
Combining software agents and grid middleware

Richard Olejnik, Bernard Toursel1, Maria Ganzha, and Marcin Paprzycki2

1 Laboratoire d’Informatique Fondamentale, de Lille (LIFL UMR CNRS 8022)
Universite des Sciences et Technologies de Lille, USTL - Lille, France

{olejnik, toursel}@lifl.fr
2 Systems Research Institute Polish Academy of Sciences, Warsaw, Poland

{maria.ganzha, marcin.paprzycki}@ibspan.waw.pl

Abstract. Recently, the Desktop-Grid ADaptive Application in Java
(DG-ADAJ ) project has been unveiled. Its goal is to provide an en-
vironment which facilitates adaptive control of distributed applications
written in Java for the Grid or the Desktop Grid. However, in its current
state it can be used only in closed environments (e.g. within a single labo-
ratory), as it lacks features that would make it ready for an “open Grid.”
The aim of this paper is to show how the DG-ADAJ can be augmented
by usage of software agents and ontologies to make it more robust.

1 Introduction

The starting point for this research was development of Grid-enabled data min-
ing software suite taking place within the Distributed Data Mining (DisDaMin)
project (for details see [4, 5]). In conjunction, the Desktop-Grid Adaptive Appli-

cation in Java (DG-ADAJ) project develops middleware platform for the Grid
that, among others, could be used as a base for deployment of DisDaMin al-
gorithms. It is the DG-ADAJ middleware that is of our particular interest in
this paper. Specifically, we discuss how some of its natural shortcomings can be
overcome by adding software agents as resource brokers and high level managers.

To achieve this goal we, first, present the DG-ADAJ project and discuss its
most important features. We follow with a discussion of its shortcomings within
an “open Grid.” In the next section we describe an agent team based broker sys-
tem and show how the two can be combined to create a robust Grid middleware.

2 DG-ADAJ Platform

Desktop Grid – Adaptive Distributed Application in Java (DG-ADAJ ) is a mid-
dleware platform for Grid computing. It aims at facilitating a Single System
Image (SSI) and enabling efficient execution of heterogeneous applications with
irregular and unpredictable execution control. In Figure 1 we present the general
overview of the DG-ADAJ architecture.

DG-ADAJ is an execution environment that is designed and implemented
above the JavaParty and Java/RMI platforms according to a multi-layer struc-
ture, using several APIs (see Figures 1 and 2). One of its important features



2

Fig. 1. DG-ADAJ Architecture.

are mechanisms based on control components (for more details of the Common

Component Architecture (CCA), see [1]) for controlling granularity of computa-
tions and distribution of applications on the Desktop Grid platform. Note that
use of components allows DG-ADAJ to be an environment for Java applications.

In addition to standard components, Super-Components have been devel-
oped to allow assembling together several components (they become inner com-

ponents of a Super-Component). Super-Components implement framework ser-
vices to manage their inner components. Specifically, connections between inner-
components are achieved the same way as connection between standard compo-
nents, while connections between inner-components and outer-components (com-
ponents outside of the Super-Component) are achieved through a special mech-
anism of delegation between inner and outer ports (see Figure 3). Finally, the
remote component is a special type of Super-Component which is implemented
using the JavaParty notion of Remote class (defined using the JavaParty key-
word remote).

DG-ADAJ runtime optimizes dynamic and static placement of the appli-
cation objects within Java Virtual Machines of the Desktop Grid or the Grid
[7]. Furthermore, DG-ADAJ provides special mechanisms, at the middleware
level, which assure dynamic and automatic adaptation to variations of computa-
tion methods and execution platforms. This dynamic, on–line load balancing is
based on object monitoring and relation graph optimization algorithms. Specif-
ically, application observation mechanism in DG-ADAJ provides knowledge of
behavior of the application during its execution. This knowledge is obtained by
observation of object activity. A DG-ADAJ application comprises two types of
objects: global and local. Global objects are observable, remote access and mi-
gratable. Local objects are traditional Java objects which are linked to a global
object. Observation of a global object corresponds to monitoring its communi-
cation with other objects (global or local). Specifically, three components are



3

Fig. 2. The layered structure of the DG-ADAJ Environment.

used for the observation mechanism: (1) the object graph, which is built using
relations between application objects, (2) the relation tracer, which stores infor-
mation concerning these relations, and (3) the observer, which is responsible for
the observation information update [8]). Observation of relationships between
objects allows also computation of object activity (local and remote) represent-
ing their load. Overall, based on observations of object activity and on their
relations, objects can be selected and moved from or to a computing node.

These mechanisms were experimented with in an earlier, built for cluster
computing, version of DG-ADAJ (see, [6]). In the new version of DG-ADAJ load
balancing takes into account also local load of each node, allowing computing
nodes to be shared between several applications.

3 Agent brokers augmenting DG-ADAJ

Let us now assume that a DisDamin application is going to utilize the DJ-ADAJ

environment to run within an “open Grid;” understood as a computational in-
frastructure consisting of nodes spread across the Internet. These nodes have
different owners (including individuals who offer their home PC) that offer ser-
vices and expect to be remunerated for their usage. In this case the Grid is
a highly dynamic structure. There are two levels of dynamicity that can be
observed. First, a given node suddenly becomes overloaded — when its owner



4

UsesPort

ProvidesPort

C2C1

SC

Ports of C1 and C2 are exposed
 through ports of SC

Fig. 3. Super-component

starts using it. Second, a given node disappears without a trace when the PC
goes down due to a current spike. Interestingly, while the DG-ADAJ monitors
performance of individual nodes and can deal with the first scenario, currently
it cannot deal naturally with disappearing nodes. Observe that this is not a big
problem in the case of a “closed Grid” e.g. in a laboratory, where all nodes are
under some form of control of a system administrator.

Furthermore, DG-ADAJ does not include methods for resource brokering
(which includes both resource description and matchmaking). While in a lab-
oratory it is possible to know in advance, which machines will constitute the
Grid, this is no the case in the “open Grid.” Here, before any computational job
is executed, nodes which will run it have to be found / selected first.

Finally, let us stress that resource brokering should involve an economic
model, where resource providers are paid for rendered services. In return, qual-
ity of service (QOS) assurances have to be provided in a form of a service level
agreement (SLA) “singed” by service-users and service-providers. These features
are currently out of scope of the DG-ADAJ project.

In response to these “shortcomings” we propose to augment the DG-ADAJ

with software agent “components.” We follow here the proposal described in [2,
3], where more details of the agent-broker system can be found. Let us start with
the use case diagram and a brief discussion of functionalities depicted there.

The main idea of the proposed system is utilization of agent teams consisting
of a number of worker agents and a leader, the LMaster agent. It is the LMas-

ter with whom user agents negotiate terms of task execution, and who decides
whether to accept a new worker agent to the team. The LMaster agent has its
mirror (LMirror agent). Its role is to be able to immediately take over — become
the new LMaster — if the original LMaster goes down. In the case of LMirror’s
disappearance, the LMaster immediately promotes one of worker agents to the
role of LMirror. Note that an agent team may assure an SLA, as in the case when
one machine/worker goes down, the LMaster is able to recognize the situation
and redirect the job to another machine (and complete it almost on time).



5

Mirror 
LMaster 
Recreation

LMaster 
Recreation

DB Agent

Negotiation

Collaboration

Request 
information/ 
propositions

Proposition 
creation/ update

CIC

Gathering 
knowledge

Job Joining <<extend>>

<<extend>>

Mirror LMaster

<<extend>><<extend>>

LMasterUser

LMaster MCDM

Definition 
conditions

Communication

LAgent

Gathering 
Knowledge

LDB Agent

LAgent 
MCDM

Fig. 4. Use Case diagram of the proposed system

For a team to be visible to potential users or team members, it must “post“
its team advertisement for others to see. In our system (following results pre-
sented in [9]) we utilize a yellow page type approach and LMaster agents post
their team advertisements within the Client Information Center (CIC ). Such an
advertisement contains information about offered resources (e.g. hardware capa-
bilities, available software, price etc.) and / or “team metadata” (e.g. terms of
joining, provisioning, specialization etc.). In this way yellow pages may be used:
(1) by user agents looking for resources satisfying requirements of their task, and
(2) by worker agents searching for a team to join. For example, worker agent rep-
resenting computational resource with installed DisDamin software, may want
to join a team specializing in solving problems utilizing DisDamin software.

Let us observe that in the case of a “closed Grid,” this agent structure can be
unchanged, though it also could be simplified. Here, instead of an evolutionary
formation of agent teams (where workers and managers pick teams/agents of
their linking), a team can be predefined by the administrator of the system.
In this case also the LMaster and the LMirror agents can be selected to run on
most stable (though not necessarily most powerful) machines. Overall, regardless
of the scenario, the proposed approach adds a level of fault tolerance to the
system and allows it to utilize Service Level Agreements and economic basis of
functioning.

In the system, user initiates the execution of the job by providing its user

agent with specific requirements such as: resource requirements—specification of
resources needed to execute the task, and execution constraints—time, budget
etc. From there on, the user agent acts autonomously. First, it queries the CIC



6

for resources matching requirements and obtains a list of query-matching teams.
Then it negotiates with LMasters representing selected teams, taking into ac-
count specified execution constraints to find the best team for the job. In the
case of a closed environment it is possible to enforce that the (only existing/pre-
defined by the administrator) agent team will execute the job.

Similarly, user can request that its agent joins a team, and specify conditions
for joining (e.g. frequency of guaranteed jobs or share of generated revenue). In
this case the user agent queries the CIC and obtains list of teams of interest;
negotiates with them, decides which team to join and starts working for it.
As stated above, in the case of a closed environment, the agent team(s) can
be predefined. Observe that in both cases the economic model is taken into
consideration.

To describe Grid resources we have decided to utilize ontologies. Unfortu-
nately, there is no all-agreed ontology of the Grid and therefore we utilize an
extremely simplified, RDF based, one [2]. What follows is an instance of that
ontology describing worker PC1541, which has 16 Intel processors running at 3.0
GHz, 1 Gbyte of memory per processor, and 5 Gbytes of disk space available as
a “Grid service:”

: LMaster3
: hasContactAID
‘ ‘ monster@e−plant :1099/JADE’ ’ ;
: hasWorker : PC1541 .

: PC2929
: a : Computer ;
: hasCPU
[
a :CPU;
: hasCPUType : I n t e l ;
: hasCPUFrequency ”3 . 0” ;
: hasCPUnumber ”16”;

] ;
: hasUserDiskQuota ”5000”;
: hasMemory ”1024”.

Note that this simplistic ontology can be relatively easily replaced by a more
realistic one as soon as such (all agreed by the Grid community) ontology be-
comes available. However, for the application like the DisDamin this ontology
is quite sufficient as it specifies all the information necessary to perform initial
distribution of data into computing nodes.

4 Combining agent-brokers and DG-ADAJ

Since agent-brokers and the DG-ADAJ are implemented in Java (recall that
DG-ADAJ has been designed to facilitate programming of Java applications),
combining them should be relatively easy. This is especially so that we have
clearly delineated responsibilities. Agent-brokers act as “top level management”



7

and are responsible for resource brokering, setting the job to be executed and
monitoring its successful completion. Components of DG-ADAJ are responsi-
ble for actually running the job. More specifically, in Figure 5 we depict how
JADE agent platform ([10]) can be incorporated into the DG-ADAJ environ-
ment. Specifically, we propose that both the DG-ADAJ and JADE share the
Java Virtual Machine and the RMI. In this way the RMI becomes the commu-
nication mechanism between the two environments.

Fig. 5. Introducing JADE agents into DG-ADAJ

Taking this into account, we envision the following scenario taking place (in
an open Grid system). User specifies the requirements for the data mining task.
The LAgents communicates with the CIC and obtains list of agent teams that are
capable of executing this job. Then—using contract net protocol—the LAgent

negotiates conditions of job execution (including the SLA) and picks one of them.
Obviously, we assume that the selected team will run DG-ADAJ and the required
application software. Information about the job is then transferred to the selected
team. This information includes, among others, information where data sources
are located. The LMaster communicates with selected LAgents in its team (uti-
lizing information about available machines—including information about work-
load obtained from the workload monitoring component of the DG-ADAJ ), and
decides which machines will be used to execute the job. Job information is send
to DG-ADAJ components on selected machines and the job is left with them to
execute. Upon completion of the job/task, the DG-ADAJ communicates with
the LAgents involved in the process. These agents confirm to the LMaster that
the process is complete (and send to it the final result-set). The LMaster, in
turn, communicates with the LAgent representing the user and completes all
processes involved in finalizing the task (e.g. payment, results transfer etc.).



8

5 Concluding remarks

In this paper we have presented the DG-ADAJ project that provides middle-
ware platform for the Desktop Grid and Grid. Our analysis indicated that, due
to its underlying assumptions, the current state of the DG-ADAJ is lacking cer-
tain features to make it robust enough for the “open Grid.” We have proposed
to augment the DG-ADAJ with agent-brokers that will take care of high-level
management functions, and with Grid resource ontology. We have also discussed
how the two can be joined in a unified system. We are currently studying the
specific way in which agent brokers can be implemented into the DG-ADAJ

system and will report our progress in subsequent publications.

References

1. I.Alshabani, R. Olejnik and B. Toursel. Parallel Tools for a Distributed Component
Framework 1st International Conference on Information & Communication Tech-
nologies: from Theory to Applications (ICTTA04). Damascus, Syria, April 2004.

2. M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, M. Paprzycki, Utilizing
agent teams in grid resource management — preliminary considerations, Proceed-
ings of the J. V. Atanasov Conference, IEEE CS Press, Los Alamitos, CA, 2006,
46-51

3. M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, M. Paprzycki, Efficient
Matchmaking in an Agent-based Grid Resource Brokering System, Proceedings of
the International Multiconference on Computer Science and Information Technol-
ogy, PTI Press, 2006, 327-335

4. V. Fiolet and B. Toursel, Distributed Data Mining, In Scalable Computing: Practice
and Experiences, Vol. 6, Number 1, March 2005, pp. 99-109.

5. V. Fiolet and B. Toursel, Progressive Clustering for Database Distribution on a
Grid, In Proc. of ISPDC 2005, IEEE Computer Society, july 2005, pp. 282-289.

6. R. Olejnik, A. Bouchi, B. Toursel. Object observation for a java adaptative dis-
tributed application platform. Intl. Conference on Parallel Computing in Electrical
Engineering PARELEC 2002, pp. 171-176., Warsaw, Poland, September 2002.

7. E. Laskowski, M. Tudruj, R. Olejnik, B. Toursel. Bytecode Scheduling of Java
Programs with Branches for Desktop Grid. to appear in the Future Generation
Computer Systems, Springer Verlag.

8. A. Bouchi, R. Olejnik and B.Toursel. A new estimation method for distributed Java
object activity. 16th International Parallel and Distributed Processing Symposium,
Marriott Marina, Fort Lauderdale, Florida, April 2002.

9. Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business-
to-Business E-Commerce Lifecycle. In: Proceedings of the WWW’02: International
World Wide Web Conference, Hawaii, USA. ACM Press, New York, USA, pp.89-
98, 2002.

10. JADE: Java Agent Development Framework. See http://jade.cselt.it


