
Informatica 40 (2016) 3–17 3

AgentPlanner – Agent-based Timetabling System

Rafał Tkaczyk
Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland
IT Systems Department of the Vemco Co. Ltd., Sopot, Poland
E-mail: rafal.tkaczyk88@gmail.com

Maria Ganzha
Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland
Institute of Informatics, University of Gdańsk, Gdańsk, Poland
E-mail: maria.ganzha@ibspan.waw.pl

Marcin Paprzycki
Systems Research Institute of the Polish Academy of Sciences
Warsaw Management Academy, Warsaw, Poland
E-mail: marcin.paprzycki@ibspan.waw.pl

Keywords: software agent, multi-agent system, timetabling, negotiations, agent-based timetabling system

Received: July 24, 2015

The aim of the paper is to describe the AgentPlanner, an agent-based timetabling system. After its ini-
tial implementation (described in [1]), based on results of experiments, we have modified the design (to
eliminate discovered shortcomings). Here, we describe the improved AgentPlanner and compare its per-
formance with the state-of-the-art, Free Timetabling Software (FET).

Povzetek: Opisan je AgentPlanner, agentni sistem za urnike.

1 Introduction

Creating a timetable is a challenging problem. On the one
hand, timetables are widely used in multiple application
areas. On the other, timetabling is an NP-hard problem. As
a result, many methods that solve this problem have been
proposed (see, section 5).

Recently, we have developed an agent-based timetabling
system and reported preliminary experimental results con-
cerning its performance (in, [1]). After the publication,
we have been contacted by the developers of the FET pro-
gram [2]. Discussions that ensued, combined with our own
assessment of the shortcomings of the initial version of the
AgentPlanner, resulted in improvements in its design. Fur-
thermore, we have made changes in the experimental setup,
to make the comparison more fair. Therefore, in the current
contribution, we present a completely new set of experi-
mental results.

We proceed as follows. In the next section we summa-
rize the state-of-the-art in timetabling. Next, we outline the
reasons that shaped the specific design of our AgentPlanner
system. We, then, describe details of its implementation. In
the penultimate section, we present the results of performed
experiments. Finally, we discuss issues related to flexibil-
ity of the AgentPlanner design and possible future research
directions / improvements.

2 Timetabling – related work

Timetabling is a common problem, which is applied in
many domains (e.g. business, industry, science, private ap-
plications, etc.). Therefore, many scientists have consid-
ered it, and many solution methods have been proposed.
Below, we summarize few most common and effective
methods for solving the timetabling problem. Let us note,
that our work concerns scheduling courses in a “college,”
and this provides the context for what follows. Further-
more, due to the lack of space, details of described methods
are omitted. Interested readers should consult references.

2.1 Heuristic methods

2.1.1 Genetic algorithms (GA)

Typical approach, used when applying genetic algorithms
to solve the timetabling problem, is as follows. A gene is
regarded as an activity, and it is associated with a group of
students and their teacher. The gene is obtained as a result
of the assignment of an activity to the teacher (who leads
the activity) and to a group of students (who participate in
the activity). A chromosome (schedule) consists of genes
(activities). The idea of scheduling is to allocate activities
in a plan (genes in the chromosome), i.e. the problem to
be solved is treated as a problem of assignment of entities
within available slots. Chromosomes prepared in this way
are evaluated against constrains and standard techniques



4 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

for evolving improving solutions are applied. More spe-
cific description can be found in [5].

2.1.2 Artificial Immune Systems (AIS)

Artificial Immune Systems (AIS) are based on the
metaphor of the natural immune system, and work by “fo-
cusing” on anomaly detection [15]. The main idea of AIS
is to operate on a population of antibodies (feasible timeta-
bles) and using proper method (immune algorithm (IA), or
a hybrid, e.g. combining IA with GA) to find and replace an
“anomalous entity” (bad timetable) with a better solution.
In [16], application of IAS to the university timetabling
has been described. Authors presented three kinds of al-
gorithms using AIS: clonal selection algorithm, immune
network algorithm and a negative selection algorithm.

2.1.3 Graph coloring

To solve the timetabling problem, edge and vertex color-
ing can be applied. (i) Vertex coloring. In this approach,
all activities are vertices. Edges indicate pairs of vertices
(activities) that cannot be scheduled at the same time (e.g.
when the same teacher leads them). The core of the method
is to perform legal coloring of the graph representing con-
flicts, where colors indicate time slots. (ii) Edge coloring.
Here, a very simple example of a possible approach is a bi-
partite graph coloring, where the first set are vertices that
present teachers and the second set presents activities. The
idea is to color this graph and (similarly as in the case of
vertex coloring) colors indicate time slots [3].

2.1.4 Simplex method

An example of using this method in scheduling we can find
in [4]. The constraints are transformed into a system of
linear equations. There are 3 main steps of solving the
problem: (i) Generate acceptable (non-negative) solution
baseline (initial). (ii) Check the optimality of the obtained
solution. (iii) If it is not optimal, generate a new basic fea-
sible solution that is not worse than the one previously ob-
tained, and check if the obtained solution is optimal. If it is
optimal, the process is completed (because better solution
cannot be found). In other words, the last obtained solution
is considered optimal.

2.1.5 Tabu Search

The basic paradigm of this heuristic method (examples of
which we can be seen in [17]) is to use the search history
(distribution of activities in the timetable) to guide the local
search approaches to overcome the problem of solver being
stuck in local optimum (repeating suboptimal results). It is
possible to combine this method with other algorithms, e.g.
with graph coloring.

Regardless of how successful are these methods, all of
them have a major disadvantage. Namely, it is practically

impossible to change an already existing schedule. Ob-
serve that, when scheduling courses at a university (which
is our application area) it is necessary not only to generate
a “high quality schedule” (where quality is judged against
one or more criteria, see below), but also to provide mech-
anisms that would allow to shift an individual class, add a
new one into an existing schedule, (ex)change rooms, etc.
Since the above described methods treat the schedule from
a “holistic” perspective, re-scheduling a single class, e.g.
for a teacher that got sick during the semester, is a rela-
tively complex task. Simply said, this is not what these
methods were created for. Obviously, such changes can be
accomplished manually, or by using additional (separate)
software, but this means that multiple approaches have to
be combined. One, to generate the “initial” schedule, and
one to manage it during the course of the semester. More-
over, the larger the input data set (and the more links be-
tween items in this set) the more complex is the problem.
As a result, the algorithms that can solve the timetabling
problem need more computational power and take more
time to complete. Note that, due to the holistic approach,
in each “step,” these algorithms treat the complete problem
at once.

Interestingly, it can be stipulated that software agents can
handle both the schedule preparation and its management,
as they are characterized by autonomy, reactiveness, and
ability to communicate / negotiate (see, [6, 12], for discus-
sion of application of agents in timetabling).

Furthermore, as will be shown, agents allow to “divide”
the problem into smaller subproblems that are solved in
each step; thus reducing its overall complexity. There-
fore, we have developed a prototype of an agent-based
timetabling system (AgentPlanner), which uses agent ne-
gotiations to create and maintain (modify) the schedule.
In what follows, we describe the AgentPlanner and dis-
cuss results of its experimental evaluation, when applied
to scheduling university courses.

2.2 Agent based methods

Before proceeding with description of the AgentPlanner,
let us summarize the state-of-the-art in using agents in
timetabling. We found a few agent based systems (some
of them are described in [12]) that are used for planning in
logistics, production, defense and insurance sectors, e.g.
a scheduling system for taxi companies ([13]) or hospi-
tals ([14]). Obviously, some of them could be reorganized
for school timetabling, but it would be difficult because
they are designed to solve a specific problem. However,
there are also agent-based systems, designed specially for
timetabling.

Authors of [9] use a divide-and-conquer approach, com-
bined with software agent technology. Timetabling Agents
generate initial solutions, where each agent is responsible
for the solution of a specific subproblem. Every agent uses
a different heuristic. It is a big advantage, because this ap-
proach can apply proper heuristic (appropriate to the spe-



AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 5

cific problem). Moreover there is a Mediator Agent, guard-
ing that all plans are arranged, while satisfying predefined
criteria and constraints. Test data is divided into three cat-
egories: small, medium and large, and the large dataset(s)
are actually big enough to be considered realistic (match-
ing the actual situation at a university). Unfortunately, it is
not described how complex are the links between the items.
For example, in our test data, students can belong to mul-
tiple different groups (obligatory, elective, language group,
etc.), thus avoiding a collisions of students’ activities is im-
portant (but relatively difficult).

Paper [10] describes a similar approach as [9], but there
are three types of guarding agents. The first is making sure
that the generated sample solutions comply with the main
requirements (no collision for trainers, only one class in
one room, etc.). The second type agents is guarding “hard”
constrains. The third type of agents guards the “soft” con-
straints (good to have, but not necessary). The number
of second and third type of agents depends on the spe-
cific course timetabling problem. System can work in two
modes: (i) where second and third type of agents evaluate
proposals of the first type, and (ii) where second and third
type of agents try to improve proposals put forward by the
first agent. Unfortunately, in the paper the test data is not
well described; just the grid of 5 days and 9 time units are
specified, that gives much more space where the solution
can be found than in our research (5 days x 6 time units).
According to the author “the results are promising” but it
is not possible to verify them because there are no actual
results in the paper.

Author of [11], is firstly looking for any matching so-
lution and then optimizes it. In the proposed approach, a
larger number of agents types (than in the above described
papers) is proposed. Almost every element in the plan has
an agent representing it: CourseAgent, TeacherAgent, Stu-
dentAgent, RoomAgent. A potential disadvantage of this
approach is that the more data is to be passed around, and
the larger the number of agents in the system, the larger
is the number of messages that are to be exchanged. This
causes two possible problems: (i) an increased chance of
a bottleneck, and (ii) problem of synchronization of com-
munication and actions of the system. In the paper, author
showed results when 40 agents were used. However, this is
rather a small problem, and does not show any conclusive
results concerning scalability of the proposed approach.

Overall, papers [9, 10, 11] describe very interesting ap-
proaches to application of agents to timetabling, but their
are not well tested. Number of “elements” in the test data
is not large and not complex enough to mimick real-world
situations. Furthermore, during the our research we stum-
bled upon many papers of this kind; interesting approaches
tested on non-realistic data sets, so we will omit them here.

There exist approaches similar to the AgentPlanner. Ne-
gotiation involving teachers’ time preferences have been
used in [19]. Here, authors use four classes of agents:
(1) Teacher Agents, (2) Classroom Agents, (3) History
Agent, and (4) two Interface Agents. The role of the In-

terface Agents is to initialize other agents based on the user
setup. The core of the algorithm is negotiations between
Teacher Agents who send propositions (prepared on the
basis of Teacher preferences) to proper Classroom Agents.
They consider the proposals, with help of the History Agent
that contains information about all timetables and allows
detection of collisions. The size of the dataset is impres-
sive (but there is no description of its complexity) and re-
sults are very encouraging. Unfortunately it is not possible
to compare effectively these results with our approach (de-
scribed below) because authors adopted a different evalu-
ation criteria. They focus on number of sent and analysed
messages, which guarantee the speed of the system. Teach-
ers’ time preferences are used in scheduling but authors did
not check if they have been actually fulfilled (to what ex-
tent).

Similar approach to result evaluation present authors
of [20]. In their work, every weekday is a different plat-
form, where Course Agents are run. They negotiate with
each other (via a SignboardAgent – a coordinator that helps
find a free time slot). Primary results found in the paper are
that using a distributed architecture is better than a central-
ized one, because of reduction of run time.

Finally, work reported in [21] shows that many agent
based systems do not deal with re-scheduling of an exist-
ing schedule (e.g. system presented in [20]). To deal with
the problem, authors use the Probability Collective theory.
Their experimental results are promising, but they cannot
be naturally compared with our approach as they (again)
have different criteria of evaluation (e.g. time of running
having various sets of data or evolution of the probability
collective).

Summarizing, results of our research into the state-of-
the-art in timetabling have revealed three groups of results.
First, large number of “global” approaches to finding the
optimal schedule. Here, their main disadvantage is a diffi-
culty to modifying the schedule in response to the changes
that occur during its realization. This latter feature is par-
ticularly important when dealing with real-world schedule
that has to run during a semester at a university / school /
college. Second group involves agent-based solutions that
were not properly tested, or tested on data sets that were
“not complex enough” to represent real-world situations.
Finally, agent-based approaches that were somewhat simi-
lar to our approach, but in their design and experiment fo-
cused on different aspects of timetabling than what was our
main goal.

3 AgentPlanner – preliminary
considerations

The most important attribute of our approach is take into
account teachers’ time preferences. In this context, we
have started our work by analysing the real needs of fac-
ulty members of the Mathematics, Physics and Informatics
Department of the University of Gdańsk.



6 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

The results of completed analysis allowed us to spec-
ify the requirements for the development of our agent-
based course scheduling system (the AgentPlanner). First,
the AgentPlanner has to deal with both scenarios: (1) to
develop a timetable of academic courses in accordance
with specified restrictions (creation of a new timetable),
and (2) to manage it; i.e. be capable of making re-
quested changes / modifications in the existing class sched-
ule (timetable maintenance). It is important to note that
the selected application area: scheduling of courses at a
university, has guided formulation of functional and non-
functional requirements for the developed system. Univer-
sity course scheduling means that, in addition to creation of
an initial course schedule for a given semester, the Agent-
Planner has to be able to deal, among others, with: change
of location(s) of selected laboratory groups / lectures, sick-
ness of a teacher (i.e. rescheduling missed classes for a
later date), adding new activities (e.g. an unscheduled ex-
amination caused by multiple students failing the first at-
tempt), etc.

After analysing the actual scheduling process that takes
place at the University of Gdańsk, it was decided that only
the Planner (human system administrator) will be able to
run the AgentPlanner to create the timetable. In addition,
the Planner is going to be the only person who will be au-
thorized to make schedule changes in the database (in par-
ticular, during the timetable maintenance phase).

In the AgentPlanner we have introduced some restric-
tions on the implemented functions. In this way we were
able to focus on core functionality and complete experi-
mental evaluation of our approach. In this way, after the
initial course schedule is created, both the Planner and the
teacher can send two types of requests: (a) to insert a new
activity (group exercises, laboratory, lecture), requiring re-
organization of the plan, and (b) to change location of, al-
ready scheduled, activity(ies). Observe that both types of
requests may impact other teachers. Hence, the proposed
rescheduling (resulting from the work of the AgentPlanner)
has to be negotiated with those teachers that are affected by
the changes. In the current version of the AgentPlanner, to
complete a change of the existing timetable, all affected
teachers have to agree. Here, for the time being, we do not
take into account the fact that the teacher may be forced to
accept a change (e.g. by the Dean), and assume benevo-
lence of teachers.

Analysis of the actual course scheduling process lead to
the following extra requirements for any system similar to
the AgentPlanner. (1) Scheduling should be completed in
a reasonable time. (2) Used algorithms must be designed
so that the system can be used on computers with limited
power (i.e. personal computers). (3) The timetabling sys-
tem should be easy to install (use well-known and well-
documented software). (4) Ease of use (simplicity of the in-
terface) is very important. (5) Timetable requires visualiza-
tion both in the printed form, as well as in a form that can be
sent to the website (to be displayed). Therefore, the system
should have various data converters; from the database rep-

resentation of the schedule, to the appropriate file formats.
(6) The scheduling system should be reliable and resilient
to possible errors. (7) For obvious reasons, data security
is extremely important. Finally, (8) the timetabling sys-
tem should be portable between various operating systems.
This context let us stress, again, that the aim of our current
work was not to develop a full-blown system. Therefore,
the above “extra requirements” have been mostly omitted.
For similar reasons, we have not considered the require-
ments involved in implementing the AgentPlanner on mo-
bile devices (which may be a very useful – or ever required
– functionality for an actual system).

Based on conversations with actual faculty members of
the University of Gdańsk, we have formulated the initial
“scheduling goals” for the AgentPlanner. As a result, the
system aims at: (i) minimizing the number of days of teach-
ing, and (2) locating activities as close as possible to each
other (i.e. no big gaps between activities, resulting from
some classes taking place in the morning and the remain-
ing ones in the evening). However, it is also possible to
control this process by incorporating teachers’ preferences
(for both: teaching days, and selected time-slots). Specifi-
cally, the teacher can rank her preferences concerning days
of the week by assigning natural numbers from the inter-
val [0, 4], where 0 is considered to be “unacceptable” and
4 represents “the best option”. Similar approach applies to
ranking time-slots (each of them can be ranked individu-
ally; in this way we can capture preferences such as: I like
to teach in the morning vs. I hate to wake up early). In this
case, the interval depends on the number of time units per
day (we consider [0, 5]). It has to be noted that, in the cur-
rent design, there is no restriction on the number of teach-
ing activities during a single day. Therefore it is possible
for a teacher to have classes “all day long” (e.g. 5 courses at
a given day; and no classes for the rest of the week). While
seemingly unreasonable, this does reflect the actual pref-
erences of faculty members. It is worth to mention that, in
Polish universities, single lesson last 45 minutes while time
unit usually consists of two lessons, i.e. 90 minutes.

It is very important to adopt some constraints that pre-
vent input data that makes it impossible to create a plan, or
that causes a negative, unreliable results of the evaluation
function. Here, we have identified key steps of proper rep-
resentation of time preferences (we have also utilized them
when preparing the test data).

(1) All default (undefined by teacher) time units in the
schedule are set to the highest possible rank (e.g. 5 for a
day consisting of 6 time intervals).

(2) Teacher should consider, which time units are “the
best option” for her/him and leave them without changing
rank. Minimum number of highest ranked time units de-
pends on the number of the teacher’s activities.

(3) Next step is to set ranks less than the highest but
higher than 0, represented as natural numbers from the
interval [1,HIGHEST_RANK− 1], where 1 means that
her/his presence is possible but inconvenient. Proceeding
in this way teacher can affect allocation of his/her activ-



AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 7

ities. As a result there is higher probability to achieve a
plan that is better than when one does not make such pre-
cise specifications.

(4) Teacher should carefully consider, which time units
are “unacceptable” for him/her and rank them as 0. How-
ever, it is obvious that the more zeros, the more difficult
the problem becomes. Therefore, the teacher should use it
only if presence is really impossible at that time.

As far as the representation of interests of students is
concerned, the prototype takes into account (what we be-
lieve to be) the key aspects of a plan: minimization of col-
lisions of courses, number of days of instruction, and gaps
during the day. However, we have to admit that the current
version of the AgentPlanner has been implemented with
primary focus on teacher satisfaction.

Finally, in the current version of the AgentPlanner sys-
tem, the timetable is created for a single department, lo-
cated in a single building.

3.1 AgentPlanner as an agent-based system

Recall that the AgentPlanner has been conceptualized as an
agent system. On the basis of the requirements analysis, we
have envisioned it as depicted in Figure 1.

Figure 1: AgentPlanner use case diagram.

Here, we recognize the two main functions of the sys-
tem, the Creation of a new timetable, and Timetable man-
agement, as well as a number of additional functions
needed to complete the two main ones. The current design
of the system has only two “external” actors: the Planner
and the teacher. In the future, one may need to include in
the design also the student actor, but this would lead to a
system that is out of scope of our current work. Analysing
functional and non-functional requirements of the Agent-
Planner system, we have came to the conclusion that it
should consist of the following agents:

– BootAgent, with the only task to create and start other
agents that are required in the AgentPlanner system.

– DatabaseAgent, responsible for connection the sys-
tem with database. All agents have access to data via
the DatabaseAgent. This agent was found to be re-
quired to streamline and organize access to the data
stored in the database.

– RoomsAgent represents rooms in the scheduling pro-
cess. It downloads (from the database), filter and store
data about rooms in the system (e.g. type of every
room, seating capacity, etc.).

– TeacherAgent acts on behalf of a teacher (both during
creation and management of the timetable). It stores:
(i) information about the teacher (including personal
data that has to be protected), (ii) list of activities
(courses / groups) taught by the teacher, (iii) list of
rooms (meeting the requirements of each group and
course, e.g. laboratory group has to be scheduled in a
laboratory); obtained from the RoomsAgent), (iv) re-
sults of the location evaluation function (described in
Subsection 4.1), and (v) teacher’s current timetable.

– ScheduleAgent is the central agent of the negotia-
tion algorithm. It “knows” teachers involved in cur-
rent negotiations (TeacherAgents that represent them).
It also has access (read and write) to the timetable
database (via the DatabaseAgent). Note that, all data
concerning the currently considered timetable, is (af-
ter each change) saved in the database. This allows
the ScheduleAgent to effectively issue verdicts, which
room should be assigned to which requesting teacher
(as it knows which rooms are already occupied and
which are still available). Note that we are aware
of the fact that, in a very large scheduling problem,
the ScheduleAgent may become a bottleneck. How-
ever, solving this problem is out of scope of the cur-
rent contribution. This is especially the case since the
time to calculate the schedule for the (realistic) size of
data used in our experiments was acceptable (it took
about 1 minute to complete the scheduling task; after
all agents were started and provided with their input
data).

The negotiation process is between ScheduleAgent (a
judge) and TeacherAgents (representing teachers) but not
between TeacherAgents. Obviously, it is centralized model,
where it is possible to run into a bottleneck (caused
by limited processing capability of the ScheduleAgent;
see, above). However, observe that very complex, time-
consuming, negotiations take place only once – during
early phases of creation of the initial schedule. This is “ac-
ceptable” as the time-pressure is, usually, not too-serious.
At the same time, adaptations to the existing schedule,
which take place during the semester do not take long time,
as they involve only small number of agents (representing
teachers affected by the required change(s)).



8 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

It is easy to note that the DatabaseAgent and the Room-
sAgent did not have to be implemented as full-fledged
agents. For instance, they could have been designed as
FIPA-style services [23]. However, we have decided (for
the simplicity and uniformity of implementation) to use
agents “across the board”. Acknowledging that this deci-
sion may seem somewhat controversial, we believe that our
choice of an implementation method (i) has merit, and (ii)
does not influence the experimental results supporting our
approach (quality of the obtained solution).

4 Implementation of the
AgentPlanner

Based on the above considerations, we have decided that
the AgentPlanner should be implemented as a client-server-
type system, where all operations concerning generation
and maintenance of the timetable are going to be executed
as an agent-based server application, while the client com-
ponent will be responsible only for sending requests and
reviewing / accessing results. It is important to keep in
mind that access to the database is allowed only on the
server side of the application, so every request of the client,
or any other agent in system, has to be handled by the
DatabaseAgent. This decision was based on the fact that,
our software of choice (the JADE agent platform), does not
provide a robust GUI for user interfaces. Therefore, follow-
ing advice found in [8] we have decided to clearly separate
the agent and non-agent functionality. Furthermore, in the
current version of the prototype, the client application is
simplified to a “line interface,” while the server applica-
tion has only functionalities needed for the two timetabling
operations (schedule creation and maintenance). All data
needed for the tests was inserted manually to the database
via SQL scripts, or other scripts written for this purpose.

4.1 Evaluation algorithm
The core of the timetabling mechanism is the evaluation
algorithm. Here, the TeacherAgent(s) evaluate the loca-
tions (room information received from the RoomsAgent)
that best match the need of the teachers. The evaluation
algorithm must takes into account: priority of course and
lecture, links of students with other groups, teacher prefer-
ences, and the current state of the timetable. Overall, ev-
ery activity has an assigned priority, which describes how
important it is for the teacher (e.g. a lecture may have
higher scheduling priority than a laboratory). Furthermore,
some courses are “more important” than others, e.g. a core
course may have a higher rank than an elective (all students
have to take the core course, while they may sometimes be
“forced” to take a different elective – to avoid course colli-
sion(s)). Moreover, courses related to the major (e.g. in our
case, CS courses) have higher rank than non-major ones
(e.g. psychology courses). Separately, when considering
the current timetable, priority is given to activities that can

be assigned in the time-vicinity of the already scheduled
ones. In this way, the total number of gaps in the schedule
of the teacher (and possibly students) can be minimized.
The evaluation algorithm works as follows (1). The current

Data: S = priority_of_course * 10 + links_number
if day_priority or time_slot_priority is equal 0 then

do not add room from this time slot to the list
else

S := S * day_priority * time_slot_priority;
if there are other lessons in this day then

S:= S+5
end
if there are other lessons around time_slot then

S:= S+5
end

end
Result: S

Algorithm 1: Evaluation Algorithm.

version of the evaluation algorithm is quite different from
the one reported in [1]. The initial value is the sum of the
activity priority (multiplied by 10, because in this way, in
the experiments, we have received better results) and the
number of all groups, to which students from this activity
belong. This should be understood as follows: the more
links / dependencies between data elements, the harder it
is to put the activity in the plan, because the algorithm has
to avoid collisions between connected groups. Therefore,
the most complex situations should be resolved in the first
place. The next step is to consider the most important fac-
tor, the teacher’s time preferences, i.e. rank of day and time
unit. If one of them is equal 0, that means that the teacher
cannot lead activity at that time, and function does not add
this location to the list. The last element is the evaluation of
the “vicinity”. It is important to reduce the “time gaps” in
the plan. Therefore, to place an activity between two others
is the highest ranked situation.

4.2 Timetable planning algorithm
Let us now consider creation of a new timetable. Re-
call, that the approach is based on a single “judge” (the
ScheduleAgent), having access to the current timetable
(which initially is empty). The ScheduleAgent negotiates
the timetable with the TeacherAgent(s), using information
obtained from the RoomsAgent. Negotiations are divided
into rounds (since in each round at least one activity is
places in the schedule, their number is not larger than the
total number of all “activities” – courses / exercise groups /
laboratories – of all teachers). Due to the lack of space,
we omit the pseudo-code (it is about 4 pages long and
can be found in [22]). The general idea of actions that
are performed in a single round is depicted in figure 2.
Each round begins with the start signal (message) from the
ScheduleAgent to the TeacherAgent(s) (that still have activ-
ities to allocate). During a single round, every TeacherA-
gent considers an activity from the list of all teacher’s activ-



AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 9

Figure 2: General schema of single round (sending propos-
als).

ities (initially sorted according to the priority of the activity
type) and selects the “most important one”. If activities list
is empty then the TeacherAgent sends to the ScheduleAgent
a message that it resigns from further negotiations. If not,
the next step is to prepare a list of rooms acceptable for the
considered activity and sort them according to the results
of the evaluation algorithm (1). The TeacherAgent selects
the most desirable location and sends the proposal to the
ScheduleAgent. The proposal consists of: (i) symbol of
the activity, (ii) number of the week day, (iii) number of
the time slot, (iv) result of the evaluation algorithm. When
all TeacherAgents send their proposals, the ScheduleAgent
considers them and accepts the best (placing these activi-
ties into the current timetable), while rejecting others. Note
that, in the current version, we omit the case when one (or
more) TeacherAgent(s) do not send their proposals. While,
in general, this is an important issue for the design of agent-
based distributed systems, handling such anomaly is out of
scope of our current work. The decision to accept a re-
quest depends on two factor: (1) is the requested location
already occupied by another activity, and (2) does a given
request involve course collisions. Obviously, it is possible
that multiple TeacherAgents may ask for the same location.
In this case, the ScheduleAgent selects the one that delivers
the best value of the evaluation algorithm. It is also possi-
ble that proposals from multiple TeacherAgents “have the
same value”. In this case, the ScheduleAgent draws a win-
ner (randomly). Next, the ScheduleAgent sends messages
to the TeacherAgents, about rejected proposals. Then, the
TeacherAgents select the next best location from the list,
and create proposals for the ScheduleAgent. If all of its

proposals are rejected, then TeacherAgent resigns from the
given round of negotiations. The result of this decision is
recorded in the database for the information of the Planner.
The round ends when every TeacherAgent gets a place for
its activity, or when some unscheduled requests cannot be
satisfied. Note that, in a single round, the total number of
evaluated requests is equal to the number of teachers with
unscheduled activities and thus is relatively small and sys-
tematically decreasing (when at least some teachers have
their schedules complete).

Observe that this approach is based on the assumption
that all teachers have the same chances. This is because, in
a single round, every TeacherAgent can reserve one perma-
nent place for one of its activities. For example, if a pro-
fessor has two seminar lectures, while an assistant has two
exercise groups, then in the first round each one of them
will “book” a room for one of their activities (regardless
of their position in the academic hierarchy). However, it is
not clear if such democratic approach would be sustainable
in the real-life university course scheduling. If this was
not the case, then the structure of academic dependencies
(who, in a given moment, is more important than others)
could be represented, as weights, in the evaluation func-
tion. However, exploring this possibility is out of scope of
our interests.

Before the beginning of the next round, the Sched-
uleAgent receives messages from the TeacherAgents with
resignations from the given round of negotiation. In re-
sponse to these messages, it suspends the main thread of
negotiations, and runs the timetable reorganization algo-
rithm (see subsection 4.3) to deploy the rejected activities
into the current schedule.

It could happen that the reorganization (adding new ac-
tivity) is impossible, then the activity is added to list of
rejected activities, for inspection by the human Planner. In
this case, the Planner has to figure out how to improve the
input data, e.g. to change the time preferences of teacher
(e.g. by contacting her/him directly). After the schedule is
reorganized and, previously rejected proposals are added,
the ScheduleAgent returns to the main thread and starts the
next round of negotiations. Thus, the timetabling algorithm
continues from reception of the next group of proposals
from those TeacherAgents that still have unscheduled ac-
tivities. The sequence diagram of the timetable planning
process is represented in figure 3. After an extended anal-
ysis of results reported in [1], we have made an important
modification to this algorithm, aimed at eliminating colli-
sions among student activities. Originally, during the ne-
gotiations, student collisions were checked against groups
that were already inserted into the timetable, but not against
the remaining groups that were involved in the given nego-
tiation step. To deal with the collisions, we have decided to
sort all proposals according to the results of the evaluation
algorithm (see, section 4.1) and insert activities iteratively
beginning from the top of the list. However, before insert-
ing an activity into the plan, we now check for possible
collisions between student activities and if there are any,



10 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

Figure 3: Timetable planning algorithm sequence diagram.

we reject such proposal. This approach slows the progress
of timetabling, but thanks to it we can generate timetable
with no collisions between student activities.

4.3 Timetable reorganization algorithm

The timetable reorganization algorithm is used in two sit-
uations. First, when in a single round, all proposals of the
TeacherAgent (concerning a given activity) were rejected
by the ScheduleAgent. Then, the ScheduleAgent, has to
find a place for such activity in the current timetable. Sec-
ond, during the timetable maintenance phase, when the re-
quested changes require schedule reorganization.

The list of activities that require adding, via the timetable
reorganization algorithm, is based on messages received
from the TeacherAgents and stored (by the ScheduleAgent)
in the rejected activity list (and ordered according to their
priority). The ScheduleAgent considers these messages one
by one.

When the TeacherAgent T1 wants to take location that is
occupied by the TeacherAgent T2, then the ScheduleAgent
sends to the T2 a message with a proposal of release this lo-
cation. Then, the TeacherAgent T2 requests a new place for
its activity. If it succeeds, the TeacherAgent T2 accepts the
proposal and the TeacherAgent T1 can book the requested
room for its activity. If not, the TeacherAgent T1 has to find
another place. Here, it is assumed that all TeacherAgents
are cooperating and all have a chance to put all activities in
the timetable, even in a “conflict situation”. Furthermore, a

simple mechanism that prevents this phase from reaching a
deadlock (when all agents depend on others releasing their
rooms, “in a loop”) is applied by the ScheduleAgent. In
the pessimistic situation (very difficult input dataset), ac-
tivity may find no place. In that case, the algorithm can-
not deal with it and the Planner (human being) is informed
about the situation, and has to change the dataset (e.g. by
convincing a teacher to change preferences) or to put the
activity manually into the schedule.

On the other hand, when making changes in the exist-
ing plan (during the semester) owner of the TeacherAgent
T2 would receive a request to accept the proposed change.
Obviously, in this case, success of the schedule adjustment
depends in large part on the benevolence of the involved
instructors. However, let us recall that, for the time being,
we assume such benevolence.

4.4 Technologies used in the implementation
The following technologies were used to implement the
AgentPlanner:

– Agent platform: JADE (version 4.3.0) [7]

– MySQL database 5.1.69 [24]

– NetBeans 7.0.1 [25]

5 System testing and analysis of
results

5.1 Test data
The test data used in our experiments was prepared on
the basis of the actual organizational structure and room
base of the Mathematics, Physics and Informatics Depart-
ment of the University of Gdańsk (UG MFI). To evalu-
ate the efficiency of the proposed method, the results ob-
tained by the AgentPlanner were compared with these pro-
duced by the Free Timetabling Software (FET, version:
5.19.1) [2], which uses the GA. Each software solved the
same timetabling problem.

The problem involved 5 days (Monday-Friday), each
consisting of 6 time slots, and the building with 21 rooms,
which results in a “grid” that contains 630 locations. There
were 301 activity groups (62 courses, comprising total of
734 students). While it may seem that there is “a lot of
space” to allocate activities, constraints imposed by the
teachers and the student grouping limited this space consid-
erably. Specifically, time preferences of 78 teachers were
the main limiting factor, without it, both algorithms would
find a solution without any problem (for the grid: 5 days
x 6 time units x 21 rooms). Moreover, the problem is
more difficult, because connections between students and
groups are very complex, primarily due to the possibility
of choosing elective courses. For example, a single stu-
dent can have a few core courses (consisting of lectures for



AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 11

all students and exercises/laboratories for student groups)
and (s)he has to choose a few elective courses (like facul-
tatives, language(s), seminars, etc.). The most difficult sit-
uation involved an activity that consisted of 120 students,
who belonged to 107 other activities. In this situation, the
timetabling algorithms have to allocate these 107 activities
in the schedule without collisions (for both teachers and
students) and additionally take into account teachers time
preferences.

Let us now stress that the input data and the setup of
the FET system, reported in [1], was based on the actual
settings used in the UG MFI department. Interestingly, the
obtained results were not very impressive. However, after
the publication, a co-author of the FET system contacted
us and shared insights and advice how to setup the FET
system better. Let us now make a few comments about the
specific issues in experimental setup of the AgentPlanner
and the FET.

First, it is important to explain, why we could not set
100% of constraints in the FET. In general, during prepa-
ration of the data for both systems (FET and AgentPlan-
ner) we tried make them most similar. We have set up
subjects, activities (with tags), subactivities, rooms (re-
call that we solve the problem for one department and one
building only), teachers, students (assigned to activities).
The AgentPlanner has been already designed to resolve the
most important (hard) constraints like elimination of colli-
sions, minimization number of days of instruction and gaps
during the days. The only light constraint, we took into ac-
count, were time preferences, because they are the core of
the AgentPlanner algorithms. The AgentPlanner takes into
account teacher’s time preferences by using ranks. In the
FET we have similar option but we can only set the time
units when teacher cannot lead any activity, and we have
used this option. However, in the FET it is impossible to
make a more specific ranking of teacher preferences.

It is worth mentioning that there is significant difference
between the AgentPlanner and the FET rank function. In
the AgentPlanner we can describe the time preference of
teacher using sets of natural numbers: (1) [0, d] where d is
maximum number of days, and describe the best option for
the teacher, while 0 means that the teacher absolutely can-
not have an activity in that day; (2) [0, t] where t is maxi-
mum number of time units during the day, and describe the
best option for the teacher, and 0 means that teacher abso-
lutely cannot have an activity in that time. In the FET, we
can set the rank for only the time units, when the teacher
cannot have an activity. Actually it is possible to describe
the percentage value number that describes the time unit,
but it is only one and we can use it to describe any time.

The next important issue is preparation of the student test
data. In the AgentPlanner, we can describe students group
as activity and link with it any single student that belongs
to it. Due to this setup, it is very easy to detect the collision
of an activity, which we try to insert into the schedule. It is
possible to use similar solution in the FET. We are able to
create 3 types of groups: years, groups, subgroups. In [1]

we understood it literally, so set of students was divided
into years (IT, Math), groups (as a lectures of subjects) and
subgroups (as a parts of lectures from groups). This ap-
proach prevented linking students individually with groups
and reduced the potential for effective detection of colli-
sions. As a result, we have decided to prepare 2 types of
groups, similar to the AgentPlanner: first contains activities
of subjects, while in the second the students that are linked
directly to these activities. As a result, the FET achieved
much better results and effectively eliminated collisions be-
tween student activities. We plan to suggest this approach
to the Planner at the Mathematics, Physics and Informatics
Department of the University of Gdańsk.

5.2 Comparison metrics
Note that the AgentPlanner is being designed with focus
on the “human factor” (convenience of teachers and stu-
dents). In this way it differs from most approaches reported
in work summarized in Section 2.1. Therefore, we have
constructed a teacher and a student satisfaction functions
that estimate satisfaction of this criterion. The teacher sat-
isfaction is represented by the following formula:

ST =
s ∗ 100
a ∗ n ∗m

(1)

where: a is the number of activities of a teacher in a given
semester, n is highest rank assigned to any day, m is the
highest rank assigned to any time slot. Furthermore, s is
the sum of evaluations of all time units of all activities of
teacher, obtained by using formula 2.

s =

n−1∑
i=0

m−1∑
j=0

D[i] ∗ T [i][j] (2)

Here, D[i] represents the evaluation of each day of the
schedule, while T [i][j] (formula 3) represents evaluation
of each of time slots assigned in the schedule of that day.

T [i][j] =

{
< 0,m > teacher’s evaluation of time unit
0 when teacher has no activity

(3)

In other words, in the numerator we represent the actual
time slots assigned by the planing software, while in the
denominator we represent the best potential schedule. In
this way we introduce a measure that allows us to capture
satisfaction of the teacher represented as a percent of the
schedule that would be an ideal one.

The student satisfaction is assessed as follows. We start
from 100% satisfaction and subtract: (1) 10% for one col-
lision between the desired activities, (2) 10% for two col-
lisions, (3) 20% for more than two collisions, (4) 10% for
one extra gap between activities (we allow for one gap dur-
ing a day), (5) 10% for two extra gaps, (6) 20% for more
than two extra gaps, (7) 10% for one additional day (the
situation when there is more days than necessary), (8) 10%
for more than one additional day. Assessment of student



12 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

satisfaction was conceptualized in this way, as it is impos-
sible (at least in the current version of the AgentPlanner) to
include in the process (and aggregate in some way) individ-
ual preferences of each student. While somewhat artificial,
we believe that this function gives a reasonable way of as-
sessing student satisfaction. Obviously, values 10%, 20%
etc. are arbitrary ones, but they allow us to quantitatively
capture the quality of schedule (seen from the student per-
spective).

5.3 Analysis timetable creation
Because the FET uses genetic algorithms, every generated
schedule is different. Therefore, to get a reliable results of
the test, we decided to run it 100 times and, in what fol-
lows, we report the best results for both teachers and stu-
dents. In other words, each time we present two outcomes
obtained by FET. This has to be done in this way because
(in all reported cases) the best schedule for teachers is not
the best one for students. In the case of the AgentPlanner,
there is only one result (for the given set of test data). This
is different than in the case of the results reported in [1],
since we have resigned from the random factor used there.
In Figure 4 and Figure 5, we depict the schedule satisfac-

tion results, for all 78 teachers, originating from the Agent-
Planner and two results for the FET (the best result for the
teachers and for the students). We can see that the teachers
achieved higher satisfaction in the case of the AgentPlan-
ner results. We compared the results with the average, the
best, and the worst result of all test runs of the FET. The
more specific conclusions follow. In Table 1 we can see

Runs Average Max. Min.
AgentPlanner 98.03% 100.00% 66.67%
FET (all) 93.16% 100.00% 30.00%
FET (the best) 94.71% 100.00% 66.67%
FET (the worst) 91.73% 100.00% 50.00%
FET 93.95% 100.00% 55.00%

Table 1: Comparison of teachers satisfaction function re-
sults.

in a row: (1) results for all teachers for the AgentPlanner,
(2) the average result for the FET from all runs, (3) results
of the best FET run for the teachers, (4) results of the worst
FET run for the teachers, (5) results of the best FET run
for the students. The columns describe: (1) “Average” the
number of all results of all test runs, (2) “Max.” the best
result of all test runs, (3) “Min.” the worst result of all test
runs. We can see that the AgentPlanner achieves better re-
sult than the best one obtained by the FET. Note that every
case has 100% of maximum satisfaction, because (in the
test data) there were teachers who did not define their time
preferences, so they were “happy” with what they got.
When we compare Figure 6 with Figure 7 and Figure 8 we
can see that in the AgentPlanner the set of satisfied teachers
was 14.1% higher than the same set obtained using the FET

(for the best result) and 17.95% higher than in the case of
the best result (obtained by the FET) for the students.

Next, in the figures 9 and 10, we represent student satis-
faction.

The diagram in Figure 10 shows the average student
schedule satisfaction for the best result for the teachers.
Here, the the largest group of students belongs to the in-
terval (70%, 80%] for the AgentPlanner (27.11% of all stu-
dents), and (30%, 40%] for the FET (31.88% of all stu-
dents). Observe also that, in the case of the AgentPlan-
ner, 9.95% of students belong to the interval (90%, 100%],
while in the case of the FET none student was satisfied to
this extent.

In the diagram in Figure 9 we can see the average student
schedule satisfaction, considering the best FET run for stu-
dents. Here, the largest group of students belongs to the
interval (70%, 80%] for the both systems (27.11% for the
AgentPlanner and 27.80% for the FET). Observe also that,
in this case the FET (only) 0.14% of students belong to
the interval (90%, 100%]. In Table 2 we can see in subse-

Runs Average Max. Min.
AgentPlanner 73.27% 100.00% 40.00%
FET (all) 59.37% 100.00% 40.00%
FET (the best) 66.28% 100.00% 40.00%
FET (the worst) 52.21% 90.00% 40.00%
FET 60.41% 100.00% 40.00%

Table 2: Comparison of students satisfaction function re-
sults.

quent rows: (1) results of all students for the AgentPlanner,
(2) average result of the FET for all runs, (3) results of the
FET run that was the best for the students, (4) results of
the worst run for the students, (5) results of the best run for
the teachers. We can see that the AgentPlanner achieved
6.99% better result than the best case of the FET. More-
over, the difference between the best and the worst FET
result is 7.16%.

In the Table 3 we depict number of gaps in students’
timetables. Specifically, we depict the percentage of stu-
dents who have: (1) no gaps in their schedule (the perfect
situation), (2) 1 gap, (3) 2 gaps, and (4) more than 2 gaps.
We present results obtained by the AgentPlanner and (as
previously) two versions of the FET results (best from the
point of students and teachers). In the case of the Agent-

Gaps AgentPlanner FET (the best) FET
0 41.28% 33.79% 18.26%
1 28.34% 26.02% 27.79%
2 17.57% 14.17% 20.71%

> 2 12.81% 26.02% 33.24%

Table 3: Average number of gaps of students.

Planner, the biggest set of students (41.28%) has no gaps,



AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 13

Figure 4: Satisfaction evaluations of all teachers (the best result for teachers).

Figure 5: Satisfaction evaluations of all teachers (the best result for students).



14 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

Figure 6: AgentPlanner: sets of satisfaction evaluations of
teachers.

Figure 7: FET: sets of satisfaction evaluations of teachers
(the best result for teachers).

Figure 8: FET: sets of satisfaction evaluations of teachers
(the best result for students).

Figure 9: Average satisfaction evaluations of students (the
best result for students).

Figure 10: Average satisfaction evaluations of students (the
best result for teachers).



AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 15

while in the case of the “best FET” only 33.79% students
reach this result, and only 18.26% for the best result for the
teachers. It is very important to notice that in the case of the
AgentPlanner, the number of students who have more than
2 gaps is only 12.81%, while for FET it is equal 26.02%
(for the students’ best result) and 33.24% (for the teachers’
best result).

Table 4 captures the number of additional days (from the
students’ point of view). Note that multiple days of in-
struction are not desired (actual students of University of
Gdańsk prefer to have minimal number of days of instruc-
tion as most of them are already full-time employees). Ad-
ditional day is a result of a timetable “unfavorable” for the
student. For example, if someone has just 4 activities dur-
ing a week, the best result for her/him is a plan with all
activities scheduled within a single day. But very often it is
a very hard (or even impossible) task to have such schedule,
because of complex data dependencies. Then, the Agent-
Planner must split student’s activities into more days, e.g.
two (i.e. one additional day) or three (i.e. two additional
days). We again consider two versions of FET results, best
for the students and for the teachers.

Days AgentPlanner FET (the best) FET
1 10.22% 0.14% 0.00%
2 26.02% 20.98% 6.27%

> 2 63.76% 78.88% 93.73%

Table 4: Average number of additional days of students.

Taking into account this criterion, the AgentPlanner is
quite “student friendly”. Specifically, 10.21% of students
have schedule with just one additional day of instruction,
while the same time, in the FET, practically all students
have more than one additional day. The situation is partic-
ularly “bad” in the case of FET-generated schedule which
is the best for the teachers. Here, more than 93% of stu-
dents have schedule with more than two additional days.
Because of very complex dataset, none of the student ob-
tained the most favorable timetable.

Let us note that the situation can be even more complex
in situations, which are very natural at most universities.
Consider, for instance, elective courses, which can be cho-
sen by students from various specialties, years, and even
different majors. The AgentPlanner approaches this situa-
tion in a flexible way. Since the timetable is stored in the
database, there is possibility of an easy (and fast) way of
checking course collisions for each student (using SQL re-
quests). Furthermore, in our approach, we can introduce
the notion of collision threshold (it is an option in the pro-
totype application, which we have explored to a certain ex-
tent, but which is out of scope of current contribution). In
other words, we can specify what percentage of collisions
is acceptable. Specifically, when the tolerance threshold is
exceeded, a proposal to take a given slot could be reject
by the ScheduleAgent. This notion could be very useful,
particularly in the case of very complicated and difficult to

schedule timetables (e.g. involving multiple departments).
Finally, it is worthy noting that we have further checked

robustness of both approaches. To make the problem more
complicated we have reduced the schedule grid by one time
unit (5 days x 5 time units x 21 rooms), which results in a
grid that contains only 525 locations. In this case, both sys-
tems produced initial schedule when they did not consider
teachers time preferences. When they were considered, the
FET could not find any solution. The AgentPlanner could,
but the delivered timetable contained collisions in student
courses. The reason is that the links within the data set were
too complex and it was not possible to create an “optimal”
solution (where optimal would mean that at least there were
no such collisions).

5.4 Testing modification of an existing plan

To test the AgentPlanner’s ability to modify an existing
timetable, we have experimented with insertion of an extra
teacher, who is leading three activities (a single lecture, for
60 students, and two laboratories, with 30 students in each
one). Note that the timetable reorganization using the FET
would involve creation of a completely new schedule. Ob-
viously, this would be “impossible” in the real–world – as
it, most likely, would destroy the whole schedule (special
techniques would have to be used to minimize the propaga-
tion of changes). Henceforth, the FET was omitted in this
experiment.

In general, the AgentPlanner worked well. Specifically,
the timetable reorganization, caused by the insertion of a
new activity, marginally affected the average satisfaction of
all teachers. The average satisfaction after the reorganiza-
tion was 97.72% (compared to the original 98.03%; the dif-
ference of 0.31%). The average students satisfaction, after
the reorganization, was 73.27% (there was no change). It
is worthy to mention that no additional collisions between
the activities were generated.

6 Flexibility of the AgentPlanner

The big advantage of the AgentPlanner is the possibility
of its easy modification to use in other cases of planning,
e.g. business meeting, booking of meeting rooms in com-
pany, etc. The most laborious aspect would be creation of a
new database that would describe the new “reality” that the
timetabling is to work with (however, its overall structure
will be quite similar). Furthermore, it is very likely that the
evaluation algorithm would have to be adjusted (to match
the nature of the problem). After such modifications, it can
be postulated that “IndividualAgents” (instead of Teacher-
Agents) would negotiate locations in the timetable. Note
that, due to the nature of the design of the AgentPlanner,
use of a different database would involve only modifica-
tions in a single agent, the DatabaseAgent that provides
the interface to the database. Let us also stress that the cur-
rent (agent-based) design and implementation of the sys-



16 Informatica 40 (2016) 3–17 R. Tkaczyk et al.

tem, which is highly modular, allows relatively easy modi-
fications (e.g. modifications mentioned in this section).

7 Concluding remarks

The aim of this paper was to discuss development and ex-
perimental evaluation of an agent-based timetabling sys-
tem (AgentPlanner). The proposed system was based
on assumptions originating from the actual academic set-
tings (class scheduling at a department at the University
of Gdańsk). The results are quite encouraging. First, the
AgentPlanner outperformed the state-of-the-art timetabling
software based on the genetic algorithms. Second, it is ca-
pable of satisfactorily solving the problem of schedule ad-
justment. Finally, it is worthy to note that even though our
application area was precisely defined, we believe that our
systems may be successfully applied to other timetabling
problems. To achieve this status, a several actions must be
done.

First of all, it is necessary to design and implement: (1)
GUI for the administrator (the Planner), to make her/him
able to manage the system (i.e. to input the data, to cre-
ate/change a timetable, etc.), (2) to design and implement
the GUI for for teachers (to allow them to input the data,
i.e. the time preferences and, possibly, other data to be
specified in the future); moreover, teachers should have ac-
cess to: (i) the proposed timetable, (ii) function related to
a request to change the timetable, and (iii) communication
with the system, e.g. to request change of the place of the
activity, (3) GUI for students as a module that providing
the visualisation of timetable, (4) optional, but very help-
ful, would be a mobile module for the teachers. The latter
one could facilitate the process of Timetabling reorganisa-
tion (see Section 4.3).

Second, very important issues that are needed to improve
the functionality of the system are: (1) introduction of fur-
ther “scheduling goals” (see Section 3), i.e. constraints for
both teachers and students, (2) possibility of adding more
departments and buildings (considering the location and
time for change a place).

The last but not least, ways of improving the Agent-
Planner’s core algorithms should be explored. At the mo-
ment, the most pressing problems are as follows. (1) To
eliminate or reduce the bottleneck in the Timetable plan-
ning algorithm 4.2 in order to make it faster. (2) Consider
ways of extending / modifying / improving the algorithm
involved in asking the TeacherAgents to release the place
in the Timetabling reorganisation algorithm (see Subsec-
tion 4.3). At the moment, the TeacherAgent T1 is asking
the TeacherAgent T2 to release the location. Next, the T2
searches for a new one and accepts the proposal (to release
the current location) or rejects it. This takes place in a sin-
gle iteration and completes the process. However, it is easy
to envision that if T2 would not be able to find a new place,
it could ask T3 for an analogous operation. Obviously, this
process could be repeated (with proper care taken to avoid

an infinite loom of requests). This improvement would cre-
ate more possibilities for adjusting the timetable.

References
[1] Rafał Tkaczyk, Maria Ganzha, Marcin Paprzycki

(2013) AgentPlanner – agent-based timetabling sys-
tem – preliminary design and evaluation, 2013 17th
International Conference on System Theory, Con-
trol and Computings, Emil Petre, Marius Brezovan,
Sinaia, Romania, pp. 795–800.

[2] Liviu Lalescu, Volker Dirr, FET Free Timetabling
Software, http://www.lalescu.ro/liviu/
fet/.

[3] Timothy A. Redl, On Using Graph Coloring to Create
University Timetables with Essential and Preferential
Conditions, http://cms.uhd.edu/faculty/
redlt/iccis09proc.pdf.

[4] Karl Nachtigall, Jens Opitz (2007) A Modulo Net-
work Simplex Method for Solving Periodic Timetable
Optimisation Problems, Operations Research Pro-
ceedings, pp. 461–466.

[5] Paweł Myszkowski, Maciej Norberciak (2003) Evo-
lutionary algorithms for timetable problems, Annales
UMCS Informatica AI 1, pp. 115–125.

[6] Marcin Paprzycki (2003) Agenci programowi
jako metodologia tworzenia oprogramowania,
http://www.e-informatyka.pl/wiki/
Agenci_programowi_jako_metodologia_
tworzenia_oprogramowania.

[7] Fabio Bellifemine, Giovanni Caire, Giovanni Ri-
massa, Agostino Poggi, Tiziana Trucco, Elisabetta
Cortese, Filippo Quarta, Giosue Vitaglione, Nicolas
Lhuillier, Jereme Picault, Java Agent Development
Framework, http://jade.tilab.com/.

[8] Maciej Gawinecki, Minor Gordon, Pawel Kacz-
marek, Marcin Paprzycki (2005) The Problem of
Agent-Client Communication on the Internet, Scal-
able Computing Practice and Experience, 6(1), pp.
111–123

[9] Joe Henry Obit, Dario Landa-Silva, Djamila Ouel-
hadj, Teong Khan Vun, Rayner Alfred (2011) Design-
ing a Multi-agent Approach System for Distributed
Course Timetabling, Proceedings of the 2011 IEEE
Hybrid Intelligent Systems Conference (IEEE-HIS),
IEEE Press, Melacca Malaysia, pp. 103–108.

http://www.dcs.kcl.ac.uk/staff/mml/
publications/assets/aamas06.pdf.

[10] Yan Yang, Raman Paranjape, Luigi Benedicenti
(2006) An Agent Based General Solution Model For



AgentPlanner – Agent-based Timetabling System Informatica 40 (2016) 3–17 17

the Course Timetabling Problem, AAMAS ’06 Pro-
ceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, ACM
New York, New York, USA, pp. 1430–1432 .

[11] Curak Ivan (2008) Negotiatian–based multi-
agent system for timetabling, Annals of DAAAM
& Proceedings, DAAAM International Vienna,
http://www.freepatentsonline.com/
article/Annals-DAAAM-Proceedings/
225316139.html.

[12] Roxana A. Belecheanu, Steve Munroe, Michael Luck,
Terry Payne, Tim Miller, Peter McBurney, Michal Pe-
choucek (2006) Commercial Applications of Agents:
Lessons, Experiences and Challenges, AAMAS ’06
Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, ACM
New York, NY, USA, pp. 1549–1555.

[13] Andrey Glaschenko, Anton Ivaschenko, George
Rzevski, Petr Skobelev (2009) Multi–Agent Real
Time Scheduling System for Taxi Companies, The
Eighth International Conference On Autonomous
Agents And Multiagent Systems, Budapest, Hungary,
http://www.ifaamas.org/Proceedings/
aamas09/pdf/03_Industrial_Track/13_
70_it.pdf.

[14] Anja Zöller, Lars Braubach, Alexander Pokahr, Franz
Rothlauf, Torsten O. Paulussen, Winfried Lamers-
dorf, Armin Heinzl (2006) Evaluation of a Multi–
Agent System for Hospital Patient Scheduling, Inter-
national Transactions on Systems Science and Appli-
cations, SpringerOpen, pp. 375–380.

[15] Carlos A. Coello Coello, Daniel Cort’s Rivera and
Nareli Cruz Cort’s (2003) Use of an Artificial Im-
mune System for Job Shop Scheduling, Second In-
ternational Conference on Artificial Immune Systems
(ICARIS’2003), Springer-Verlag, pp. 1–10.

[16] Muhammad Rozi Malim, Ahamad Tajudin Khader,
Adli Mustafa (2006) Artificial Immune Algorithms
for University Timetabling, 6th International Con-
ference on the Practice and Theory of Automated
Timetabling, Czech Republic.

[17] A. R. Mushi (2006) Tabu search heuristic for uni-
versity course timetabling problem , African Journal
of Science and Technology (AJST) Science and Engi-
neering Series Vol. 7, No. 1, pp. 34–40.

[18] Houssem Eddine Nouri, Olfa Belkahla Driss
(2013) Tabu search heuristic for university course
timetabling problem , African Journal of Science and
Technology (AJST) Science and Engineering Series
Vol. 7, No. 1, pp. 34–40.

[19] Houssem Eddine Nouri, Olfa Belkahla Driss (2013)
Distributed model for university course timetabling

problem, International Conference on Computer Ap-
plications Technology (ICCAT), Tunisia.

[20] Yan Yang, Raman Paranjape, Luigi Benedicenti,
Nancy Reed (2005) A mobile agent system for uni-
versity course timetabling, Indian International Con-
ference on Artificial Intelligence (IICAI-05) Pune, In-
dia.

[21] Brian Autry, Kevin Squire (2008) University course
timetabling with Probability Collectives, The 7th In-
ternational Conference on the Practice and Theory of
Automated Timetabling, Canada.

[22] Rafał Tkaczyk (2013) AgentPlanner – agentowy sys-
tem zarzładzania planem zajeć, University of Gdańsk,
Gdańsk, Poland, pp. 33–36.

[23] Foundation for Intelligent Physical Agents, FIPA Ser-
vices Technical Committee, http://www.fipa.
org/activities/services.html.

[24] Oracle Corporation, MySql Website, http://
downloads.mysql.com.

[25] Oracle Corporation, NetBeans Website, https://
netbeans.org/downloads/7.0.1.



18 Informatica 40 (2016) 3–17 R. Tkaczyk et al.


