which communicates with theGDSto make a reservation. There
are then the following possibilities:

– If the RAwas able to reserve tickets (it is possible that while the negotiations
were taking place all tickets available in a given class of service etc. are already
gone), it sends the reservation data to theShop Agent. Upon reception of the
data (all communication in the system is carried using ACL messages) theShop
Agenttransfers it further to theBuyer Agentand carries out standard procedures
involved in completing the sale (state “Sale finalization”).

– In the opposite case (theRA was not able to secure the reservation) theShop
Agent notifies theBuyer Agentthat reservation is impossible and kills the
Reservation Agent.

6

3. If the Buyer Agentsends message that it does not want to make a purchase, this
fact is registered in a localKnowledge Database. More precisely, all information
about processes that take place within the shop when it is attempting to sell tick-
ets is recorded in theKnowledge Database. In the future, this information will be
used by theSA to adapt its behavior. Currently we denote this fact by introduc-
ing theMCDM box, which denotes multi-criterial decision making. In oursystem
we utilize a modified negotiation framework [2–4] introduced originally by Bar-
tollini, Jennings and Price [6, 7]. In this framework, the negotiation process was
divided into a genericnegotiation protocoland anegotiation templatethat contains
parameters of a given negotiation. These parameters specify, among others, the ne-
gotiation mechanism itself. Observe, in Figure 2, that one of possible results of
MCDM is change of the negotiation template. In other words, theSAmay decide
that since only very few tickets are left but there is also only very short time to sell
them, it will deep discount them and sell them with a fixed price, or through a very
short time lasting English auction with a low threshold value and a relatively large
increment.

4. If there is no winner, theShop Agentwrites information into theKnowledge Data-
baseand starts to analyze the current situation (theMCDM box in Figure 2. As
a result it may change the negotiation template, or request another itinerary from
theFlightOffer Agent. Finally, it may establish that for that given route (user-seller
order) either there is nothing more to do (all tickets have been sold) or that nothing
can be done (the remaining tickets cannot be sold in the current condition of the
market). Then it will remove all “servant” agents servicingthat route and inform its
user-merchant about the situation.

It is important to note that we assume that in all price negotiation mechanisms the
Sellerinstitutes a time limit for negotiations. This moment is presented within theShop
Agentdiagram as a sub-state “Counting time” (within the “ControlCenter” state). If
theSellerdoes not sell any tickets within that time theShop Agent, again, registers this
information in theKnowledge Database, kills this Sellerand notifies its user-merchant
accordingly. Following, theSA enters theMulti-criterial Decision Makingstate. As
described above, here it can decide, among others, to sell more seats on some specific
itinerary or to change the template of negotiations or to conclude that nothing more can
be sold and its existence should be completed.

2.2 FlightOffer and Reservation Agents

These two agents have been added to the system and their role is to communicate with
the GDS. The statechart diagram of theFlightOffer Agentis presented in Figure 3.
This agent communicates with theGDS to find information about flights that satisfy
conditions specified by the user-merchant. If such flights are available theFlightOffer
Agentprepares (process represented by multi-state boxes “Checking availability,” “Find
Class of service capacity,” “Price retrieval” and “Analyzing module”) a “List of Offers”
for theShop Agent. All the multi-state states—“Checking availability,” “Find Class of
service capacity,” “Price retrieval” and “Analyzing module”—involve communication
with theGDS. On the Figures 4 and 5 we present statecharts of “Checking availability”

7

and “Price retrieval” states to illustrate the nature of proposed communications between
theFlightOffer Agentand theGDS. Upon obtaining all the necessary information form

sign−in failed do / t++
Count re−tries

do / create(list of itineraries)

Checking availability

sign−in succeded

[t=t_check]

[t=t_check]
Notify user about failure

do / creat(completing list of seats)

Find class of service capacity

response not received do / t++
Count re−tries

wait for response

[t<t_check]

response received

do / sign−in with credentials

login on GDS

wait for responseWaiting for an order

[t<t_check]

do / send identification

Connect to host

do / complete list by info by price−list

Price retrieval
do / send(offers)

Notify Shop Agent about offers

do / creation final offers

Analyzing module

Fig. 3. FlightOffer Agent statechart diagram

theGDSit sends the information to theShop Agent. Note that the role of the “Analyzing
module” is to check the request of the user-merchant againstthe data retrieved from the
GDS to make sure to assure consistency of the final offer (e.g. if the user-merchant
requested 10 seats, but only 5 are available then only 5 can bein the offer).

The second agent that communicates with theGDS is the Reservation Agent. It
is created by theShop Agentafter receiving confirmation of willingness of making a
purchase from theBuyer Agent. Its function is to make an actual reservation within the
GDSserver. In case of successful completion of its task theReservation Agenttransfers
all reservation’s data to theShop Agent. If reservation is impossible it informs about it
theShop Agent. Both cases mean that its job is complete and it then self-destructs. Its
extremely simple statechart diagram is omitted.

3 Concluding Remarks

In this paper we have discussed how to modify a model agent-based e-commerce system
to turn it to a simplified airline ticket auction-system. To achieve this goal we have stud-
ied the way that airline tickets are sold and assumed that e-stores in our system can con-
nect and communicate with a Global Distribution System (e.g. AMADEUS) and act ac-
cording to the existing rules governing its behavior. In this stage of the project we have
decided to proceed with only minimal modifications to the existing e-commerce model
system and were positively surprised that we will be able to keep unchanged the original

8

do / t++
Count re−tries

error handled

do / ANDDMMMXXXYYY/CK/AYM*DDMMYYYXXX/CK/AYM

send an transaction to GDS [t<t_check]

unable to handle error

[t=t_check]

do / create an transaction for all dates in line with the rule

creation of list of availability transactions

parse received data

response received

wait for response

Error handlingerror

do / add(itinerary,n= number of seats)

get number of available seats for flight/date

availability display received

[no more item]

[one more item] response not received

Fig. 4.FlightOffer Agent’s “Checking availability” substate statechart diagram

ClientandBuyeragents, as well as practically unchanged theCIC agent. Thus, thepur-
chasingandmatchmakingparts of the original system remain unchanged. Furthermore,
theGatekeeperagent, that is responsible for admittingBuyeragents to the host and to
negotiations, as well as managingnegotiation templatechanges can remain unchanged.

The proposed changes to the system consist of: (1) replacingtheWarehouseagent
by theReservation Agentthat is responsible for communicating with theGDSand es-
tablishing if it is still possible to make the requested reservation. (2) Introducing the
FlightOffer Agentthat acts as a liaison between theShop Agentand the outside world.
Its role is to communicate with theGDSand find out details of flights that satisfy the
request of user-merchant. In other words, the user-merchant specifies which routes she
world like to sell and theFlightOffer Agentfinds connections that can be used to serve
these routes and returns this info to theShop Agentstart selling specific itineraries. (3)
Finally, theShop Agentunderwent a substantial modification to act as a seller of air-
line tickets. For each of the new and/or modified agents we were able to formalize its
functioning through it UML statechart diagram.

Separately, we have identified the next step in the development of the proposed sys-
tem. Currently, the system is merchant-driven, which meansthat users can buy only
what merchants offer them and if they want to fly different routes, they are out of luck.
We have introduced into the system appropriate mechanisms that when explored and
utilized will mediate this problem. Namely, e-shops will beable to learn about unful-
filled user requests and respond to them. Furthermore, we have specified how, in the

9

unable to handle error

[t=t_check]

exit / send FQD transaction to GDS
do / create FQD transaction

create pricing transaction

[t<t_check]

wait for response
do / t++
Count re−trieserror

error handled

response received
parse received data

[error]

Error handling

do / send(itinerary, n, m,reservation price, top price)

retrieve the price

price display received

Fig. 5. FlightOffer Agent’s “Price retrieval” substate statechart diagram

future, it will be possible to makeShop Agents able to adjust their behavior. These (and
an initial implementation of the system—which will involvemodification of the exist-
ing code-base of the original system and which will require obtaining actual access to
the GDS, which we hope to be able to secure in the near future) are also directions of
our current research. We will report on our progress in subsequent papers.

References

1. Bădic̆a, C., Badita, A., Ganzha, M., Iordache, A., Paprzycki M.: Implementing Rule-based
Mechanisms for Agent-based Price Negotiations. In: Proceedings of the SAC’2005 Confer-
ence (in press)

2. Bădic̆a, C., Ganzha, M., Paprzycki, M., Pîrvănescu, A.: Combining Rule-Based and Plug-in
Components in Agents for Flexible Dynamic Negotiations. In: M. Pĕchoŭcek, P. Petta, and
L.Z. Varga (Eds.):Proceedings of CEEMAS’05, Budapest, Hungary. LNAI 3690, Springer-
Verlag, pp.555-558, 2005.

3. Bădic̆a, C., Ganzha, M., Paprzycki, M., Pîrvănescu, A.: Experimenting With a Multi-Agent
E-Commerce Environment. In: V. Malyshkin (Ed.):Proceedings of PaCT’2005, Krasnoyarsk,
Russia. LNCS 3606, Springer-Verlag, pp.393-402, 2005.

4. Bădic̆a, C., Ganzha, M., Paprzycki, M.: UML Models of Agents in a Multi-Agent E-Com-
merce System. In:Proceedings of the IEEE Conference of E-Business Engineering, ICEBE
2005, Beijing, China. IEEE Computer Society Press, Los Alamitos, CA, pp.56-61, 2005.

5. Bădic̆a, C., B̆adiţ̆a, A., Ganzha, M., Iordache, A., Parzycki, M.: Rule-Based Framework for
Automated Negotiation: Initial Implementation. In:Proceedings1st Conference on Rules
and Rule Markup Languages for the Semantic Web, RuleML’2005, Galway, Ireland. Lecture
Notes in Computer Science 3791, Springer-Verlag, pp.193-198, 2005.

6. Bartolini, C., Preist, C., Jennings, N.R.: Architectingfor Reuse: A Software Framework for
Automated Negotiation. In:Proceedings of AOSE’2002: Int. Workshop on Agent-Oriented
Software Engineering, Bologna, Italy, LNCS 2585, Springer Verlag, pp.88-100, 2002.

7. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated Negotiation.
In: Proceedings of SELMAS’2004. LNCS 3390, Springer-Verlag, pp.213-235, 2005.

10

8. Ganzha, M., Paprzycki, M., Pîrvănescu, A., B̆adic̆a, C, Abraham, A.: JADE-based Multi-
Agent E-commerce Environment: Initial Implementation, In: Analele Universităţii din
Timişoara, Seria Matematică-Informatică, 2005 (to appear).

9. JADE: Java Agent Development Framework. Seehttp://jade.cselt.it.
10. Kowalczyk, R., Ulieru, M., Unland, R.: Integrating Mobile and Intelligent Agents in

Advanced E-commerce: A Survey. In:Agent Technologies, Infrastructures, Tools, and
Applications for E-Services, Proceedings NODe’2002 Agent-Related Workshops, Erfurt,
Germany. LNAI 2592, Springer-Verlag, pp.295-313, 2002.

11. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that Buy and Sell: Transforming Commerce
as we Know It. InCommunications of the ACM, Vol.42, No.3, pp.81-91, 1999.

12. Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business-to-Business
E-Commerce Lifecycle. In:Proceedings of the WWW’02: International World Wide Web
Conference, Hawaii, USA. ACM Press, New York, USA, pp.89-98, 2002.

13. Wooldridge, M.:An Introduction to MultiAgent Systems, John Wiley & Sons, 2002.

