
Trust Management in an Agent-based Grid
Resource Brokering System—Preliminary

Considerations
Maria Ganzha∗, Marcin Paprzycki† and Ivan Lirkov∗∗

∗Systems Research Institute
Polish Academy of Science

maria.ganzha@ibspan.waw.pl
†Computer Science Institute

Warsaw School of Social Psychology
marcin.paprzycki@swps.edu.pl

∗∗Institute for Parallel Processing
Bulgarian Academy of Science
ivan@parallel.bas.bg

Abstract.
It has been suggested that utilization of autonomous software agents in computational Grids may

deliver the needed functionality to speed-up Grid adoption. I our recent work we have outlined
an approach in which agent teams facilitate Grid resource brokering and management. One of the
interesting questions is how to manage trust in such a system. The aim of this paper is to outline our
proposed solution.

Keywords: Grid computing, agent systems, trust management
PACS: 02.70.-c

1. INTRODUCTION

Grid computing became one of promising approaches to utilization of heterogeneous,
geographically distributed computers. Virtualization ofresources facilitated by the Grid
is expected to have a broad impact in science and business. Unfortunately, adoption
of the Grid, while speeding-up recently, is still unsatisfactory. One possible reason for
this situation is rather complicated support for resource brokering and management
provided by the current Grid infrastructure. At the same time, it has been suggested
that autonomous software agents combined with semantic description of resources may
be a step in the right direction [1, 2]. Finding these arguments compelling, we have
searched for existing solutions that match this vision. Results of our search have been
summarized in [3] and showed that existing solutions are somewhat limited in scope
and robustness. Therefore, we have proposed a different approach in which agent teams
collaborate to fulfill user requirements.

Specifically, [4] contained an initial overview of the proposed approach. In [5] we
followed with a study of effective ways of implementing yellow-page based matchmak-
ing services. In [6] we have considered processes involved in agents seeking teams to
execute their jobs, while in [7] we have discussed how agentsjoin teams (agent teams
are formed). The aim of this paper is to conceptualize processes involved in trust man-

agement that take place in the proposed system. Before we proceed let us make explicit
some assumptions that underline our work.

1. First, we follow these who state that software agents willplay an important role
in design, implementation and long-term upkeep of large-scale software systems
(see e.g. [8]). While we do acknowledge that this claim is notuncontroversial and
that there are these who see software agents as just repackaging of ideas existing
in software engineering and distributed system for years [9], we do not see our
role as becoming involved in such fundamental discussion. Our role is to utilize
existing tools and environments (such as JADE agents [10]) to develop, implement
and experiment with agent systems.

2. Second, we assume that software agents will be directly involved in the future
development of the Grid. In this way we follow (and accept) arguments put forward
in the aforementioned [1, 2]. Note that these arguments are further supported by the
body of research devoted to combining software agents and Grids (summarized in
[3]). Therefore, we are immune to challenges based on the claim that agents may
not be necessary / needed.

3. Next, note that there are two ways in which the Grid can be approached. The first
views it as alocal infrastructureand includes Grids within a university, company
and even large scale Grids funded by the EU. The main distinguishing factor is
that here there exists a more-or-less centralized control structure. Note that even in
an extremely large grid structure like the EGEE, each node iscontrolled by local
administrators and the overall structure is also monitoredto assure that some form
of quality of service (QoS) control is enforced. In other words, existence of service
level control mechanisms and of a centralized “authority” distinguishes what we
dubbed thelocal Grid.
The second approach to Grid is by viewing it as a global infrastructure consisting
of nodes contributed by individual users; view stemming from ideas outlined in
[11]. In this case no centralized (or even localized) control of quality of service is
available. For instance, any power interruption to a home PCcauses it to “go down”
taking with it jobs that have been executed. Similarly, PC user starting to play
Doom, or watching movies on her PC overloads the processor and thus reduces the
total amount of resources available to Grid users. While such problems have not
been a problem in early large scale distributed applications, such as SETI@HOME
or United Devices Search for the Cure for Cancer, they becomean immediate prob-
lem when results have to be produced in a certain order and deadlines are crucial.
In our work we are interested in the second scenario, where the Grid is viewed as
a collection of nodes contributed by individuals, and possibly organizations, and
thus issues of quality of service and enforcement of servicelevel agreement play a
very important role.

4. Following work of R. Buyya [12] we view the computational Grid as an envi-
ronment in which workers (in our caseagent workers) contribute their resources
(programs, data, computational power, etc.), and are remunerated for their usage,
whereas users (in our caseagent users) utilize available resources to complete their
tasks, and want to pay a fair price. Furthermore, they want todecide about issues
like: should they pay less for longer time or pay more for an express job.

5. We assume that ontological demarcation (particularly ofGrid resources) and
semantically-oriented information processing are in the future of the Grid. Note
that we do not involve ourselves in the discussion of long term feasibility of
ontologies as a solution to the problem of integration of heterogeneous resources.
Rather, we utilize them in our work.
Obviously, currently the WSDL language ([13]) and Grid service description
standards defined by the OGSI [14] are the most popular ways ofdemarcating Grid
services. However, the fact that they are based only on XML makes them much
less useful (looking into the future) than full blown RDF/OWL based ontologies
(especially when semantic reasoning / matchmaking is utilized). We also recognize
efforts like: (1) Earth System Grid (ESG) [15], which is a mixture of Grid-oriented
and Earth Science-oriented ontologies, (2) Core Grid Ontology (CGO) [16], which
tries to deal with the most basic grid concepts, (3) Web Services Resource Frame-
work (WSRF) [17], which defines key concepts within the Globus framework
and is geared toward integration of the Grid and Web Services, (4) Agent Grid
Integration Ontology (AGIO) [18] which ontologically defines concepts involved
in agents being introduced into Grids, or (5) ontologies defined within project like
Unicore and GLUE. However, at this stage all these efforts can be treated only as
“work in progress.” Therefore, instead of selecting one of them, we focus our work
on the agent-related aspects of the system (designing and implementing agent
system skeleton) while utilizing very simplistic ontologies). Obviously, when the
Grid ontology will be agreed on, our systemwill be readyfor it; as only parts that
deal directly with ontologies and ontological reasoning will have to be adapted.

Keeping these assumptions in mind we proceed as follows. In the next section we
start with an overview of the proposed system based on its UMLUse Case Diagram. We
follow with the general considerations involved in trust management and use them to
discuss in more details the four specific situations when agents evaluate trustworthiness
of each other.

2. PROPOSED SYSTEM

The above described set of assumptions became the starting point of designing our
system. To be able to (a) facilitate work in a global Grid, (b)assure some form of service
level agreement and thus control of quality of service, and (c) support Grid economy;
we propose virtual organizations, calledagent teamsbased on the following rules:

• agents work in teams (groups of agents)
• each team has a leader / manager—LMaster agent
• eachLMasterhas a mirrorLMirror agent that can take over its job in case when

theLMaster“fails”
• incoming workers (worker agents) join teams based on their own individual set of

criteria
• teams (represented by theirLMasters) accept workers based on an individual set of

criteria (specific to each team)

• eachworker agentcan (if needed) play the role of anLMirror (and thus of an
LMaster)

• matchmaking is ontologically grounded and utilizes yellowpage type approach
[19] (facilitated by theCIC infrastructure; see also [20])

The proposed approach can be thus represented in the form of aUse Case diagram de-
picted in Figure 1. Let us now briefly describe agent roles andinteractions taking place in

Mirror
LMaster
Recreation

LMaster
Recreation

DB Agent

Negotiation

Collaboration

Request
information/
propositions

Proposition
creation/ update

CIC

Gathering
knowledge

Job Joining <<extend>>

<<extend>>

Mirror LMaster

<<extend>><<extend>>

LMasterUser

LMaster MCDM

Definition
conditions

Communication

LAgent

Gathering
Knowledge

LDB Agent

LAgent
MCDM

FIGURE 1. Use Case diagram of the proposed system

two scenarios: (1) agent looking for a team to execute a task and (2) agent looking for a
team to join (more details can be found in [4, 5, 6, 7]). We start from theClient Informa-
tion Center(CIC) that provides matchmaking services. As described in [19],there exist
multiple ways to facilitate matchmaking in a distributed system, and each one of them
has specific advantages and disadvantages. In our work (and following our experiences
described in [20]) we have decided to utilize ayellow page-based approach and thus the
CIC infrastructure stores team advertisements containing information about offered re-
sources (e.g. hardware capabilities, available software,etc.) as well as information that a
given team is searching for members with specific (hardware,software etc.) characteris-
tics. Note that this information is stored in an ontologically demarcated fashion utilizing
our simple Grid resource ontology and is persisted in a Jena [21] repository.

To describe dynamic processes depicted in static form in Figure 1, let us assume
that the system has been running long enough for some agent teams to be formed and
to advertise their services / needs in theCIC. Note that theUser can either want to
contribute its resources as a team member, or utilize the Grid to complete a specific task
(in the Use Case diagram both situations are “UML-symmetric”).

Userwho wants to contribute resources (and be paid for doing so) formulates condi-
tions for joining a team and communicates them to its agent (theLAgent). TheLAgent
requests from theCIC list of teams that look for members and satisfy the predefined
criteria. Upon receiving such a list, due to trust considerations (see Section 3.2.3) it may
remove certain teams from the list. Next, theLAgentcommunicates withLMastersof the
remaining teams and utilizes FIPA Contract Net Protocol [22] and multicriterial analysis

[23] to evaluate obtained proposals. The result of such interactions may be twofold: (1)
theLAgentfinds a team to join (and joins it), or (2) no such team is found (either there
was no acceptable offer or no offer at all). In the latter situation theLAgentinforms its
Userand awaits further instructions.

WhenUser requests that itsLAgentarranges execution of a task, the scenario is very
similar. First,User communicates to itsLAgentconditions of task execution. Then the
LAgentqueries theCIC to find out which teams can execute its task. Upon receiving
a list of teams theLAgentremoves from it teams that cannot be trusted (section 3.2.2).
Next, it communicates withLMasters of the remaining teams and utilizes FIPA Contract
Net Protocol and multicriterial analysis to find the best team to execute its job. Note that
if no team will satisfy specified conditions, theLAgentreports this situation to itsUser
and await further instructions.

3. TRUST MANAGEMENT

3.1. Preliminary considerations

Let us start from precisely identifying our interests. First, the notiontrust is very often
associated withsecurity. However, let us assume that a Grid node is secure (and can be
safely used). Does this mean that it will be considered trustworthy? Not if such a node
will go down at random intervals multiple times a day. In thiscase it is not likely to be
used and will not be considered trustworthy. This clearly indicates thattrust 6= security.
In what follows we assume thatsecurityis assured, and focus on other aspects oftrust.

Second, let us distinguish two notions:trust andreputation. Trust—a peer’s belief in
another peer’s capabilities, honesty and reliability based on its owndirect experiences.
Reputation—a peer’s belief in another peer’s capabilities, honesty and reliability based
on recommendations received fromother peers. Thus,trust is typically conceptualized
as a one-to-one relationship, whilereputation is a one-to-many relationship. Further-
more, bothtrustandreputationare based on long-term relationships and are cumulative.

Let us now observe that the need for trust management typically does not arise within
local Grids. A Grid within an organization, or a collection of organizations that are
bound by an agreement makes trust considerations unnecessary. However, in the latter
case, when a particular node is down more often than expectedby partners, it may be
removed from the consortium. It is also very likely that local Grids do not involve “real”
financial transactions (it is “virtual money” that moves between corporate departments).
Therefore, we focus our attention onglobal Gridsand start from their economical aspect.

In this context, recent report produced by Insight Researchclaims that the economic
value of the Grid will reach $25 billion by the year 2011 ([24]). Such move of the Grid
into mainstream business can be illustrated by Schlumberger selling Oil-related Grid
services through its Grid Portal [25], or Sun Microsystems selling computer time (for
$1 an hour) through the Grid infrastructure [26].

Obviously, to facilitate paying per usage it is necessary toutilize accounting software.
The Open Grid Service Architecture (OGSA) [27] has introduced four services that
can be used to develop support for economical transactions:(1) metering service, which
measures resource usage, (2)rating servicethat translates usage into chargeable fees, (3)

accounting service, which associates payment with a specific user, and (4)billing service
that interacts with the “outside world” to finalize payments. There exist also other Grid
accounting services, such as: (a) Grid Service Accounting Extensions [28], (b) Grid
Economic Services Architecture [29], (c) SNUPI [30], or (d)GridBank [31]. In each
case the Grid node runs a monitoring service that reports resource usage used for billing
purposes. Interestingly, as shown in [32], all these methods are based on an unrealis-
tic assumption that parties involved in Grid computing willnot cheat to gain monetary
advantage (e.g. by manipulating the operating system kernel to mislead the accounting
software). In response authors of [32] proposed a method based on a trusted authority
that will empirically “verify” fidelity of Grid nodes (by running random jobs on ran-
domly selected machines). Unfortunately, (i) someone would have to pay for existence of
such entity (and benchmarking jobs it would execute), (ii) its reliability remains an open
question taking into account existing variety of computer hardware and software combi-
nations, and (iii) scalability of the proposed solution becomes a real issue when the num-
ber of node increases (will the approach work for more than 10K nodes in the Grid?).

In this context we would like to propose that instead of measuring actual usage (which,
as shown in [32], may be intentionally manipulated), it is possible to utilize a “resource
rental” model. In this case, like in a case of car rental, payment is associated with length
of rental, regardless of the actual usage (the same way as week-long car rental with
unlimited mileage costs $156.78 regardless if the car was driven 18 or 1800 miles).
Note that this is also the basic model of team member availability proposed in [7].

3.2. Proposed approach

The above considerations allow us to introduce trust management into the system
described in Section 2. Note that the proposed solution is geared to work within that
specific system and this directly influences our approach. Asdiscussed above (in Section
2), there exist four situations that involve trust-relatedconsiderations.

1. When theLAgentobtains the list of teams that it can join, it checks if they are
trustworthy; for instance if it worked with a given team and the terms of agreement
were not fulfilled (e.g. it was promised that it will be utilized at least 30% of time,
but it was not the case), then theLAgentmay not want to work for a given team.

2. When theLAgentobtains the list of teams that can execute its task, it checksif they
are trustworthy; for instance if a given team promised to complete the task within
5 hours and did not, then theLAgentmay not want to work with a given team.

3. When anLMasterreceives a call for proposals from anLAagentthat wants to join
its team, but thisLAgentbroke an agreement in the past (e.g. it was not available
everyday between 10 PM and 6 AM), then it may not want to work with it.

4. When anLMasterreceives a call for proposals from anLAagentthat tried to avoid
paying for the last job, then it may not want to get to businesswith it.

Let us now discuss these four scenarios to establish how trust materializes in each
case and how it can be managed in our system.

3.2.1. Team evaluating incoming user

This scenario is the easiest to conceptualize. User is evaluated on the basis of its past
behaviors. When user is “renting” the resource, the situation is extremely simple. The
only way the user could cheat is if he did not pay for service. Obviously, such situation
has been recognized for some time in e-commerce and resultedto creation of proxy
services (e.g. PayPal) that assure that payment is releasedafter service is delivered.
Therefore, user can be “forced” to pay for the service (as long as the service provider
can show that the service was actually made available).

The situation becomes somewhat more complicated when the pay-per-use model is
applied (see [32] for more details). In this case user can claim that she was cheated by
being billed for more than actual execution time. However, in such a case the resource
provider can use full disclosure of its hardware, software and system logs to respond
to accusations (including job re-run). Obviously, provider that was falsely accused of
cheating may decide in the future to not to work with a given user.

3.2.2. User evaluating service providing team

In the opposite case, when theLAgentevaluates a team to establish that it is trustwor-
thy, it checks past fulfillment of the service level agreement. In the first model (service
rental) the SLA can be very simple and state that a specific resource is to be available
from 23:25 till 6:30. In this case the actual availability ofthe resource fulfills the con-
tract. In the case of a multi-feature SLA lack of satisfaction of any feature may result in
loss of trust. Furthermore, penalty for each violation may differ in severity. For instance,
delivery of a machine with 1 Gbyte of RAM instead of 2 Gbytes ofRAM may result in
a lesser penalty than delivery of a machine with 2.7 GHz processor instead of a 3.2 GHz
processor; depending on the type of job to be executed and the(claimed by the user)
effect that these these changes have on performance. Note that the actual performance
loss may be almost invisible, while the user may penalize theteam according to its own
beliefs (and the penalty value remains private to the user).Based on results presented in
[33] we can propose the following approach to measuring trust level. Let us assume that
contract fulfillment will be denotede0, while each breach of contract (where we distin-
guishm such events) will be denotedei , for i = 1,m. Now, each user will assign weight
TA(ei) ∈ [−1,1] (wherei = 0,m) to each eventei . Note that each user may assign differ-
ent value to each event (and even distinguish different set of events). Let us now assume
that aftern interactions between a given user and a given team (X), the trust value is
Tn(X). Then, assuming that the result of interactions was eventek (where 0≤ k≤ m) the
trust value after the(n+1)-st interaction will be calculated as follows

Tn+1(X) = (1−α|TA(ek)|)Tn(X)+TA(ek), (1)

whereα ∈ (0,1) is the sensitivity parameter. Specifically, whenα is close to one then
each event (positive or negative) has an direct effect on thetrust score. Therefore just
a few missteps makes a high trust score to fall down sharply. Similarly, few fulfilled
contracts make it raise fast. This represents a “frantic” user. On the other hand, forα

close to zero both positive and negative events have only a limited effect on the total
score. This type of a “phlegmatic” user has a stable trust image of others; one that is
difficult to improve or tarnish.

The trust value is used by theLAgentin two situations: (1) to prune teams that are
untrustworthy, (2) in multicriterial analysis to establish which team to interact with.
In the first case each user establishes a specific threshold value below which it deems
a given team untrustworthy and removes from considerations. IN the latter case trust
value is one of weighted criteria used in the selection process. Let us note first that
when user is confronted with a team it has never interacted with, (unless reputation
is introduced into the system) it will assign it a default trust value, which is slightly
above the threshold. Second, following [34], we propose trust model with forgetting.
Therefore, each extended lack of interaction pushes the trust value toward the default
one. Finally, let us note that the proposed trust managementschema does not depend on
the particular form of usage billing (rental or actual usage-based). In both cases user can
define specific breaches of the SLA and penalties associated with each of them.

3.2.3. Worker evaluating team

Here, evaluation of trust depends on the economic model used. The simplest situation
is when worker sells “time of availability” and is paid for being available, while the
actual work done does not directly affect the payment. Then the only thing that the
LMaster has to check is if the node is “alive.” This approach has advantages and
disadvantages. Its main advantage is that it is immune to cheating mechanisms described
in [32]. Furthermore, it protects the team from effects of fluctuations of workload. On
the one hand, the team has enough workers when the workload ishigh, on the other
workers are shielded from effect of lack of jobs. In this casewe can see a direct usage
for the “overhead” collected by theLMaster (see [7]). For instance, while the market
value of a given machine (based on its processor, memory and disk space) is 80 cents
per hour, itsLAgentwill be contracted at 60 cents an hour, while the remaining money
earned will be used to sustain the team while there is no work.Main disadvantages of
this approach are: (1)Lagents may join multiple teams and be paid for doing nothing;
(2) workers are paid even if they do not work.

In the case when workers are paid for actual work done an important issue is how
much work was actually there (the more work there is the better for the team members;
unless there is too much work and they cannot handle it and theteam will be penalized
by users for breaching contracts). Here, the amount of work can be a part of the
contract between the team and the worker. For instance the SLA can specify the the
team guarantees that at least 30% of the contracted time willbe spend working and
earning money. Also more complicated clauses can be a part ofthe SLA. Note that the
above introduced model of trust management can be directly applied here. Regardless
of the specific form of contract, as soon as the SLA is finalized, worker can establish a
system of rewards and penalties and apply formula 1 to calculate the level of trust. The
remaining parts of the schema follow. Each user has a threshold value and a default trust
value. After each experience of being a member of the team thetrust value is updated,

while after a long period without interactions the trust value shifts towards the default
trust.

Note that the same team is likely to be evaluated twice: (1) asa team to work for,
and (2) as a team to do the work. Interestingly, the two trust scores may be completely
different. TeamX evaluated as a team to work for may have a very high trust value, while
the same team evaluated as a team that executes a task may havea low trust value. While
it could be interesting to conceptualize the way that the twotrust values could be used
jointly, we leave this issue open and assume that the two values will be kept separate.

3.2.4. Team evaluating worker

The last case of interactions isLMasterevaluating its workers. The main assumption
presented in [7] was that the contract between worker and theteam involves stipulation
that a given agent will be available at certain time periods.To check such availability we
have proposed a specific mechanism depicted in Figure 2. Of interest for this paper is

FIGURE 2. LMaster pings non-stop his worker

the information presented in theOther configurationbox (description of the remaining
information can be found in [7]). To assesses the state of each team member theLMaster
is continuously performing monitoring sessions. Each suchsession consists of a certain
number of tests (parameterNumber of tests; in our case 4), while each test consist of
a certain number of pings (parameterPings per test; in our case 10). Pings are send in
an interval (parameterPing interval; in our case 1000 milliseconds). A given ping is
counted as a success if a response comes within predefined time (parameterMax ping
reply; in our case 100 milliseconds). Pings are send in a round-robin fashion and a ping

to the next agent is send only when processing the ping to the given agent is completed.
Failed pings are counted (as percent of failures) against the total number of pings in a
single test. At the end of each test a score is produced for each agent and an agent fails
a test if its percent failure is higher than theMax lossparameter (in our case loss higher
than 99% would result in failing the test; meaning that a testis failed only if all pings
were not replied to). We have also specified the number of tests that a givenLAgenthas
to pass (parameterTests to pass; in our case, 4 tests in a round; in other words, all tests)
to be considered to be a “live” worker agent. After completing a monitoring session, the
LMasterzeroes all counters and a new such session starts.

While it is possible that a given team may require that a worker will be available all
the time (must pass all tests by responding in time to all pings), such an approach seems
somewhat unrealistic. It is obvious that for a variety of reasons a given worker may be
cut-off from the network or go down temporarily. This can be included in the SLA and
specify that a certain number of failed tests is allowed during the time of the contract.
This allows us to distinguish three situations. During the time of contract theLAgent
has violated it (vc), theLAgenthas fulfilled the contract (f c), or it did more than just
fulfill the contract (ae). The latter case means for instance that while theLAgentwas
allowed to be out of reach 7 times within a week, it was always available. Obviously, if
the contract requires that theLAgentis always available only two situations are possible
(vcand f c). However, observe that distinguishing the three situations allows us to collect
information that can be very valuable when evaluating a potential worker for a job. Let
us assume that for each worker we store a triple(#vc, # f c, #ae). In this case, instead of
having only the trust value to utilize, we can establish how many times a givenLAgent
performed above expectations, fulfilled or failed to fulfillthe contract. Now, nodes that
are consistently characterized by the above expectations performance should be assigned
to jobs that require extra assurance that they will be completed in time, while other nodes
can be assigned low priority jobs.

Obviously, the proposed scoring method does not preclude utilization of the trust
value, which becomes a composite representation of performance. Here, each result of
LAgentbeing a worker for a given team can be assigned reward or penalty and utilized
within formula 1. Furthermore, utilization of default trust, threshold trust value and
trust-forgetting remain valid. What we suggest is that evaluating performance in three
specific categories can supplement the composite trust value and help distinguish these
LAgents that are extra important to the functioning of the team fromthese that barely
meet expectations. Note that in the composite value it is difficult to conceptualize “extra
effort” as a high trust value may be a result of a large number of OK performances, or
a result of a small number of brilliant performances.

3.2.5. Reputation

To complete this paper let us make a few remarks about the way that reputation can
be used in the proposed system. First, let us note that allLAgents have to be registered
with theCIC. This means that it could be possible to create an eBay type ranking system.
Specifically, each team (and possibly each agent) could haveits score (based on opinions

of team users, or teams evaluating workers) amalgamated within theCIC. In this case,
when a potential worker approached a team, itsLMaster could contact theCIC and
obtain the combined reputation score and use it in preparingits response. Similarly, the
LAgent, when asking theCIC for a list of teams to do the job or to join, could obtain not
only the list, but also amalgamated reputation scores of each team, and use it to decide
which teams are worthy sending the CFP to.

However, we could be interested not only in establishing a combined reputation score
of each team / agent, but also in individual recommendationsbased on collaborative
filtering. In this case we have to recognize that the Grid scenario discussed here involves
LAgents/LMasters that may or may not be present to give their advice to the requesting
LAgent. Therefore, an approach similar to the one discussed in [35]could be utilized.

4. CONCLUDING REMARKS

The aim of this paper was to conceptualize processes involved in trust management in
the agent based resource brokering system that we are designing. First, we have iden-
tified two scenarios in which four cases of trust-based interactions take place. Second,
we have described how trust materializes and can be quantified in each of them within
two economic models: (a) resource rental, and (2) pay per use. Obviously, validity of all
proposed models has to be established experimentally, which is what we plan to do in
the near future.

ACKNOWLEDGMENTS

Work presented here is a part of the Poland-Bulgaria collaborative grant: “Parallel and
distributed computing practices”.

REFERENCES

1. I. Foster, N. R. Jennings, and C. Kesselman, “Brain Meets Brawn: Why Grid and Agents Need Each
Other,” in AAMAS ’04: Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, IEEE CS Press, Los Alamitos, CA, 2004, pp. 8–15.

2. H. Tianfield, and R. Unland,Multiagent and Grid Systems1, 89–95 (2005).
3. M. Dominiak, M. Ganzha, M. Gawinecki, W. Kuranowski, M. Paprzycki, S. Margenov, and I. Lirkov,

“Utilizing Agent Teams in Grid Resource Brokering,” inMultiagent and Grid Systems, 2007, in press.
4. M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, and M. Paprzycki, “Utilizing agent

teams in Grid resource management—preliminary considerations.,” in Proceedings of the IEEE J.
V. Atanasoff Conference, IEEE CS Press, Los Alamitos, CA, 2006, pp. 46–51.

5. M. Dominiak, W. Kuranowski, M. Gawinecki, M. Ganzha, and M. Paprzycki, “Efficient Match-
making in an Agent-based Grid Resource Brokering System,” in Proceedings of the International
Multiconference on Computer Science and Information Technology, PTI Press, 2006, pp. 327–335.

6. M. Dominiak, M. Ganzha, and M. Paprzycki, “Selecting Grid-agent-team to execute user-job—initial
solution,” inProceedings of the Conference on Complex, Intelligent and Software Intensive Systems,
IEEE CS Press, Los Alamitos, CA, 2007, pp. 249–256.

7. W. Kuranowski, M. Paprzycki, M. Ganzha, M. Gawinecki, I. Lirkov, and S. Margenov, “Agents as
resource brokers in grids—forming agent teams,” inProceedings of the 6th conference Large-Scale
Scientific Computations, 2007, in press.

8. N. R. Jennings, “An agent-based approach for building complex software systems,” inCACM, ACM,
2001, vol. 44, pp. 35–41.

9. F. Kordon, Private communication (2006).
10. http://www.tilab.jade.com.
11. I. Foster, and C. Kesselman,The Grid 2: Blueprint for a New Computing Infrastructure, Morgan

Kaufmann Publishers Inc., San Francisco, CA, 2003.
12. R. Buyya, D. Abramson, J. Giddy, and H. Stockinger,Concurrency and Computation: Practice and

Experiencepp. 1507–1542 (2002).
13. http://www.w3.org/TR/wsdl.
14. http://www.gridforum.org/ogsi-wg.
15. http://www.earthsystemgrid.org/.
16. W. Xing, M. D. Dikaiakos, and R. Sakellariou, “A Core GridOntology for the Semantic Grid,” in

6-th IEEE International Symposium on Cluster Computing andthe Grid (CCGRID’06), 2006, pp.
178–184.

17. http://www.globus.org/wsrf/.
18. F. Douvert, C. Jonquet, P. Dugnie, and S. Cerri, “Agent Grid Integration Ontology,” inProceedings

of the AWeSOMe’2006 Workshop, Springer, LNCS, 2006, vol. 4277, pp. 136–146.
19. D. Trastour, C. Bartolini, and C. Preist, “Semantic web support for the business-to-business e-

commerce lifecycle,” inWWW ’02: Proceedings of the 11th international conference on World Wide
Web, ACM Press, New York, NY, USA, 2002, pp. 89–98.

20. C. Bádicá, A. Báditá, M. Ganzha, and M. Paprzycki, “Developing a Model Agent-based E-commerce
System,” inE-Service Intelligence - Methodologies, Technologies andApplications, edited by J. Lu,
Springer, Berlin, 2007, pp. 555–578.

21. Jena—a semantic framework for java,http://jena.sourceforge.net.
22. Fipa contract net protocol specification,http://www.fipa.org/specs/fipa00029/

SC00029H.html.
23. J. Dodgson, M. Spackman, A. Pearman, and L. Phillips,DTLR multi-criteria analysis manual, UK:

National Economic Research Associates (2001).
24. The insight research corporation, grid computing: A vertical market perspective 2006-2011,http:

//www.insight-corp.com/reports/grid06.asp (2006).
25. http://www.enginframe.com/enginframe/demo/reservoir.
26. http://www.sun.com/service/sungrid/index.jsp.
27. http://www.globus.org/ogsa/.
28. http://www.doc.ic.ac.uk/~sjn5/GGF/ggf-rus-gsax-01.pdf.
29. http://www.doc.ic.ac.uk/~sjn5/GGF/gesa-wg.html.
30. http://www.linuxclustersinstitute.org/Linux-HPC-Revolution/

Archive/PDF01/Hazlewood_SDSC.pdf.
31. http://www.gridbus.org/papers/gridbank.pdf.
32. L. Catuogno, P. Faruolo, U. F. Petrillo, and I. Visconti,“Reliable Accounting in Grid Economic

Transactions,” inBook Grid and Cooperative Computing: GCC 2004 Workshops, Springer Berlin-
Heidelberg, LNCS, 2004, vol. 3252, pp. 514–521.

33. C. Bádicá, M. Ganzha, M. Gawinecki, P. Kobzdej, and M. Paprzycki, “Towards Trust Management
in an Agent-based E-commerce System—Initial Considerations.,” inProceedings of the MISSI 2006
Conference, edited by A. Zgrzywa, Wroclaw University of Technlogy Press, Poland, 2006, pp. 225–
236.

34. M. Kinateder, E. Baschny, and K. Rothermel, “Towards a Generic Trust Model—Comparison of
Various Trust Update Algorithms,” inTrust Management, Springer Berlin, 2005, pp. 177–192.

35. M. Kruszyk, M. Ganzha, M. Gawinecki, and M. Paprzycki, “Introducing Collaborative Filtering into
an Agent-Based Travel Support System,” inProceedings of the IAT conference, 2007, in press.

