
Utilizing Open Travel Alliance-based ontology of

golf in an agent-based travel support system

Agnieszka Cieślik1, Maria Ganzha2, and Marcin Paprzycki2

1 Department of Mathematics and Information Technology,
Warsaw University of Technology, Warsaw, Poland

agnieszka.cieslik@gmail.com
2 Systems Research Institute, Polish Academy of Science, Warsaw, Poland

{maria.ganzha,marcin.paprzycki}@ibspan.waw.pl

Abstract. Currently, we are developing an agent-based travel support
system, in which ontologically demarcated data is used to facilitate per-
sonalized information provisioning. Recently we have shown how Open
Travel Alliance golf-related messages can be reverse-engineered to create
an OTA ontology of golf. The aim of this paper is to illustrate how these
ontologies are going to be used in the system. In addition to the general
scenario, details concerning implementation of needed translators will be
discussed.

1 Introduction

Our current work is devoted to developing a comprehensive agent-based trav-
eler support system, and involves a number of sub-projects. First we have been
developing a model agent-based e-commerce system (see [2, 1], and references to
our earlier work contained there). There we study utilization of agent-facilitated
autonomous price negotiations in a general e-commerce scenario. This work was
extended to facilitate possibility of airline ticket auctioning [25, 23, 24, 20, 26].
Second, we work on creation of an agent based Travel Support System (TSS)
[18, 7, 10]. In the TSS, travelers are to obtain personalized information related
to their travel needs (e.g. favorite hotels, restaurants, etc.). The main idea of the
TSS is to utilize a central repository of semantically demarcated travel data, and
operate on it to deliver personalized information [7, 8]. While these two projects
(the airline ticket auctioning system and the Travel Support System) are being
developed separately, in [25] we have discussed issues involved in their possible
merger. Since the ontologically demarcated data is the central component of
the TSS, the two projects were conceptually merged through development of a
common travel ontology. Within the TSS, we have initially developed an ontol-
ogy of hotels and restaurants [6, 9]. In the airline ticket auctioning system we
have utilized the fact that the Open Travel Alliance (OTA) [15] has proposed a
set of messages designed to facilitate meaningful communication about travel-
related activities such as flights or golf course reservations. Here, it has to be
stressed that, while on the way to become industry standard, these messages do

not explicitly define an ontology. Therefore, in [26] we have proposed how OTA

air-travel-related messages can be used as a basis for development of an ontology
of air-travel. We have proceeded with development of such ontology and later
merged it with the existing ontology of restaurant and hotel (results—a complete
ontology of restaurants, hotels and air travel—can be found within [22]). Most
recently, following the example set forward in [26] we have shown how the OTA

golf messaging can be turned into an ontology of golf [3]. The aim of this paper
is to describe how systems utilizing the OTA ontology of golf can collaborate
with entities that utilize OTA golf messaging (and, for instance, for one reason
or another, do not work with ontologically demarcated data).

To this effect we proceed as follows. In the next section we briefly describe
OTA golf messages as well as the proposed OTA ontology of golf. Next we provide
context in which OTA golf messages and the OTA ontology of golf can interact.
Finally, we discuss how these interactions can be implemented using currently
existing technologies.

2 OTA golf messages and ontology

As all OTA messages concerning various “areas of travel,” OTA golf-related
messages come in pairs [17]. There is a request (RQ) message (a query) and,
corresponding to it, a response (RS) message. As what concerns this paper, the
OTA standard identifies three pairs of golf-related messages (detailed description
can be found in [17] and [3], Table 1):

– OTA GolfCourseSearchRQ—request for course information; used to find golf
courses that satisfy a given set of criteria,

– OTA GolfCourseSearchRS—list of courses that meet the requested criteria,
– OTA GolfCourseAvailRQ—requests information about course availability,

– OTA GolfCourseAvailRS—provides information about course availability,
– OTA GolfCourseResRQ—requests a reservation of a given golf course,

– OTA GolfCourseResRS—confirms (or denies) reservation of a given course.

These messages allow interested party: (1) to find a golf course with specific
characteristics (claimed to include all features that any golfer could think off),
(2) to check if a course of interest is available at a specific time and under a
specified set of conditions (e.g. start time, or price), and (3) to make an actual
reservation.

To illustrate the form of OTA messages, in Figure 1 we present an example
on an OTA GolfCourseAvailRQ message (see, [17]). In this message four friends
specify that they would like to play golf on June 22nd, and the requested tee-
off time is to be between 14:00 and 15:30. They are interested in playing at a
specific golf course with the identifier PL4321 (it is assumed that through an
earlier query-message they have established that PL4321 is the course that they
are interested in). The maximum price that they are willing to pay for 18 holes
is $75.00 per person. The aim of this message is to find if the PL4321 course is
available at a given time and if the price condition is satisfied.

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<OTA\ GolfCourseAvailRQ xmlns=

” h t t p : //www. opent rave l . org /OTA/2003/05 ”
xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t an c e ”
x s i : s chemaLocat ion=
‘ ‘ h t t p : //www. opent rave l . org /OTA/2003/05

OTA GolfCourseAvailRQ . xsd ’ ’
EchoToken=”12345 ”

TimeStamp=”1003−05−31T13:20:00 −05 :00 ”
Target=” Production ” Vers ion=” 1.001 ”
SequenceNmbr=”123456”>

<GolfCourseTeeTimes CourseID=”PL4321”>
<GolfCourseTeeTime Star t=”2003−10−31T14:00:00 ”

End=”2003−10−31 T15:30:00 ”
NumberOfGolfers=”4”
NumberOfHoles=”18”
NumberOfTimes=”1”
MaxPrice=” 75.00 ”
CurrencyCode=”USD”>

</GolfCourseTeeTime>

</GolfCourseTeeTimes>
</OTA\ GolfCourseAvailRQ>

Fig. 1. Example of an OTA golf course availability query message

Analysis of OTA golf-related messages (see, [3] for a complete description)
revealed that two core concepts have to be defined: (a) Golf Course—specifying
static features of a golf course (e.g. Course ID, Address, Architect, etc.) and (b)
Golf Course Tee Time—defining (dynamic) information necessary for a reserva-
tion of a golf course (e.g. Start date and time, Price, Number of golfers, etc.).
After identifying these two core concepts, taking into account the fact that we
are developing and extending an existing ontology of travel (the TSS ontology),
we have analyzed which of its parts should be re-used. As a result, in [3] we have
introduced the resulting OTA golf ontology and indicated how it is going to be
integrated with the TSS ontology.

3 Utilizing OTA golf messages and OTA golf ontology

Let us now consider how the OTA golf messages and the OTA golf ontology can
be utilized in the general context of “Internet-travel” and in the context of our
Travel Support System. Here, we have to bring forward a slightly bigger picture of
the “world of travel” that can provide a canvas for what we are doing. First, let us
assume that the OTA messaging becomes an industry-wide standard for travel-
related communication. The second assumption is that the idea of the Semantic
Web takes off as expected by its proponents, and utilization of ontologically
demarcated data starts to become a standard ([4]). Finally, let us also assume

that software agents start to play an important role in the computational fabric
(see for instance arguments put forward in [13]). Note that we do not claim that
these assumptions are uncontroversial; rather, we simply accept them as the
departure point and focus on developing a system that is going to work if they are
to be true. However, our work is also geared toward assessing feasibility of these
assumptions by attempting at implementing a system that utilizes them as its
foundation. From the three assumptions follows naturally a vision of a situation
in which at least the following stakeholders participate in travel-related activities:

– Users represented by their Personal Agents (PA); here the notion of the
Personal Agent follows the concept of “agent as a personal assistant” put
forward in [14]; to support travel needs of Users, their PAs may contact ei-
ther Travel Service Providers to obtain a specific information / reservation,
or Travel Agencies which can provide, for instance, complete travel packages
(e.g. airline ticket + car rental + hotel + golf). Obviously, in the first case
content personalization will be facilitated by the PA alone. In the second
case, it is possible that initial content personalization will take place within
the Travel Agency (note that the TSS, can be viewed as such agency), which
will utilize past interactions with a representative of a given User and, for
instance, data clustering-based stereotypes, to select and rank offers out of
existing possibilities.

– Travel Service Providers that provide information about, and facilitate reser-
vations of, specific travel entities (e.g. hotel chains, individual hotels, restau-
rants, golf course operators), as well as global reservation systems (e.g.
Amadeus). Their role is most likely going to be limited to content deliv-
ery. The only exception may be related to existing loyalty programs, which
will allow some of such entities (e.g. Mariott Hotels) to acquire, store and
utilize customer data.

– Travel agencies, which may play the same role as Travel Service Providers;
here we assume that it is unlikely that “anyone” will have access to global
reservation systems (e.g. for security reasons). They also provide integrated
services (e.g. a vacation package to Milan, consisting of: airline reservation
+ hotel + opera tickets). Their profit may come, for instance, from selling
extra services on the basis of knowledge of habits of their users (similarly to
Amazon.com suggesting additional items based on similarities of behavior of
their customers).

Let us now discuss how these stakeholders may want to store the necessary
data and in this context consider the question: will there be a single ontology of
travel. While the ideal situation is promoted by project CYC [16], where a single
ontology of “everything” is to be developed, this vision is unlikely to materialize
for a variety of reasons (e.g. multilinguality of the world, pragmatic needs of
individual players etc.). Instead, we can expect that (a) some entities will move
toward ontologies very slowly, e.g. old players such as global reservation systems,
(b) some entities will utilize domain and business specific ontologies, e.g. hotel
chains may use a combination of a “hotel as a tourist entity” ontology and “hotel

as a business entity” ontology, while have no use and knowledge of ontologies
of other travel entities, (c) Personal Agents may use simplified ontologies, that
are large enough to support their users, e.g. in such ontology concepts related to
“hotel as a place for a conference” (including capacity of meeting rooms) may
be omitted. Therefore, we can expect that different stakeholders of the “world
of travel” will utilize different data representation (ontologically demarcated, or
not). Furthermore, even if data will be stored in an ontologically demarcated
fashion, different players will use different ontologies.

These considerations point back to one of main reasons of creation of the
OTA messaging system. While each travel entity may use different data storage,
they all should be able to communicate utilizing OTA messaging. Obviously this
means that each time messages are to be exchanged, a number of translations
needs to take place:

– In the case of Travel Service Providers, incoming OTA requests have to be
translated into queries matching their internal data representation. Result-
ing responses have to be translated “back” into the OTA response messages
and send to requesters.

– We should assume that communication between the User and its Personal

Agent does not involve OTA messages. Rather, the User fills-in a form (e.g.
an HTML template) and the resulting querystring is send to the PA (see,
[5] for more details about non-agent entities communicating with software
agents). The Personal Agent takes the User -query and translates it into an
OTA request message, which can be send either to Travel Service Providers,
or to Travel Agencies. Obtained OTA response has to be translated into
the local ontology, as this is the data representation that is used by the PA

to filter and order responses (later translated into user readable form and
displayed on the user device; for more details see, [5]).

– The Travel Agency (e.g. the TSS) receives OTA requests from the User.
Some of them can be answered directly by the TSS. For instance, since in
the TSS we gather data, and keep it fresh by systematic updates, static ele-
ments such characteristics of the golf course (represented by the Golf Course

concept) can be found by querying the internal database of teh TSS. Specif-
ically, in the current design of the TSS, ontologically demarcated travel data
is kept in the Jena repository [12]. Therefore, the OTA request message is
translated into the SPARQL query [19] and executed. The result may then
either be translated into an OTA response message and send to the PA, or
further processed (e.g. to propose other travel related items that a given
User may be interested in and in this way to maximize its profit [10]). The
second possibility is that the original request requires access to Travel Ser-

vice Providers (e.g. a request to check availability of a given golf course).
Such message can be forwarded to an appropriate Travel Service Provider

to obtain the necessary data (see above). The response is then treated as if
it was obtained from the local database.

The scenario involving Travel Service Providers is uninteresting, as we can-
not speculate what is their internal data representation. Furthermore, currently

the Personal Agent is an internal part of the TSS (see [10]). Therefore, to il-
lustrate how to implement necessary translations we will focus on golf messages
and the needs of the Travel Support System. However, at this stage we have
not implemented golf-related functionalities directly within the TSS. Instead,
for testing purposes, we have implemented it as a separate sub-system and in-
troduced a number of auxiliary agents, out of which the most important one is
the Translation Agent (TA). Actions undertaken by the TA depend on received
messages and have been summarized in Table 3 (it should be obvious that the
TA, or its functions could be used directly by (or within as a sub-agent of) the
Personal Agent to fulfill its role in User support):

Table 1. TA actions depending on received messages

Message TA Actions

message TA translate from OTAGolf-
CourseSearchRQ

TA translates the OTAGolfCourse-
SearchRQ XML message to the struc-
ture Conditions

message TA translate from OTAGolf-
CourseSearchRS

TA translates the OTA GolfCourse-
SeachRS XML message to the list of in-
stances of the GolfCourse ontology.

message TA translate from OTAGolf-
CourseAvailRS

TA translates the OTA-
GolfCourseAvailRS XML message
to the list of instances of the Golf-
CourseTeeTime ontology

message TA translate to OTAGolf-
CourseSearchRS

TA translates the instances of the Golf-
Course ontology to the OTAGolfCours-
eSearchRS XML message.

message TA translate to OTAGolf-
CourseAvailRQ

TA translates the structure Map to the
OTAGolfCourseAvailRQ XML mes-
sage

message Close system action TA finishes its activity

Here, the Conditions structure contains list of objects of the class Condition and
has the form:

c l a s s Condit ion implements jade . content . Concept
{

St r i ng name ; /∗name o f the f e a t u r e (e . g . ‘ ‘ Ar ch i t e c t ’ ’)∗/
boolean r e qu i r e d ; /∗ i s g iven c r i t e r i o n i s r e qu i r ed ?∗/
S t r i ng va lu eS t r i ng ; /∗ value (e . g . ‘ ‘ Jan Kowalski ’ ’)∗/
S t r i ng ope ra t i on ; /∗ operat ion ∗/

}

Class Condition is used to specify criteria of a requested golf course (criteria
based on the OTA GolfCourseSearchRQ message). This structure is used to
generate the SPARQL query to be executed on the Jena repository.

The Map is a structure from the TSS. In the Golf sub-system it is used to
specify details of the question regarding golf course availability. Map contains
the list of objects of the class MapEntry and has the form:

c l a s s MapEntry implements jade . content . Concept
{

pr i va t e S t r i ng key ; /∗name o f parameter (e . g . ” go l fCou r se Id”)∗/
p r i va t e S t r i ng va lue ; /∗ value o f parameter (e . g . ”AW313”)∗/

}

Classes Conditions, Condition, Map and MapEntry extend class jade.con-

tent.Concept and are part of the GolfCourseOntology.

3.1 Implementing message translations

Agent TA, during the above summarized translations of messages utilizes classes
generated by the Castor and the Jastor software [21, 11]. Castor is an Open
Source data binding framework for Java. Castor’s Source Code Generator cre-
ates a set of Java classes which represents an object model for an XMLSchema.
The input file for the source code generator is an XSD file. We used Cas-
tor to generate classes for all six OTA messages (OTA GolfCourseSearchRQ,
OTA GolfCourseSearchRS, OTA GolfCourseAvailRQ, OTA GolfCourseAvailRS,
OTA GolfCourseResRQ, OTA GolfCourseResRS). Castor generates classes, not
only for messages but also for all types of their attributes. For instance let us
consider a snippet of the the XMLSchema file for the OTA GolfCourseSearchRQ

message:

elementFormDefault=” q ua l i f i e d ” ve r s i on=” 1.005 ” id=”OTA2006A”>
<xs : i n c l ud e schemaLocation=”OTA GolfCourseTypes . xsd”/>
< !−−x s : inc lude schemaLocation=”OTA GolfCourseSearchRQTypes . xsd”/−−>

< !−−x s : inc lude schemaLocation=”OTA GolfCommonTypes . xsd ”/>

<xs : i n c l ud e schemaLocation=”OTA CommonTypes . xsd ”/>
<xs : i n c l ud e schemaLocation=”OTA AirCommonTypes . xsd”/>
<xs : i n c l ud e schemaLocation=”OTA SimpleTypes . xsd ”/−−>

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>
<xs:schema xmlns:xs=” ht tp : //www.w3 . org /2001/XMLSchema”

xmlns=” ht tp : //www. opentrave l . org /OTA/2003/05”
targetNamespace=” ht tp : //www. opentrave l . org /OTA/2003/05”

< . . . appropr iate headers come here . . .>
<xs : annota t i on>

<xs:documentation xml:lang=”en”> </ xs:documentation>

</ x s : annota t i on>

<xs : e l ement name=”OTA GolfCourseSearchRQ”>
<xs : annota t i on>

<xs:documentation xml:lang=”en”> </ xs:documentation>

</ x s : annota t i on>

<xs:complexType>
<xs : s e quenc e>

<xs : e l ement name=” Cr i t e r i a ”>
<xs:complexType>

<xs : s e quenc e
<xs : e l ement name=” Cr i t e r i o n” maxOccurs=”99”>

<xs:complexType>
<xs :at t r ibuteGroup r e f=”Cr i te r iaGroup”/>
</xs:complexType>

</ xs : e l ement>
</ x s : s e quenc e>

< . . .>
</xs:schema>

We can see that within the OTA GolfCourseSearch message there is a list of
Criterion, which is an attribute that has reference to the CriteriaGroup. Now,
part of the XMLSchema file for the CriteriaGroup has the form:

<xs : annota t i on>

<xs:documentation xml:lang=”en”>
</ xs:documentation>

</ x s : annota t i on>

<x s : a t t r i b u t e name=”Name” type=”Str ingLength1to32” use=” requ i r ed”>
<xs : annota t i on>

<xs:documentation xml:lang=”en”>
</ xs:documentation>

</ x s : annota t i on>

<xs :at t r ibuteGroup name=” Cr i te r iaGroup”>
< . . . appropr iate headers come here . . .>

</ x s : a t t r i b u t e>

<x s : a t t r i b u t e name=”Value” type=”Str ingLength1to16” use=” requ i r ed”>
<xs : annota t i on>

<xs:documentation xml:lang=”en”></xs:documentation>

</ x s : annota t i on>

</ x s : a t t r i b u t e>

<x s : a t t r i b u t e name=”Required ” type=” xs :boo l e an” use=” re qu i r ed”>
<xs : annota t i on>

<xs:documentation xml:lang=”en”></xs:documentation>

</ x s : annota t i on>

</ x s : a t t r i b u t e>

<x s : a t t r i b u t e name=”Operation” type=”Str ingLength1to16” use=” op t i ona l ”>
<xs : annota t i on>

<xs:documentation xml:lang=”en”></xs:documentation>

</ x s : annota t i on>

</ x s : a t t r i b u t e>

</ xs :at t r ibuteGroup>

Criterion has attributes: Name (type String; attribute required), Value (type
String; attribute required), Required (type Boolean; attribute required), Opera-

tion (type String; attribute optional). Castor generates a class for the Criterion

with methods get and set. Let us present a fragment of such resulting class:

public class Cr i t e r i o n implements java . i o . S e r i a l i z a b l e {
/∗∗ A code represent ing the c r i t e r i on on which to f i l t e r ∗/

private java . lang . S t r i ng name ;
/∗∗ The va lue of the c r i t e r i on ∗/

private java . lang . S t r i ng va lu e ;
/∗∗ A f l a g e s t a b l i s h in g i f t h i s c r i t e r i on

must be met (va lue \ t e x t i t {Yes}) ∗/
private boolean r e qu i r e d ;

/∗ keeps track of s t a t e for f i e l d : r e qu i red ∗/
private boolean ha s r e qu i r e d ;

/∗Other operat ions to be used as the f i l t e r (e . g . GT, LT, e tc .) . ∗/
private java . lang . S t r i ng ope ra t i on ;

//− Constructors −/
public Cr i t e r i o n () {

super () ;
} //−− golfCourse . t rans l a t ion s . castor . Cri ter ion ()

//− Methods −/
/∗@return the va lue of f i e l d ’name ’ . ∗/

public java . lang . S t r i ng getName ()
{

return this . name ;
} //−− java . lang . Str ing getName ()

/∗@return the va lue of f i e l d ’ operation ’ . ∗/
public java . lang . S t r i ng getOperation ()

{
return this . op e ra t i on ;

} //−− java . lang . Str ing getOperation ()
/∗ @return the va lue of f i e l d ’ required ’ . ∗/

public boolean getRequired ()
{

return this . r e q u i r e d ;
} //−− boolean getRequired ()

/∗@return the va lue of f i e l d ’ va lue ’ . ∗/
public java . lang . S t r i ng getValue ()

{

return this . v a l u e ;
} //−− java . lang . Str ing getValue ()

/∗Method hasRequired ∗/
public boolean hasRequired ()

{
return this . h a s r e qu i r e d ;

} //−− boolean hasRequired ()
< . . . continued . . . >

In class generated for OTA GolfCourseSearchRQ are methods to get and set
list of Criteria:

public class OTA GolfCourseSearchRQ implements java . i o . S e r i a l i z a b l e {
. . .

/∗∗ Fie ld c r i t e r i a ∗/
private go l fCourse . t r a n s l a t i o n s . c a s t o r . C r i t e r i a c r i t e r i a ;

. . .
/∗∗ Returns the va lue of f i e l d ’ c r i t e r i a ’ .

∗ @return the va lue of f i e l d ’ c r i t e r i a ’ . ∗/
public go l fCourse . t r a n s l a t i o n s . c a s t o r . C r i t e r i a g e tC r i t e r i a ()
{

return this . c r i t e r i a ;
} //−− golfCourse . t rans l a t ion s . castor . Cr i t e r ia ge tCr i t e r ia ()

. . .
/∗∗ Sets the va lue of f i e l d ’ c r i t e r i a ’ .

∗ @param c r i t e r i a the va lue of f i e l d ’ c r i t e r i a ’ . ∗/
public void s e tC r i t e r i a (

go l fCourse . t r a n s l a t i o n s . c a s t o r . C r i t e r i a c r i t e r i a)
{

this . c r i t e r i a = c r i t e r i a ;
} //−− void s e tC r i t e r i a (golfCourse . t rans l a t ion s . castor . Cr i t e r ia)

All requested classes generated by Castor have method marshal and static
method unmarshal. These methods are used to convert Java classes to XML and
to transform that XML back into the Java code. Method marshal converts an
instance of a class to XML. Note using the method marshal we can transform
only instances of a class, not the class itself. We instantiate (or obtain from a
factory or from another instance-producing mechanism) that class to give it a
specific form. Then, we populate fields of that instance with the actual data.
Obviously that instance is unique; it bears the same structure as any other
instances of the same class, but the data is separate. For instance, when we want
to create the XML file from the OTA GolfCourseSearchRQ message, we have
two classes: TA GolfCourseSearchRQ and Criterion. We must create instances
of these classes and insert data into them. Here we will present only an example
of utilization of the marshall method.

// create instance of OTA GolfCourseSearchRQ c l a s s
OTA GolfCourseSearchRQ ota = new OTA GolfCourseSearchRQ () ;
// se t data to t h i s instance
. . .
// create instance of Cr i t e r ia
Cr i t e r i a c r i t e r i a = new Cr i t e r i a () ;
//put data from l i s t o f s t ruc tu re Condtion to Cr i t e r ia
for (I t e r a t o r i t e r = cond i t i on s . g e tA l lCond i t i on s () ; i t e r . hasNext () ;)
{

Condit ion cond i t i on = (Condit ion) i t e r . next () ;
// create instance of c l a s s Criter ion

Cr i t e r i o n c r i t e r i o n = new Cr i t e r i o n () ;
c r i t e r i o n . setName(cond i t i on . getName ()) ;
c r i t e r i o n . se tOperat ion (c ond i t i on . ge tOperat ion ()) ;
c r i t e r i o n . se tRequ i red (c ond i t i on . ge tRequ i red ()) ;

c r i t e r i o n . se tValue (c ond i t i on . ge tValueStr ing ()) ;
c r i t e r i a . addCr i te r ion (c r i t e r i o n) ;

}
//put instance of Cr i t e r ia to instance of c l a s s OTA GolfCourseSearchRQ;
ota . s e tC r i t e r i a (c r i t e r i a) ;
}

After that, we can convert these instances to XML:

/∗ put va lues to OTA (ob je c t o f c l a s s OTA GolfCourseSearchRQ)∗/
. . .
Writer wr i t e r = new Str ingWri te r () ;
try { /∗ convert ob je c t to stream (XML te x t)∗/

ota . marshal (wr i t e r) ;
}

catch (MarshalException e) { . . . }
catch (Val idat ionExcept ion e) { . . . }

And we get XML:

<?xml version=” 1 . 0 ” encoding=”UTF−8”?>
<OTA GolfCourseSearchRQ xmlns=” ht tp : //www. opentrave l . org/OTA/2003/05”
xm ln s : x s i=” h t tp : //www.w3 . org /2001/XMLSchema−i n s t anc e ”
xs i : schemaLocat ion=

” ht tp : //www. opentrave l . org /OTA/2003/05 OTA GolfCourseSearchRQ . xsd”
EchoToken=”54321”
TimeStamp=”2003−11−12 T10:30:00 ”
Target=”Production” Version=” 1.001 ”
SequenceNmbr=”2432”
PrimaryLangID=”en” ID=”FL4902”
Deta i lResponse=” true ”>

<Cr i t e r i a>

<Cr i t e r i o n Name=” Arch i t e c t” Value = ‘ ‘Robert Jones ’ ’ Required=” f a l s e ”/>
<Cr i t e r i o n Name=”Slope ” Value=”110”

Required=” true ” Operation=”LessThan”/>
</ Cr i t e r i a>

</OTA GolfCourseSearchRQ>

The second generator Jastor is used for work with ontologies. It generates
classes for them (like Castor for the XMLSchema). Next, we can use Jastor
to convert instances of these classes to instances of ontologies and transform
back instances of ontologies to objects of these classes. Jastor generates Java
interfaces, implementations, factories and listeners for ontologies. For instance,
for the ontology GolfCourse, Jastor has generated four files:

– interface GolfCourse extends com.ibm.adtech.jastor.Thing

– interface GolfCourseListener extends com.ibm.adtech.jastor.ThingListener

– class GolfCourseImpl extends com.ibm.adtech.jastor.ThingImpl

– class GolfCourseFactory extends com.ibm.adtech.jastor.ThingFactory

We used Jastor to generate classes for all ontologies needed in the system:
GolfCourse, GolfCourseTeeTime, Contacts, Description, Price, Fee, Address-

Record, and OutdoorLocation. For instance ontology GolfCourseTeeTime has pa-
rameters: golfCourseId (String), amount (float), currencyCode (String), start-

Date (String), endDate (String), maxPrice (float), numberOfHoles (integer),
numberOfTimes (integer), list of fees (Fee). For this ontology Jastor generates
the interface GolfCourseTeeTime with methods get/set for properties and class
GolfCourseTeeTimeImpl that implements this interface. Let us see a snippet of
this interface for the golfCourseId

public interface GolfCourseTeeTime extends com . ibm . adtech . j a s t o r . Thing {
. . .
/∗∗ Gets the ’ golfCourseID ’ property va lue
∗ @return {@link java . lang . Str ing }
∗ @see #golfCourseIDProperty ∗/

public java . lang . S t r i ng getGolfCourseID ()
throws com . ibm . adtech . j a s t o r . JastorExcept ion ;

/∗∗Sets the ’ golfCourseID ’ property va lue
∗ @param {@link java . lang . Str ing }
∗ @see #golfCourseIDProperty ∗/

public void setGol fCourseID (java . lang . S t r i ng go l fCourse ID)
throws com . ibm . adtech . j a s t o r . JastorExcept ion ;

< . . . continued for remaining parameters . . . >

Interfaces generated by Jastor for the ontology extend the interface com.ibm.ad-

tech.jastor.Thing. Classes generated by Jastor extend the class com.ibm.adtech.

jastor.ThingImpl that implements the interface com.ibm.adtech.jastor.Thing.

Work with Jastor is very similar to work with Castor. First Jastor generate
classes for the ontologies (like Castor for XMLSchema) and then we work only
with instances of these classes. We can convert instance of a class generated by
Jastor to instance of an ontology (like instances of a class generated by Castor
to XML). We can also transform back instances of an ontology to instances of a
class generated by Jastor (like converting XML to instances of a class generated
by Castor). During translation Agent TA uses classes generated by Castor and
Jastor. So the TA has only to take values from the object of one class and put
it to the object of another class.

4 Concluding remarks

In this paper we have discussed how OTA messages can be used to connect
systems that utilize various forms of internal data representation (ontological
or not). We have identified three groups of main stakeholders of the “world of
travel,” i.e. Users, Service providers and Intermediaries (e.g. Travel Agencies, or
our own Travel Support System. Next, we have discussed scenarios that lead to
communication between these three groups of players and specified what kind of
translations between OTA messages and the OTA ontology of golf have to take
place within our TSS. Finally we have discussed and illustrated on examples how
Castor and Jastor software can be used to implement necessary translations. Our
current work is devoted to merging the OTA ontology of golf and the translation
mechanisms with the existing TSS and its ontology of travel.

References

1. C. Bădică, A. Bădită, M. Ganzha, and M. Paprzycki. E-Service Intelligence—

Methodologies, Technologies and Applications, chapter Developing a Model Agent-
based E-commerce System, pages 555–578. Springer, Berlin, 2007.

2. C. Bădică, M. Ganzha, and M. Paprzycki. Journal of Universal Computer Science,
volume 13, chapter Implementing Rule-Based Automated Price Negotiation in an
Agent System, pages 244–266. Springer, Berlin, 2007.

3. A. Cieślik, M. Ganzha, and M. Paprzycki. Developing open travel alliance-based
ontology of golf. In Proceedings of the 2008 WEBIST conference.

4. D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Electronic

Commerce. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.
5. M. Gawinecki, M. Gordon, P. Kaczmarek, and M. Paprzycki. The problem of

agent-client communication on the internet. Scalable Computing: Practice and

Experience, 6(1):111–123, 2005.
6. M. Gawinecki, M. Gordon, N. T. Nguyen, M. Paprzycki, and M. Szymczak. Rdf

demarcated resources in an agent based travel support system. In G. M. et. al.,
editor, Informatics and Effectiveness of Systems, pages 303–310, Katowice, 2005.
PTI Press.

7. M. Gawinecki, M. Gordon, N. T. Nguyen, M. Paprzycki, and Z. Vetulani. chapter
Ontologically Demarcated Resources in an Agent Based Travel Support System,
pages 219–240. Advanced Knowledge International, Adelaide, Australia, 2005.

8. M. Gawinecki, M. Kruszyk, and M. Paprzycki. Ontology-based stereotyping in a
travel support system. In Proceedings of the XXI Fall Meeting of Polish Informa-

tion Processing Society, pages 73–85. PTI Press, 2005.
9. M. Gordon, A. Kowalski, M. Paprzycki, T. Pe lech, M. Szymczak, and T. Wasowicz.

Internet 2005, chapter Ontologies in a Travel Support System, pages 285–300.
Technical University of Wroclaw Press, 2005.

10. M. Gordon and M. Paprzycki. Designing agent based travel support system. In IS-

PDC’2005:Proceedings of the ISPDC 2005 Conference, pages 207–214, Los Alami-
tos, CA, 2005. IEEE Computer Society Press.

11. http://jastor.sourceforge.net/.
12. http://jena.sourceforge.net/.
13. N. R. Jennings. An agent-based approach for building complex software systems.

Commun. ACM, 44(4):35–41, 2001.
14. P. Maes. Agents that reduce work and information overload. Commun. ACM,

37(7):30–40, 1994.
15. http://www.opentravel.org.
16. http://www.cyc.com/.
17. OTA_MessageUserGuide2006V1.0, 2006.
18. A. F. Salam and J. Stevens, editors. chapter Utilizing Semantic Web and Soft-

ware Agents in a Travel Support System, pages 325–359. Idea Publishing Group,
Hershey, USA.

19. http://www.w3.org/TR/rdf-sparql-query/.
20. M. Szymczak, M. Gawinecki, M. Vukmirovic, and M. Paprzycki. Ontological

Reusability in State-of-the-art Semantic Languages, pages 129–142. Knowledge
Management Systems. PTI Press.

21. http://www.castor.org/.
22. http://www.e-travel.sourceforge.
23. M. Vukmirovic, M. Ganzha, and M. Paprzycki. Developing a Model Agent-based

Airline Ticket Auctioning System, pages 297–306. Springer, Berlin, 2006.
24. M. Vukmirovic, M. Paprzycki, and M. Szymczak. Designing ontology for the open

travel alliance airline messaging specification. In M. B. et. al., editor, Proceedings

of the 2006 Information Society Multiconference, 2006.
25. M. Vukmirovic, M. Szymczak, M. Ganzha, and M. Paprzycki. Utilizing ontologies

in an agent-based airline ticket auctioning system. In V. L. et. al., editor, Proceed-

ings of the 28th ITI Conference, pages 385–390, Piscatawy, NJ, 2006. IEEE.
26. M. Vukmirovic, M. Szymczak, M. Gawinecki, M. Ganzha, and M. Paprzycki. De-

signing new ways for selling airline tickets. Informatica, 31(3):93–104, 2007.

