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Abstract. Game theory is often applied to modeling interactions of
non-cooperative decision makers. Such interaction appear, among oth-
ers, in the case of energy management. In this context we formulate the
problem of energy allocation for a group of electric vehicles in a smart
grid. Subsequently, we formulate a game-theoretic model of interactions
of agents controlling vehicle charging schedules. An algorithm for com-
puting pure Nash equilibrium in such game is presented. Moreover, we
introduce a solver, which is specifically designed to find equilibria in con-
cave games. The core of the proposed solver is based on the primal-dual
interior-point method for nonlinear programming. Experimental results
of applying the solver are compared with a centralized solution.
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1 Introduction

Electric vehicles have a long history [1], but only now their popularity is ris-
ing. This is, among others, due to the availability of cheaper and more ecological
energy from renewable power sources. Electric vehicles are pollution free and “al-
most silent.” Their range and speed is often not worse than those of conventional
models (especially in cities, where traveled distances are limited and speed is re-
duced by the traffic). Their main limitations are the capacity and the physical
properties of batteries, which tend to be heavy, not very durable and, constrained
by the speed of charging. Furthermore, the infrastructure for battery-recharge
(or exchange) is still insufficient. However, there are many ongoing country-level
projects that fund construction of charging stations, for example the UK govern-
ment dedicated £37 million to building charging stations [6]. Furthermore, the
pressure on decreasing the emission levels (in particular in the cities) is helping
speed-up the development of infrastructure for electric cars.

In this context, need for solving the problem of charging a group of electric
vehicles, is no longer a futuristic one. Note that, a sudden peak in the power
grid, caused by multiple electric vehicles that are to be charged, has to be quickly



compensated by the existing power production. While currently, charging electric
vehicles takes only a fraction of the power of the network, with the increasing
number of cars this fraction will increase fast. This might cause serious power
peaks, as fast-charging vehicles can take large amounts of power in a very short
time, which might destabilize the currently existing power grid. Control over
maximum power usage can help avoiding such power peaks. Therefore, it can
be assumed that charging stations will have limitations on the amount of power
available to connected cars. Optimizing discharge of available power, becomes
important, to allow owners to “optimally” use their vehicles. Furthermore, stable
power consumption allows contracting energy for long term. Such long-term deals
are much more beneficial both both the supplier (planning power production)
and the consumer (who pays less). Note that deviations from the contracted
power consumption are additionally charged.

Therefore, we consider charging a group of electric vehicles in a charging
station placed within a smart grid. Following one of the major approaches to
the development of smart grids, we assume that electric cars are controlled by
software agents (one per vehicle) [3, 12]. One of the main ideas underlying the
smart grid is that vehicles can be flexibly charged, according to their current
needs (e.g. the distance of the next anticipated travel or the time when the
car/motorbike will be needed again). In this scenario, a game-theoretic model of
interactions between agents controlling the process of charging the vehicles can
be applied. Here, allocation decisions are made independently by each agent in
a distributed manner [13,18].

1.1 Detailed problem description

Problems faced by the power grid are varied: balancing power, power peaks,
failures, unpredictability of usage and of production, etc. Here, we consider a
small subclass of the Demand Side Management (DSM) problem: allocation of
energy to a group of electric vehicles to be charged at a charging station, placed
within a smart grid environment. This problem concerns distribution of scarce
resources and thus it is assumed that agents representing individual vehicles are
selfish, as cooperation requires existence of common goals and communication.
While there can be a common goal (e.g. shaving the power peaks or reducing
the cost of electricity by signing a long-term contract with the provider), such
goals are placed within policies of the charging station, and their management
is out of the scope of our work. Therefore, agents representing cars compete for
power and a game theoretic approach becomes appropriate.

Let us now describe our use case scenario. We assume that a “charging sta-
tion” has a limited number of charging slots and a limit on the total amount of
power it can draw at one time. Such limit is the effect of long-term deals with
the energy suppliers as well as the actual power infrastructure within and out-
side of the station. Each car has a software agent installed, which is responsible,
among others, for vehicle’s battery charge/exchange planning. These plans are
to match the user’s needs. Note that the “special” situation, when batteries are



to be exchanged/replaced, is omitted from the current contribution. The charg-
ing station allows the vehicles, to charge with an appropriate speed (related to
the throughput of the slot and battery limitations) in a sequence of fixed time
periods. Car agents define their strategies concerning how much power needs to
be charged in a given time period for “their vehicle.” The minimal goal is to reach
the minimal required charge level, e.g. to complete the next trip (the ultimate
goal is to reach the total capacity of the battery). If there are too many vehicles
with large power requirements, it is not possible to charge them concurrently at
high rates. As a result, the actual charging speeds are decided by the charging
station; when the vehicles with their proclaimed demands arrive and connect to
the charging slots. We assume that all vehicles arrive once per day (we plan to
relax this restriction in the future), and are supposed to be left at the charging
station for up to a fixed number of hours (e.g., 10 hours at a time).

Here, it is assumed that agents in vehicles arriving at the station for charg-
ing are not aware of other agents demands. Thus charging plans need to be
negotiated among agents representing all vehicles. This can be interpreted as a
non-cooperative game. Here, we omit a situation when charging schedule negoti-
ations involve also selection of the charge station. In other words, the individual
charging schedule involves its power needs and the limited power output of the
selected station. Consequently, in order to achieve the highest charging efficiency,
agents should construct charging schedules, which correspond to the Nash equi-
libria of an allocation game (defined in Section 4). Proposed approach can be
extended to consider the changing prices of electric energy, battery exchange,
number of charging periods during the day, selection of the charging stations
among these that are available, etc.).

The paper is organized as follows. In Section 2 we present an overview of
the related works. We follow, in Section 3, with the definition of the needed
mathematical notation. Next, in Section 4, we formulate the decision making
problem. Section 5 contains details of software developed to solve the problem.
In Section 6 we summarize the results of an experimental study. Finally, in
Section 7 we summarize the paper and outline future research directions.

2 Related Works

Considered problem is typically called the Demand Side Management (DSM)
or the Demand Response (DR). A comprehensive review of the literature of this
topic can be found in [3]. There are two main approaches to the solution of the
DSM: (a) planning and scheduling power usage [10], and (b) dynamically shift-
ing consumption towards a better moment [21]. Research in the DSM includes
contributions from mathematics, game theory and social psychology [19].

In power management, some devices can be automatically delayed or inter-
rupted. However, when an operated by a human device might be of little impor-
tance, the user might refuse to switch it off. Separately, power storage units allow
compensating for sudden peaks of energy consumption and, consequently, may
limit the daily variability of power use [22]. In considered problem, devices are



electric cars equipped with batteries. Such batteries can, in theory, be used as a
general power storage. However, their main use is to power the electric vehicle.
Therefore, the key problem is to charge the car in a limited time, without over-
loading the power grid. Car batteries have relatively high capacity. Therefore,
while a single car is not causing a big charging load, a large number of cars can
result in a serious load for the grid. The effect of using plug-in electric vehicle
(PHEV) on the power grid, including the influence on its stability, is discussed
in [9]. Here, author analyses the charging patterns of batteries and shows that
electric vehicle can be considered a Flexible AC Transmission System and can
help improve the power quality in the energy network. In [11] the decentralized
control method of charging electric vehicle is presented. In that work, the large
number of electric cars is considered and the charging control goal is to shift the
power usage by cars to off-peak time and, by doing that, reduce the cost of sup-
ping power supply. Separately, in [17], the state of the art concerning charging
electric vehicles and its effect on power prices is considered. Authors show that
the electric/hybrid vehicles are much cheaper on average. In [4, 24] the amount
of power used during charging and the payoff were considered. However, other
aspects, such as the order, speed and/or time of charging, were omitted. While
these aspects can be simplified in theory (resulting in an easier model), in the
actual power systems they have to be considered.

The analysis of battery operation, found in [22], considers the amount of
charged or discharged power, in a time interval of a predefined length. This
publication provides foundation for the game model, proposed in our paper.

2.1 Game-theoretic approach

Most of work in non-cooperative game theory concerns games with a finite
sets of strategies. In such games decision makers choose among a predefined sets
of actions. Here, only mixed-strategy Nash equilibria are guaranteed to exist
(see, for instance, [5]). Furthermore, the complexity class PPAD (Polynomial
Parity Arguments on Directed Graphs; [15]) captures the inherent combinatorial
difficulty of this type of problems. Finally, it is conjectured that no polynomial-
time algorithms exist for solving them.

Concave games, in contrast, are computationally less demanding. By allowing
the decision makers to choose from a continuum of decisions, and by exploiting
properties of payoff functions, it is possible to reach an equilibrium in polynomial
time. It has to be stressed that such games still model decision making problems
of practical importance. For instance, in a packet-based computer network, a
sender may wish to select the transmission speed in a channel of limited capacity
(shared with other transmissions) [8,20]. Financial institutions may select prices
of their assets and expect yields depending on all prices of assets available on the
market. Users of smart energy grids may use only some of their deices – when
the supply of energy, for all users, is limited – and energy has to be shared.

Recently, we have developed a software package aimed at efficiently solving
concave games. There exist a number of packages for convex programming, us-
ing highly efficient implementations of primal-dual interior-point method. Our



work aims at providing a similar functionality for the non-cooperative game the-
ory. The tool under development will allow easy description of the input, while
efficiently computing the equilibria.

Here, note that a centralized solution can be found for the considered prob-
lem. However, it requires providing information about the level of battery charge,
required battery level, and other data, which might be considered a violation of
privacy by the owner of the vehicle. Furthermore, as was mentioned in [11], the
owners of vehicles are reluctant to give away the control over the charging pro-
cedure. Furthermore, solutions where the agent of a car suggests strategies for
charging its vehicle allow the system to consider special constraints (e.g. con-
trolling the number of charge cycles) that might prolong the life of the battery.

3 Definitions

Strategic (mathematical) games are used to model situations of conflict (or
cooperation) between two or more players. Each player decides on its strategy
(also called action), and receives a payoff, which, in general, depends on strategies
of other players. It is assumed that each player is rational, and wants to maximize
its payoff. For more details, see [14]. Now, let N = {1, . . . , N}, N ≥ 2, be the
set of players. A non-cooperative game is defined by specifying sets of strategies
{Si}i∈N and payoff functions {ui}i∈N that are to be maximized (alternatively,
cost functions ci = −ui can be defined, and the goal of each player would be to
minimize them). The set Si is called the set of pure strategies of ith player, or
its strategy space. Vector x = (x1, x2, . . . , xN ), where xi ∈ Si, is called strategy
profile of the game, and consists of strategies xi of all players. Value of ui(x)
defines the payoff of ith player, resulting from a strategy profile x. The following
notation is conventionally used for the strategy profile:

x−i = (x1, . . . , xi−1, xi+1, . . . , xN ).

It denotes a vector of all strategies, except that of the ith player. Note that nota-
tion x = (xi,x−i) is often used to distinguish the ith player’s strategy. Assuming
that players make decisions independently and are characterized by selfishness,
the best outcome of the game would be the one in which each player realizes
the best response to all other players’ strategies. A (pure) Nash equilibrium of a
game with such strategy profile x̄ is:

∀i ∈ N , ∀xi : ui(x̄i, x̄−i) ≥ ui(xi, x̄−i).

If each player decided on a strategy x̄i, such that x̄ is a Nash equilibrium, then
no player has an incentive to change its strategy, as such change is not going to
improve its payoff. Thus, such strategy profile can be seen as the “socially best
profiles.” Therefore, non-cooperative, rational, selfish agents should prefer to use
strategies resulting in a Nash equilibrium.

Let us now consider concave non-cooperative games. Here, the strategy of
each player is a vector in the Euclidean space xi ∈ Rmi , i = 1, . . . , N . Each



strategy space set Si is a convex set. The payoff function ui is continuous in
x, and is concave in xi, for each fixed value x−i. Alternatively, consider cost
functions ci, continuous in x, and convex in xi, for each fixed value x−i. It is
well-known that pure Nash equilibrium always exists in concave games [16]. An
equilibrium point is a solution of a system of nonlinear equations, similar to the
Karush-Kuhn-Tucker (KKT) conditions, in standard optimization. Assume that
the strategy space of ith player can be defined by a set of differentiable functions:

Si = {xi : hi1(xi) ≥ 0, hi2(xi) ≥ 0, . . . , hiki
(xi) ≥ 0}.

Finally, in the considered game, an equilibrium point x must satisfy the feasibility
conditions of all strategy spaces, i.e.:

∀i ∈ N , ∀j ∈ {1, . . . , ki} : hij(xi) ≥ 0, (1)

as well as the complementary slackness conditions:

∀i ∈ N , ∀j ∈ {1, . . . , ki}, ∃λij ≥ 0 : λijhij(xi) = 0, (2)

and the stationarity conditions of Lagrange functions:

∇xi
ui(x)−

ki∑
j=1

λij∇xi
hj(xi) = 0,∀i ∈ N . (3)

4 Problem formulation

Let us now consider an optimization problem representing the vehicle charg-
ing scenario. Let N denote the set of electric vehicles (EVs), where |N | = N .
Each of them has an energy demand Dn > 0, as well as a battery capacity
Cn > 0, n = 1, . . . , N . The total charging time of all N vehicles is divided into a
fixed number of T discrete intervals (e.g., 1-hour intervals). Each vehicle needs to
formulate a charging plan xn = [xn,1, . . . , xn,T ]ᵀ, where xn,t is the n-th vehicle’s
requested charging rate for t-th time interval, while xn,t represents the requested
speed of charging n-th vehicle’s battery during t-th time interval. Observe that
it is not assumed that vehicles arrive at the charging station at the same time,
but the access time to the charging slots is discretized: a vehicle may set its
requested rates to 0 for some of T charging periods, which means that it does
not have to be connected to the charging station then. In order for the n-th
vehicle to satisfy its demand, it must receive the total energy allocation equal to∑T

t=1 xn,t, which must reach at least the amount of energy needed for the next
expected travel (but it cannot be greater than the capacity of its battery):

∀n ∈ N Dn ≤
T∑

t=1

xn,t ≤ Cn. (4)



Additionally, in order for a vehicle to be operational, it is required that its energy
level never falls below a minimum energy reserve threshold. To assure this, for
each charging interval t there is a rate lower bound Ln,t given by:

∀n ∈ N ∀t ∈ {1, . . . , T} xn,t ≥ Ln,t. (5)

Note that values Ln,t do not have to be positive, as we may allow, in a given
time interval t, for discharging the battery (negative values of xn,t are interpreted
as discharging rates). However, here we consider only the case when Ln,t ≥ 0.
Nevertheless, generalizes to include discharging. The reserve threshold is not
explicitly given in the input data, as it is enough to provide values of Ln,t.

Although user agents may select any rate requests satisfying (4)–(5), the
actual charging rate is allocated by the charging station, taking into account the
total requestes from all N vehicles. In each t-th time interval, each n-th vehicle
receives a fraction ρt of its requested rate xn,t, where ρt = f(

∑N
j=1 xj,t); the

function f : R → [0, 1] is a nonincreasing function of a total of requested rates.
It is selected in order to prevent the station overcharge. In general, if the station
has a fixed supply S units of energy for one charging period t, then for the
aggregate demand d > S, f(d) < 1 must be selected so that

∑N
j=1 xj,tf(d) < S.

The faster the function f decreases, the more the station penalizes the aggregate
demands that are too high. Here, we restrict f to linear functions, leaving choice
of other functions for future investigations. The total energy that the n-th vehicle
receives from the station in the time period consisting of T -intervals is equal to:

un(xn) =

T∑
t=1

xn,tf(

N∑
j=1

xj,t). (6)

Now, we can now define the following energy-allocation game. Let us assume
that N players have feasible strategies defined as the set of all vectors xn =
[x1, . . . ,xT ]ᵀ satisfying (4)–(5). Here, the goal of each player is to maximize the
payoff function defined as in (6). In other words, each player must select the
charging rate resulting fastest charging, but must take into consideration the
fact that requesting too high charging rate by many players will be penalized by
the reduced energy flow from the station. Thus, each player should individually
balance its request between fast charging and keeping charging rates low; to
prevent the station overcharge (which would penalize all players).

5 Software solver

5.1 Representation of games

Let us now describe in more detail the software that we have developed for
solving convex/concave non-cooperative games. To solve a game, we first need
to pass it as an input to the solver. The developed software uses a relatively
simple syntax, which is presented in Example 1, and stores game descriptions as
a text file.



Example 1. Input file representing a simple two-player instance of the considered
game.

N 2
S1 (x11, x12) {

10 - x11 - x12
}
S1 {

x11 + x12 - 5
}
S2 (x21, x22) {

20 - x21 - x22
}
S2 {

x21 + x22 - 10
}
P1 {

set y = 1 - x11 - x21 - x12 - x22
x11 * y + x12 * y

}
P2 {

set y = 1 - x11 - x21 - x12 - x22
x21 * y + x22 * y

}

Here, the first line defines the number of players, indicated by the integer
after symbol N (two players in this case). Following are definitions of the strategy
spaces of each player. A strategy space is defined in the form:

hij(xi) ≥ 0,

where hij is the jth constraint of the ith player’s strategy space. User must
provide formulas for hij , for each player, which is accomplished in constraint
blocks, denoted by the symbol S, immediately followed by the index of the player.
Names of player’s decision variables must be given in parentheses before the first
constraint block (and can be omitted in each subsequent block). The body of the
function itself must be contained within brackets. In Example 1, there are two
constraints defining the strategy space of Player 1 : h11(x1) = 10 − x11 − x12,
and h12(x1) = x11 + x12 − 5, where x1 = (x11, x12).

Subsequently, the payoff functions are defined in function blocks, starting
with the symbol P, followed by the index of the player. The value of the payoff
can depend on all decision variables of all other players. Thus any subset of
decision variables of all players may appear in the block defining payoff function.

The value of the last expression in each block is the payoff. Observe that
computations can be simplified using set expressions, which define the auxiliary
variables. For instance the variable y defined at the beginning of both payoff



functions, above. Here, variable y appears multiple times in the second line of
the payoff function, but the expression is evaluated only once.

The input syntax supports arithmetic operations on floating point numbers,
as well as all standard mathematical functions (min/max, logarithms, exponen-
tiation, trigonometric functions).

5.2 Optimization algorithm

The core solver is based on the primal-dual interior-point method from non-
linear programming. The method seeks to find a solution to the relaxed KKT
conditions, which define a system of equations (1)–(3). Found solution approxi-
mates pure Nash equilibrium in the convex/concave non-cooperative game. By
regulating the relaxation parameter one may obtain the approximation with an
arbitrary accuracy (bounded only by the use of floating-point arithmetic). For
each player n ∈ N we can formulate the KKT conditions corresponding to its
problem of maximizing the concave function. The primal-dual variant of the
interior-point algorithm relaxes the slackness conditions (2) to the form:

∀i ∈ N ∀j ∈ {1, . . . , ki} λijhij(xi) = 1/t, (7)

where t > 0 is a parameter. Feasibility conditions (1) are changed from the
inequality to the equality, by introducing the vector of slack variables s =
[s11, . . . , sij , . . . , sNkN

]ᵀ:

∀i ∈ N ∀j ∈ {1, . . . , ki} hij(xi)− sij = 0. (8)

After user selects the accuracy ε > 0 and the parameter α > 0, the solver starts
from a small value of t = t0 and “any” feasible solution x = x0. Next, it forms
a set of linear equations (1), (3) and (7), by substituting x0 into them. Based
on these equations, the solver computes a Newton step ∆x, which indicates the
direction of maximization. The Newton step is computed from the solution of
the system of the following primal-dual equations [23]:

 ∇
2
xL1 . . . ∇2

xLN 0 −Hᵀ(x)

0
. . . 0 Λ S

h1(x1) . . . hN (xN ) −I 0



∆x1

...
∆xN

∆s
∆λ

 =


∇u1(x)− λᵀ

1h1(x1)
...

∇uN (x)− λᵀ
NhN (xN )

Sλ− e/t
H(x)− s

 , (9)

where Ln = un(x) − λᵀ
n(hn(xn) − sn) is the Lagrangian associated with n-th

player’s payoff function, λ is the vector of all dual variables, H(x) is the Jacobian
matrix of all constraints h(x), matrix Λ is a diagonal matrix of all dual variables,
S is a diagonal matrix of all slack variables, and I and e are unit matrix and
vector, respectively. The actual step (in both primal x and dual λ variables)
is computed using appropriately selected parameters α. Here, the solution is
updated as follows: x ← x + α∆x. If the change in either the solution or the
right hand side of (9) is smaller than ε, the solver halts.



The algorithm has has been implemented in C++, using BLAS/LAPACK
libraries for efficient matrix computations [2]. Note that use of BLAS may al-
low efficient use of multicore processors. This may be of value when solving
large problems. Observe that solving system (9) requires computing Jacobian
and Hessian of the system of equations resulting from KKT conditions. This
requires calculating derivatives, which, if done numerically, can be moderately
time consuming for some functions. In order to alleviate this, the solver allows
the user to provide analytically derived expressions for derivatives.

6 Experimental study

In the computational experiments we used randomly generated problem in-
stances, defined by the number of players N and the number of charging time
intervals T (of constant duration). Table 1 presents the results for N = 10
and T = 5. For each n-th player, energy consumption demands Dn were ran-
domly generated using uniform distribution from the interval [0, 0.05], while bat-
tery capacities Cn were randomly generated using uniform distribution from the
[Dn, 0.1] interval. Minimal threshold values Ln,t were selected from the [0, 0.01]
interval, again, using uniform distribution. Function f was f(x) = 1− x.

Table 1. Detailed computational results for instance with N = 10 and T = 5.

ID t = 1 t = 2 t = 3 t = 4 t = 5 demand payoff (charge)
1 0.00819 0.00916 0.01222 0.00916 0.01127 0.022 0.045
2 0.00781 0.01079 0.01279 0.01379 0.00481 0.006 0.044
3 0.01107 0.00594 0.01392 0.01092 0.00918 0.046 0.046
4 0.00620 0.01524 0.00924 0.01213 0.00720 0.035 0.045
5 0.00704 0.01416 0.01516 0.00705 0.00704 0.045 0.045
6 0.01112 0.00896 0.00696 0.01086 0.01212 0.038 0.045
7 0.01156 0.01252 0.01044 0.00850 0.00754 0.046 0.046
8 0.00465 0.01372 0.01172 0.01172 0.00875 0.046 0.046
9 0.00899 0.00994 0.00913 0.00908 0.01317 0.044 0.045
10 0.00892 0.00678 0.01074 0.01274 0.01082 0.015 0.044

It took the solver 18 iterations to find a Nash equilibrium for ε = 0.001, and
6 iterations for ε = 0.01. Table 1 contains values of xn,t, Dn and un, for each
player from the final iteration. Observe that each player receives approximately
the same payoff, which means that the station assigns, in total, approximately
the same amount of energy to each vehicle. However, in each time period t the
charging rates vary significantly for each car. Overall, all demands are satisfied
and allocation is well balanced.

In the second experiment we considered the performance of the proposed
algorithm for an increasing number of players N . For convenience, we normalized
the units of energy to the capacity of the charging station. Hence, the demand of



each client was inversely proportional to the total number of clients. Specifically,
no car would claim more than 1/2 unit of energy in each charging interval.
Moreover, we assumed that if the total demand in the charging period exceeded
one unit, then no charging took place. Thus, functions in equations (6) were:

un(x) =

T∑
t=1

xn,t

(
1−

N∑
m=1

xm,t

)
.

Table 2 compares results of applying our solver with allocations obtained by solv-
ing the concave quadratic problem centrally, assuming that all clients’ demands
are known in advance by a central authority (e.g. they have all been submitted
to the charging station that establishes the charging schedule based on its prefer-
ences). The first column represents the number of clients N . The second column,
(min.sol.), presents the smallest amount of energy that any player receives in
the equilibrium solution, while the column max.sol., states the largest amount
of energy that any player receives in the equilibrium solution. In comparison,
columns denoted min.central and max.central contain info about minimal
and maximal allocations computed centrally. They have been obtained as a so-
lution to a problem of finding vector x that maximizes the objective function:

U(x) =
1

N

N∑
n=1

un(x) (10)

subject to constraints (4)–(5). This constitutes the average players’ payoff, and
can be considered as a measure of “social” quality of the solution [13]. These
values were obtained using the, state-of-the-art, CPLEX [7] software, which ap-
plies the standard barrier interior-point algorithm to solve concave quadratic
problems (see, [7] for all details concerning the centralized solution method).

Table 2. Comparison of solutions computed for different number of players N .

instance N min.sol. max.sol. min.central max.central iterations time
10 0.061 0.13 0.021 0.15 8 6 s.
15 0.040 0.092 0.014 0.16 12 39 s.
20 0.029 0.076 0.006 0.21 9 55 s.
25 0.015 0.061 0.004 0.21 10 116 s.
30 0.012 0.048 0.003 0.193 11 216 s.
35 0.006 0.031 0.001 0.2 11 334 s.
40 0.002 0.027 0 0.202 11 492 s.
50 0.004 0.100 0 0.221 10 846 s.

The solution computed centrally typically allocates large amount of energy
to a specific car (e.g., the first client that arrived at the station), while leaving
only very little energy for other cars (they are charged just as much as needed
to satisfy their minimal demands). This can be seen as an unfair allocation. In



contrast, the equilibrium solutions (found using the proposed method) tend to
balance allocations among clients (differences between the client with the small-
est allocated charge and the one with the largest one are relatively small). This
can be seen as a fair allocation that reduces negative effects of selfishness (due
to the threat of loss of payoff that each player takes into consideration). As a re-
sult, each client usually receives significantly more than the requested minimum,
while no client dominates others in its total allocation. Here, the drawback is
that the corresponding values U(x) (average allocated energy) are strictly less
than the optimal average values computed centrally. This global performance
loss is the price paid for balancing allocations. An interesting question opens
here: what is better “unfair optimality” or “fair suboptimality.” However, this
question cannot be answered on the basis of computational optimization itself.

Moreover, Table 2 lists numbers of iterations needed to reach Nash equilib-
rium when the requested accuracy was ε = 0.01, and the computation time. The
number of iterations is almost constant, regardless of the problem size. However,
the computational cost of a single iteration raises quickly with increasing N , thus
computing the charging plans for a large number of cars can become expensive.

7 Concluding remarks

In the paper we have demonstrated practical application of theory of non-
cooperative concave games to smart energy allocation (charging electric vehi-
cles). The presented approach is distributing power “fairly though suboptimally.”
In this case, fairness means that the differences between the total amount of allo-
cated energy (to each car) are relatively small. Note that, when human decision-
making is considered, fairness is very often considered to be of great value.
Moreover, we have described a solver for computing equilibria in non-cooperative
convex/concave games with the use of primal-dual interior-point algorithm. We
have evaluated its performance for the considered vehicle charging scenario and
the results are encouraging.

Across the paper we have indicated a number of directions, which we plan to
explore. Some of them are related to the vehicle charging scenario itself, others
to the solver. We will report on our findings in subsequent reports.
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