Developing a Model Agent-based Airline Ticket
Auctioning System

Mladenka Vukmirovié, Maria Ganzh4 and Marcin PaprzycKi

1 Montenegro Airlines, Industry Development Department

Beogradska 10, 81000 Podgorica, Serbia and Montenegro
mladenka.vukmirovic@mgx.cg.yu

2 Elblag University of Humanities and Economy,
ul. Lotnicza 2, 82-300 Elblag, Poland
ganzha@euh-e.edu.pl
3 Computer Science Institute, SWPS, 03-815 Warsaw, Poland

marcin.paprzycki@swps.edu.pl

Abstract. Large body of recent work has been devoted to multi-ageriesys
utilized in e-commerce scenarios. In particular, autonasrenftware agents par-
ticipating in auctions have attracted a lot of attentiometastingly, most of these
studies involve purely virtual scenarios. In an initialeatipt to fill this gap we
discuss a model agent-based e-commerce system modified/éoasean airline
ticket auctioning system. Here, the implications of fogcagents to obey actual
rules that govern ticket sales are discussed and illustiayeUML-formalized
depictions of agents, their relations and functionalities

1 Introduction

Broadly understood e-commerce is often viewed as a paradigm@pplication area of
software agents [11]. In this context software agents afadititate higher quality in-
formation, personalized recommendation, decision supgoowledge discovery etc.
When developed and implemented, agent systems are to begamtizers, adaptive,
proactive and accessible from a broad variety of devicef Bich systems are also to
deal autonomously with information overload (e.g. largmber of e-shopsféering the
same product under slightlyfirent conditions—price, delivery, warranty etc.). In this
context, modern agent environments (such as JADE [9]) cppstiimplementation of
quasi-realistic model e-commerce scenarios [8]. More@arances in auction theory
have produced a general methodology for describing prigetiagions [6, 7]. Combi-
nation of these factors gives new impetus to research onreaitog e-commerce and
autonomous software agents are cited as a potentialljutruwiay of approaching this
goal [10].

Unfortunately, the picture is far from perfect. While thendst a large number of
attempts at developing agent-based systems, they areymesyl small-scale demon-
strator systems—Ilater described in academic publicationthe meantime, some ap-
plications utilize the agent metaphor, but not existingradeols and environments.
Separately, it is almost impossible to find out if agent systexist in the industry;
e.g. establish the true role of the Concordia agent systehinsthe Mitsubishi Corp.

Finally, and this is very important in the context of the &t paper, most of work
devoted to either automatic price negotiations (see [@&7multi-agent e-commerce
systems (see [8, 10, 11]) involves “virtual realities.” Ither words, auctions are con-
ceived, for instance, as a general case of an English aussiesh to negotiate prices of
productP, while for multi-agent systems buyer agents are send bysiseandU, to
e-shopssy, Sy, ..., S, to buy product$; andP»,. As a result, proposed systems do not
have much to do with real-life. When virtual agents competpurchase non-existent
products, their behaviors are also virtual, as they aremotrgled in any possible actual
application.

The aim of this paper is to make an initial attempt at briddireggap between theory
and practice. We start with a model agent system presenfdd-438]. In this system
we have modeled a distributed marketplace that hosts essirag allows e-buyers to
visit them and purchase products. Buyers have an optiongotiage with representa-
tives of e-stores to choose the shop from which to make a psectConversely, shops
may be approached by multiple buyers and through auctipe4tyechanisms, have an
option to choose the “best?’ potential buyer. Furthermibrie,system attempts at rem-
edying the well-known conflict between agent intelligenod anobility. By precisely
delineating which agent modules have to be transferred dmhwhould this happen
we were able to reduce network utilization. Since this systetheoretical in the above
described sense, in this paper we will discuss its modiGoatequired to apply it to a
more realistic airline ticket auctioning scenario. What f@end particularly interest-
ing was that this could have been achieved with only relbtirgnimal changes in the
overall system.

Before proceeding let us make explicit some of the assum@titade in our current
work. (1) In the original system e-stores wel@verswithin the marketplace — buyers
could purchasenly products that were available for sale through existingoeest This
being the case, we have decided, in the initial phase of otk,w@accept this approach
(while planning to remove this limitation in the future). &fefore, currently multiple
“travel agencies” sell tickets to a variety of popular deations. They obey basic rules
of airline ticket trading, but it is only “them” who decide veh tickets to sell. In other
words, if the user of the system would like to fly from Hattiesiy MS to Tri Cities,
WA, she may not find such a connection. At the same time, cdiomsdetween Ams-
terdam and Detroit, Ml may be sold by every e-store. While #gsumption may seem
limiting, we would like to point out that success of pricelinom (and other auction
places that sell airline tickets) makes our model scenagalistic enough.” (2) We are
still utilizing the CIC agent that stores both “yellow-pages” (what?) and “whiegs”
(who?) information as the approach to matchmaking [12]. elav, we see interesting
extensions of its role in the system (e.g. by allowing it tadst market trends and sell
this information to interested sellers — see below). (3) lirsiauations where it was
possible we utilize existing structures that have beenridest in [1-4, 8] and inter-
ested readers should consult these sources for furthdtsddtais being the case we
can focus current paper on modifications introduced by gitounthe system in the
real-life rules that govern the air-ticket sales.

2 Description of System

Information centerﬁ
Looking for info Gathering
"where to buy" statistics
cic
Registration

Creation of
Client Decision Reservation
Making /
~_ Shop Decision Creation List
Making \ of Offers

Client ghop

f % _ Notification
Jser-Client about result
Communication

I

PNR
processing

Reseriation Agent ~
e

GDS
Looking for
information

FlightOffer Age|

User-Merchant

[Admitting to Seller

Buyer negotiations

iz<include>> Gatekeeper
Creation List of
Participants n
[Purchasing side [ﬁ P Seller side &

Fig. 1. Use case diagram

We describe our system through its UML-based formalizatiotle start with the
use case diagram depicted in Figure 1. Here we can see alisggesent in the sys-
tem, their interactions and their interactions with exé&isystems — e.g. the Global
Distribution System (GDS). This system stores all infolioratabout flights, num-
ber of available seats, booking classes and so on. In retildye exist several GDS
servers available to airlines tdfer their inventory for sale; e.g. AMADEUS, SABRE,
Worldspan, Galileo etc. In our work we base our descriptiorttee actual function-
ing of the AMADEUS GDS through which more than 200 airlingeotheir services.
Note, however, that replacing AMADEUS with afidirent server, or adding additional
external servers to the system would not require substaizanges in its functioning
and in functioning of its constituent agents (e.g.®ight Offer Agentwould only have
to communicate with multiple external servers).

We can distinguish three major parts of the system. (1)ififeemation center area
where white-page and yellow-page data is stored and serbigehe CIC agent. Let
us note that every request for which t6¢C had to send a “negative answer” (i.e. no
such travel is available for sale) is stored. As indicatedvabin the future this data
can be utilized (purchased) I8hop Agerstto decide which tickets should b&@red
to address existing aya changing market-demand. (2) Tperchasing sidevhere
agents and activities representing user-buyer are depatel (3) theseller sidewhere
the same is presented for the user-merchant. In the modyfséeis, in comparison with
the original one [4], we not only have the exter@&IDSbut also two new agents: the
FlightOffer Agentand theReservation AgenfTogether they replace the functionalities
provided in the original design by th&arehouse Agentet us now describe in more

detail these agents that are substantialffedént or new to the system (in comparison
with these described in [4, 8]).

2.1 Shop Agent

Shop Agen(SA) acts as the representative of the user-merchant and, sathe, time
as aControl Centerof the Sale Processln the current stage of conceptualization of
the system we follow the path selected in the original e-cenue system, where the
user-merchant was specifying the input provided to theesysThus we assume that
user-merchantinputs all necessary data: departure bogae, destination airport code,
booking class, fare basis code, initial rule by which sestg@be dfered for sale. For
example, if user-seller wants to sell out seats that wowe baen @ered for Advanced
Purchase Excursion Fare—APEX, but time limit for this faes lexpired, user-seller
would specify the number and the period for which he wantsfier seats on flights.
This info is used in availability check and price retrievele period is needed to set
bounds within which flights will be fiered. Optionally user-merchant can specify flight
number as well. This narrows down the availability list aralyrbe necessary in the case
when there is more then one flight per day between two givetindg¢i®ns. Furthermore
this can be used also in the case when, for instance, usehargwants to fier seats
on morning flights, but not on the evening flights. So, she ifipsavhich flight num-
ber(s) can be chosen from. In this way, all other possiblatfigimbers are excluded.

In the near future we plan to extend functionality of our eyst In particularly,
while at present our system acts only as a “distributor” ofedpfined set of tickets,
we would like to modify it in such way that t@Acould start distributing (acquire and
put for auction) not only what user-merchant wants to selldisio what user-clients
are looking for. Observe that we have already introducedehar@sm to facilitate this
goal. Since th€IC agent stores information about all unfulfilled user-cligaéries, an
SAwill be able to obtain an access to this data (e.g. purchpsmialyze it and decide
that, for instance, there is a growing need for tickets betwd/arsaw and Delhi and
offer these for sale.

Statechart diagram of tHghop agenis depicted in Figure 2. At first th8Acreates
the Gatekeeper Agerftvhich plays here exactly the same role as described in (4]) a
waits for a user-merchant order. After receiving such arotideSAcreated-lightOf-
fer Agentwhich communicates with th@eDSand gathers needed information to create
list of offers for theShop AgenfoneFlightOffer Agentis created for each route to be
serviced and exists for as long as tickets for a given rowgesald by theSA). List of
offers includes information about every itinerary: data abdmth (inbound and out-
bound) flight numbers, number of seats and class of servideofi flights etc. On the
basis of this listShop AgentreatesSeller Ager(s) (one for every itinerary), introduce
them to theGatekeeperand enters a complex state callédntrol Center Note here
thatSeller Agerg play exactly the same role as that described in [4]; theyoargeract
with incomingBuyer Agerg and through some form of price negotiation mechanism
(e.g. an auction) select tHguyerthat may purchase the ticket. In tR®ntrol Center
state theSAis listening to itsSeller Ager(s). After receiving a message from one of the
Seller Agerd theShop Agenéacts depending on content of that message.

[Creation of a GA] [Waiting for a User-Merchant order] [Creation FlightOffer Agent]
. do / send(CIC, GA's address) entry / transform(ordering) J

[Waiting for a FlightOffer Agent answsr]

[Notification of UseﬁMercham] E S Creation/Updating of a Seller Agenl]

do / create(Se_ID)
[empty answer] [else] exit / send(CIC,itinerary)

[no more seats]
U

Introducing
[there are seats] do / send(GA,Se_ID)

4 Control Center)

Counting time

no more working SeA:

time is over

Creation of a Reservation Agent
do / create(ID_RA)

Sale finalization [done]

(

f Changing the template of negot\anons]
l do / send(GA,new template,Se_ID) J

Refusing

do / send(BA refuse)
exit / kill(ID_RA)

[reservation impossible]

Registering result _
[newemplate] do / add to KB
\ ;y—‘ J

Requests FlighOffer Agent
MCDM

do / send(FOA itineral
do / Analysis of situation

o further action]

Cleaning

do / kill(Se_ID)

Fig. 2. Shop Agent statechart diagram

1. If the Sellerinforms about a winner of price negotiations tBeop Agentvaits for
the correspondin®uyer Agento confirm that it plans to actually buy the ticket.
Here, we have to stress, that in our general e-commerce nitodehatural that
multiple Buyer Agerg visit multiple e-stores [8]. Specifically, separ8yervis-
its each e-shop thaffiers a given product (in our case a ticket satisfying needed
itinerary). The end of price negotiation means thatBlugershould consult with
the Client Agent Therefore, th&SAdoes not know if the auction winner will actu-
ally attempt at making a purchase.

2. If the Buyer Agentonfirms it wants to buy ticket, thehop Agentreates &eser-
vation Agent{RA), which communicates with th@DSto make a reservation. There
are then the following possibilities:

— If the RAwas able to reserve tickets (it is possible that while theotiagjons
were taking place all tickets available in a given class ofise etc. are already
gone), it sends the reservation data to #mp AgentUpon reception of the
data (all communication in the system is carried using AClssages) th8hop
Agenttransfers it further to thBuyer Agenand carries out standard procedures
involved in completing the sale (state “Sale finalization”)

— In the opposite case (tifRAwas not able to secure the reservation) $ep
Agentnotifies theBuyer Agentthat reservation is impossible and kills the
Reservation Agent

3. If the Buyer Agensends message that it does not want to make a purchase, this
fact is registered in a locddnowledge Databaseéviore precisely, all information
about processes that take place within the shop when iteémating to sell tick-
ets is recorded in thEnowledge Databasén the future, this information will be
used by theSAto adapt its behavior. Currently we denote this fact by ithie>
ing theMCDM box, which denotes multi-criterial decision making. In eystem
we utilize a modified negotiation framework [2—4] introddoeriginally by Bar-
tollini, Jennings and Price [6, 7]. In this framework, thegogBation process was
divided into a generioegotiation protocoind anegotiation templatéhat contains
parameters of a given negotiation. These parameters gpatibng others, the ne-
gotiation mechanism itself. Observe, in Figure 2, that ohpassible results of
MCDM is change of the negotiation template. In other words SAenay decide
that since only very few tickets are left but there is also/a@ry short time to sell
them, it will deep discount them and sell them with a fixed @rir through a very
short time lasting English auction with a low threshold eéind a relatively large
increment.

4. If there is no winner, th&hop Agenivrites information into thé&Knowledge Data-
baseand starts to analyze the current situation (W€DM box in Figure 2. As
a result it may change the negotiation template, or requesthar itinerary from
theFlightOffer Agent Finally, it may establish that for that given route (useltes
order) either there is nothing more to do (all tickets haverbeold) or that nothing
can be done (the remaining tickets cannot be sold in the mucendition of the
market). Then it will remove all “servant” agents servicthgt route and inform its
user-merchant about the situation.

It is important to note that we assume that in all price negiain mechanisms the
Sellerinstitutes a time limit for negotiations. This moment isgpted within th&hop
Agentdiagram as a sub-state “Counting time” (within the “Coni@anter” state). If
the Sellerdoes not sell any tickets within that time tBeop Agentagain, registers this
information in theKnowledge Databasills this Sellerand notifies its user-merchant
accordingly. Following, theSA enters theMulti-criterial Decision Makingstate. As
described above, here it can decide, among others, to sedl seats on some specific
itinerary or to change the template of negotiations or tactiaite that nothing more can
be sold and its existence should be completed.

2.2 FlightOffer and Reservation Agents

These two agents have been added to the system and thes toleammunicate with
the GDS The statechart diagram of thdightOffer Agentis presented in Figure 3.
This agent communicates with tli@DSto find information about flights that satisfy
conditions specified by the user-merchant. If such flightsaaailable thd=lightOffer
Agentprepares (process represented by multi-state boxes “@Ctgeakailability,” “Find
Class of service capacity,” “Price retrieval” and “Analyggimodule”) a “List of Qfers”
for the Shop AgentAll the multi-state states—"Checking availability,” ‘& Class of
service capacity,” “Price retrieval” and “Analyzing moéi—involve communication
with the GDS On the Figures 4 and 5 we present statecharts of “Checkaitaaility”

and “Price retrieval” states to illustrate the nature ofgm®ed communications between
theFlightOffer Agentand theGDS Upon obtaining all the necessary information form

[t<t_check]

Comecttohost__|

do / send identification

.J Waiting for an order I

Count re—tries
do /t++

esponse received response not received

[login on GDS
l do / sign-in with credentials| = [t<t_chefk]

Checking availability f Count re-tries
és N
do / create(list of itineraries) sign-in failed do / t++
~ \’/ ign—in succeded

Find class of service capacity] [Price retrieval] r Notify Shop Agent about offers]
do / creat(completing list of seats)l 71 do/ complete list by info by price—listJ l do / send(offers)

Notify user about failure

Analyzing module
do / creation final offers

Fig. 3. FlightOffer Agent statechart diagram

theGDSit sends the information to tHehop AgentNote that the role of the “Analyzing
module” is to check the request of the user-merchant agthiestata retrieved from the
GDS to make sure to assure consistency of the fiff@r ¢e.g. if the user-merchant
requested 10 seats, but only 5 are available then only 5 camntbe dfer).

The second agent that communicates with @8Sis the Reservation Agenit
is created by th&hop Agenafter receiving confirmation of willingness of making a
purchase from thBuyer Agentlts function is to make an actual reservation within the
GDSserver. In case of successful completion of its taskRbservation Agertansfers
all reservation’s data to thehop Agentlf reservation is impossible it informs about it
the Shop AgentBoth cases mean that its job is complete and it then setfds. Its
extremely simple statechart diagram is omitted.

3 Concluding Remarks

In this paper we have discussed how to modify a model agesgebe-commerce system
to turn it to a simplified airline ticket auction-system. Teh#&ve this goal we have stud-
ied the way that airline tickets are sold and assumed theressin our system can con-
nect and communicate with a Global Distribution System.(@MADEUS) and act ac-

cording to the existing rules governing its behavior. Iis thtiage of the project we have
decided to proceed with only minimal modifications to thesérig e-commerce model
system and were positively surprised that we will be ablestepkunchanged the original

b

creation of list of availability transactions
l do / create an transaction for all dates in line with the rule J

N\

9[send an transaction to GDS [t<t_check]
l do / ANDDMMMXXXYYY/CK/AYM*DDMMYYYXXX/CK/AYM
J

wait for response

()-fesponse not received

one more item] Count re-tries

response freceived

parse received data

 EEEEEEEE—
Error handling

availability displdy receive ~—— unable to hahdle error
get number of available seats for flight/date Ef

do / add(itinerary,n= number of seats)

[t=t_che

error handlled

_J [no more item]

Fig. 4. FlightOffer Agent’s “Checking availability” substate statechaggiam

ClientandBuyeragents, as well as practically unchanged@h@ agent. Thus, thpur-
chasingandmatchmakingparts of the original system remain unchanged. Furthermore
the Gatekeepeagent, that is responsible for admittiBgiyeragents to the host and to
negotiations, as well as managinegotiation templatehanges can remain unchanged.

The proposed changes to the system consist of: (1) repldvayarehousegent
by theReservation Agerthat is responsible for communicating with t&®Sand es-
tablishing if it is still possible to make the requested reaton. (2) Introducing the
FlightOffer Agentthat acts as a liaison between tBleop Agenand the outside world.
Its role is to communicate with theDSand find out details of flights that satisfy the
request of user-merchant. In other words, the user-metscipagifies which routes she
world like to sell and thé-lightOffer Agentfinds connections that can be used to serve
these routes and returns this info to Bleop Agenstart selling specific itineraries. (3)
Finally, theShop Agentinderwent a substantial modification to act as a seller of air
line tickets. For each of the new god modified agents we were able to formalize its
functioning through it UML statechart diagram.

Separately, we have identified the next step in the developai¢he proposed sys-
tem. Currently, the system is merchant-driven, which mehasusers can buy only
what merchantsféer them and if they want to fly ffierent routes, they are out of luck.
We have introduced into the system appropriate mechanisatsmhen explored and
utilized will mediate this problem. Namely, e-shops will @lele to learn about unful-
filled user requests and respond to them. Furthermore, we $@ecified how, in the

create pricing transaction

._ do / create FQD transaction
exit / send FQD transaction to GDS [t<t_check]
J

\

-) error
wait for response Na

.

Count re-tries

response [received =
parse received data P [t=t_check]

errof handled

unable to handle error; é

J

Error handling I

[error]

price display received

[retrieve the price
[do / send(itinerary, n, m,reservation price, top price)

Fig. 5. FlightOffer Agent's “Price retrieval” substate statechart diagram

future, it will be possible to mak8hop Agergtable to adjust their behavior. These (and
an initial implementation of the system—which will involweodification of the exist-
ing code-base of the original system and which will requiseaing actual access to
the GDS, which we hope to be able to secure in the near futueedlso directions of
our current research. We will report on our progress in sgyibset papers.

References

1. Badia, C., Badita, A., Ganzha, M., lordache, A., Paprzycki M.plementing Rule-based
Mechanisms for Agent-based Price Negotiations. In: Prdiogs of the SAC’2005 Confer-
ence (in press)

2. Badia, C., Ganzha, M., Paprzycki, M., Pawescu, A.: Combining Rule-Based and Plug-in
Components in Agents for Flexible Dynamic Negotiations.Nh Péchowiek, P. Petta, and
L.Z. Varga (Eds.)Proceedings of CEEMAS'QBudapest, Hungary. LNAI 3690, Springer-
Verlag, pp.555-558, 2005.

3. Badia, C., Ganzha, M., Paprzycki, M., Pawescu, A.: Experimenting With a Multi-Agent
E-Commerce Environment. In: V. Malyshkin (EdProceedings of PaCT'200Krasnoyarsk,
Russia. LNCS 3606, Springer-Verlag, pp.393-402, 2005.

4. Badia, C., Ganzha, M., Paprzycki, M.: UML Models of Agents in a kitdigent E-Com-
merce System. InProceedings of the IEEE Conference of E-Business EngimgelCEBE
2005 Beijing, China. IEEE Computer Society Press, Los Alami@A4, pp.56-61, 2005.

5. Badia, C., Badifa, A., Ganzha, M., lordache, A., Parzycki, M.: Rule-Baseank@work for
Automated Negotiation: Initial Implementation. IRroceedingsl® Conference on Rules
and Rule Markup Languages for the Semantic Web, RuleML;2B8@8vay, Ireland. Lecture
Notes in Computer Science 3791, Springer-Verlag, pp.188-2005.

6. Bartolini, C., Preist, C., Jennings, N.R.: Architectiiog Reuse: A Software Framework for
Automated Negotiation. InProceedings of AOSE’2002: Int. Workshop on Agent-Oriented
Software EngineeringBologna, Italy, LNCS 2585, Springer Verlag, pp.88-100020

7. Bartolini, C., Preist, C., Jennings, N.R.: A SoftwarerResvork for Automated Negotiation.
In: Proceedings of SELMAS’2004NCS 3390, Springer-Verlag, pp.213-235, 2005.

10

8. Ganzha, M., Paprzycki, M., Pimescu, A., Bdica, C, Abraham, A.: JADE-based Multi-
Agent E-commerce Environment: Initial Implementation, Wnalele Universitatii din
Timisoara, Seria Matematica-Informatica005 (to appear).

9. JADE: Java Agent Development Framework. Beep://jade.cselt.it.

10. Kowalczyk, R., Ulieru, M., Unland, R.: Integrating Md&biand Intelligent Agents in
Advanced E-commerce: A Survey. Iiigent Technologies, Infrastructures, Tools, and
Applications for E-Services, Proceedings NODe’2002 Adreiated WorkshopsErfurt,
Germany. LNAI 2592, Springer-Verlag, pp.295-313, 2002.

11. Maes, P., Guttman, R.H., Moukas, A.G.: Agents that Bud/2ell: Transforming Commerce
as we Know It. InCommunications of the ACMol.42, No.3, pp.81-91, 1999.

12. Trastour, D., Bartolini, C., Preist, C.: Semantic WelpiSurt for the Business-to-Business
E-Commerce Lifecycle. InProceedings of the WWW'02: International World Wide Web
ConferenceHawaii, USA. ACM Press, New York, USA, pp.89-98, 2002.

13. Wooldridge, M.An Introduction to MultiAgent Systemkhn Wiley & Sons, 2002.

