Mobile Agentsin a Multi-Agent E-Commer ce System

Costin Badica Maria Ganzha Marcin Paprzycki
Software Engineering Department of Administration =~ Computer Science, OSU
Department Elblag University of Tulsa, OK, 74106, USA
University of Craiova Humanities and Economy and
Bvd. Decebal 107, Craiova, ul. Lotnicza 2 Computer Science, SWPS
200440 Romania 82-300 Elblag, Poland 03-815 Warsaw, Poland
c_badica@hotmail.com ganzha@op.pl marcin@cs.okstate.edu
Abstract when mobile agents are to be employed. Agenbility,
on the other hand, enables application components that
Among features often attributed to software agents are require strong interactions either between themselves (e.
autonomyand mobility. Autonomyof e-commerce agents in automated negotiations) or with a continuously evolving
involves adaptabilityto engage in negotiations governed by information source (e.g. the stock market), to migrateeclos
mechanisms not known in advance, while their mobility to each other (e.g. to be collocated on the same server) or
entails such negotiations taking place at remote locations. close to that information source. It should be obvious, that
This paper aims at combining adaptabilitywith mobility, by mobile agents have to be lightweight to be able to swiftly
joining rule-based mechanism representation with modular move across the network. At the same time, intelligent
agent design, and at UML-formalizing selected aspects of agents cannot be lightweight as they have to “carry” their
the resulting system. Furthermore, we discuss the issue of intelligence with them. This makes intelligent mobile
agent mobility and argue why such agents have been pro- agents a clear case for the no-free-lunch theorem [10].
posed for the system under consideration. In this paper we describe an architecture of a multi-agent

e-commerce system that aims at combinaugptability,
mobility andintelligence. In our systemautonomousagents
are engaged in matchmaking, negotiations and contracting
(including actually “purchasing” sought after products) o
behalf of their users: humans or businesses. Our proposal
Current agent environments (e.g. JADE [3]jfev builds on: (i) conceptual architecture of a multi-agent
suficient support for implementing quasi-realistic models e-commerce system described in [6] (see also references
of e-commerce. Moreover, advances in auction theory haveto our earlier work collected there), (ii) flexible framewor
produced a general methodology of describing price negoti-that allows agents to participate in arbitrary negotiation
ations [11]. Combination of these factors gave new impetusintroduced in [1, 2], and (iii) lightweight agents migragin
to research on automating e-commerce, and one of sugio remote markets and engaging in “any” form of negotia-
gested approaches was utilizationaftonomous, mobile tions via dynamically loadable modules [6]. Furthermore,
software agents. Sinatonomy is a very broad concept, we proceed beyond what is typically considered in the
we would like to focus omdaptability that can be viewed as agent-literature: the “act” of price negotiation itself.hiké
ability to update the negotiation “mechanism” to engage in in [8] negotiations were extended to include matchmaking,
unknown in advance forms of negotiations [9]. Obviously, in our work we conceptualize the negotiation as a part of a
another aspect ofutonomy is decision autonomy and more complete e-commerce scenario consisting of: request-
involves “intelligence” that can be understood as capgbili ing purchase, matchmaking, negotiating and completing
to reason over past experiences and domain knowledgegurchase. Interestingly, the final stage of an e-commerce
in order to maximize utility. Note that such reasoning scenario: between completion of price negotiations and
possibly involves complex (resource consuming) numerical actual purchase, while involving a number of interesting
andor symbolic computations. This aspect aftonomy, possibilities, is practically forgotten in the literature
while important, appears in this paper only as a “price” that We proceed as follows. In the next section outline the
is to be paid (in terms of resource utilization) in the case negotiation framework introduced in [1, 2] and the modular

1 Introduction

agents presented in [6] as well as how we combine them.
We follow with a general description of agents appearing
in the system and their basic interactions (Section 3) and
a detailed presentation and UML formalization of selected

have removed it from the “negotiation infrastructure”
and placed in the system as a full-fledged agent (and
have added to it a number of additional “managerial
functions,” see below).

agents appearing in our system (Section 4). Section 5 dis- _ _ _
cusses the reasons why use of mobile agents is “optimal” ® Analysis presentedin [1, 2] involves orBuyer agents
within the proposed system. visiting a given host to make a purchase and becoming

involved in price negotiations; actions of the system
preceding and following negotiations are not consid-
ered; on the other hand these functions were a part of
our original system and have been further extended for
the current paper.

2 Componentsfor Automated Negotiations

Authors of [1, 2] analyzed the existing approaches
to agent negotiations (primarily the FIPA-standardized
auction protocols) and argued that they do not provide
enough structure for the development of portable agent-3 Agentsin an E-Commerce Environment
based e-commerce systems. They also outlined a new
agent negotiations framework, consistingtmf/ers and a Let us now briefly discuss architecture of the proposed
host where the negotiations take place. Within the host, multi-agent e-commerce environment. Fundamentally, our
the infrastructure for negotiations was provided through system represents a distributed marketplace that hosts e-
a number of sub-agentsatekeeper, Proposal Validator, stores and allows e-clients to “visit” them to purchase prod
Protocol Enforcer, Information Updater, Negotiation Ter- ucts. Figure 1 introduces agents occurring in our system and
minator andAgreement Maker that interact with each-other specifies which agents are in direct contact (solid arrows
by direct messaging and via a blackboard. The centraldenote communication; dashed arrow denotes agent move-
point of their framework consisted of a generic negotiation ment; rectangular boxes surround buyer and seller systems
protocol and taxonomy of JESS [4] rules used for enforcing and agents populating them). The only agent not repre-
specific negotiation mechanisms. sented there is an auxiliafyl CDB agent that interfaces the

Independently, in our earlier work, we have followed CIC agent with the database of agents and produgisp
proposal outlined in [9] and implemented an agent-based

e-commerce skeleton, where agents were capable of nego-
tiation adaptation via dynamically loadable modules [6].
Negotiating agents consisted of three main components:
(i) communication module — responsible for messages ex-
changed between agents (part of the skeleton moving across
the network), ii)protocol module — responsible for enforc-
ing the (FIPA) protocol that governed negotiations (public
and downloadable form any server), and (@iategy mod-
ule — responsible for producing protocol-compliant actions
necessary to achieve agent goals (private and downloadable
from the home server). Sop
Let us make three observations that allow us to combine
and extend the two approaches (due to the lack of space,
[6] and references presented there should be consulted for
further details):

T

L ac | B

e The framework introduced in [1, 2] assumes implic- Figure 1. Agents in the e-commerce environ-

itly that Buyer agents are mobile and carry with them ~ ment
the “generic negotiation protocol” thus making them
rather heavy; obviously, our approach based on plug- :
y Y PP P9 and theClient agents represent system “users” — mer-

gable negotiation modules can be employed here to

achieve lightweight mobility. chants that sell products and buyers who want to purchase

them. After being created, during system initialization,

e The Gatekeeper sub-agent does not play any role in Client agents register with th€IC agent and await user
actual price negotiations; it only allows buyers into the requests. Similarlyshop agents creat&atekeeper agents
negotiation space and provides them with the negoti- and register them with th€IC agent. Furthermore, each
ation protocol and the negotiation template; thus we Shop agent registers there all products that are available

in its e-store (an initial list of available products). Inigh state where it supervises negotiations and the product flow.
way, theCIC agent combines the function of white pages, Within one execution thread it awaits finish of price nego-
by storing information (addresses and identifiers) abdut al tiations. If they were successful, supervisiBajer informs
Shop, Gatekeeper andClient agents existing in the system, theShop agent, which asks théarehouseagent to reserve a
and of yellow pages, by storing information about available given quantity of a particular product (for a specific amount
products (see also [8]). Due to its auxiliary role, in this of time). The events can then proceed according to three
paper we omit theCIC agent from further considerations different scenarioCase 1: if the winning Buyer confirms
(for more information see [6] and papers referenced there). purchase thé&hop asks theWarehouse agent to check the
On the supply sideShop agents are responsible for cre- reservation. If the reservation did not expire then $hep
ating Seller agents (one for each product to be sofggller informs theBuyer agent about acceptance of transaction.
agents implemented in our system embody the same func-This event starts the final stage — named “Sale finalization”
tionalities as thélegotiation host agents described in [1, 2]. which includes such actions as payment and delivEage
Specifically, except of th&atekeeper agent that is not part ~ 2: if the reservation has expired, then tB®p agent sends
of negotiations and has a more complex r@d|er agents arejection message to tBeyer agent.Case 3: if the Client
consist of all sub-agents identified there; each playing ex-agent rejects purchase (and informs $hep agent about it
actly the same role. Finally, ea&eller is provided (by the through theBuyer agent) theshop agent asks th@arehouse

Shop agent) with its initial negotiation template. agent to cancel the reservation. Completing one of these
Client agents utilize mobil8uyer agents to seek the best three cases “closes” this branchSop agent execution.
possible ¢fer matching user-specified requiremerBayer Separately, theshop agent keeps track of all negotia-

agents engage in price negotiations and report result®to th tions and transactions and periodically performs mutticri
Client agent, which gathersfiers and decides where from terjal analysis (start of th®1ICDM — multicriterial deci-

to attempt at making an actual purchase (or decides that pursjon making — module is a part of initialization of tSaop
chase that would satisfy its user cannot be made). agent) that may resultin changes in the negotiation templat

Finally, in addition to agents proposed in [6], we extend (e.g. minimal price, type of price negotiation mechanism,
our system and includéarehouse agents, also created by etc.). For instance, when only a few items are left they may
Shop agents during system initialization (one such agent pe deeply-discounted, or put on sale through an auction. In
for every e-store in the system)Warehouse agents are thjs case a new template is generated and sent tGate
responsible for: (i) management of products available for keeper agent that switches it in an appropriate moment (see
sale, (i) management of reserved products, and (iii) in pelow, Figures 2,3).
the future, interfacing with an agent-based supply chain
management sub-system.

Let us now systematically describe each agent and its
function. Due to the lack of space we present complete
UML diagrams only of two most important agents in the
context of agent mobility: th&atekeeper and theBuyer.

Gatekeeper agent Shop agents cooperate directly with
Gatekeeper agents that (1) interact witlBuyer agents:
admit them to the negotiations and provide with the pro-
tocol and the current negotiation template, (2) in suitable
moments releasBuyer agents to appropriatellers and
(3) manage updates of templates. The statechart diagram
of the Gatekeeper agent is presented in Figure 2 (the top
4 Agentsin the System level depiction ofGatekeeper functionality) and continued

in Figure 3 (detailing negotiation preparations). When an

Shop Agent The Shop agent acts as the representative appropriate number oBuyer agents have registered, the
of the “user” (seller). We assume that after it is created it Gatekeeper passes their identifiers to tf&eller agent and
persistently exists in the system until the user decides tha thus allows the negotiation to start. As soon as this step
it is no longer needed (in practice, it can be assumed that itiS completed, theSatekeeper cleans the list of registered
exists throughout the run of the system). Upon its creation, Buyer agents and the admissjomonitor process is restarted
thes']op agent creates and |n|t|a||zemtekeeper agent’ a (assuming that th&eller agent is still alive). Note that the
Warehouse agent andSeller agents (one for each category Gatekeeper admits to negotiations only “complet&uyer
of product sold). The initialization of théarehouse agent ~ @gents; such agents that have all modules installed and
involves passing information about goods that are injtiall confirmed that are ready (as indicated by the small loop
available for sale, while initialization of th@atekeeper and ~ above the “Waiting for the Buyer msg” box).

SHler agents involves providing them with templates that ~ When a new template module is delivered by 8nep

are to be used initially in price negotiations. Furthermore agent a list of currently registeréliyer agents is put into
the Gatekeeper agent and the list of available products are a bufer (“Buffer registration list” box). These agents have
registered with th€lC agent. to be serviced first, using the current template that they

After initialization, the Shop agent enters a complex have been provided with upon entering the e-store. Since

[terminate]

[Seller(S_ID) is alive]

I Listen for the ShopAgemI

msg

[new Seller] / get(S_ID)| ‘

start negotiationd wajting for end of negotialions]
Preparing negotiations - J

i

s |
N
I Producing msg

l new template] \|/

Updating tepmlate) [Checking registration list|

[empty]

entry / "close" registration list
do / update(template(S_ID))
exit / notify (preregistration BuyersL

[Seller(S_ID) is killgd] {

Notification] r Buffer registration list]
l do / send(all registered Buyers, no more product p)J l do / push(S_ID,registration Iist,template)J

Figure 2. UML statechart diagram of the Gatekeeper agent

V:

Waiting for the Buyer msg I

[Buyer registration]
| do / register(new Buyer) J

/ create new registration lis

Checking Buyer

problem] / msg(B_ID,reject)

time is up / check seller s - - —
Preregistration and notification of new Buyeﬂ

entry / send(Protocol,template(S_ID))
do / request(CA, strategy(template(S_ID)))

Checking buffer

[not busy] v[busy] / restart timer
I Checking registration Iistl

pty] / restart time|

Preregistration and notification]

Il entry / send(template(S_ID))
[new template] / request(CA,strategy(template(S_ID)))

[empty]

. [flxed price]
[not empty] | pop(buffer list)

[not empty]

[Seller notification Registration of Buyer

do / transfer(Seller registration list,template) [S| €ntry / register(Buyer)
exit / send(template(S_ID))

Figure 3. Statechart diagram for Preparing Negotiations St ate

then, the new incoming agents will be provided with the from the Shop agent) with information about products and
new template. Let us note, that here we have to deal withtheir quantities (to be saved into a database). TheWne-
one more case: wheBuyer agents have already received houseagent enters a complex state where it (a) awaits notifi-
negotiation protocol and template, but have not receivedcations from theshop agent and (b) manages time triggered
(from their Client agent) their negotiation strategy. In events. The&hop agent notifies th&\arehouse agent about:
this case, when the change of template takes place, th€i) registration of new products for sale, (ii) product nese
Gatekeeper agent (even before Iffiering Buyer agents that vations, (iii) purchase confirmations, and (iv) purchase te
are ready and waiting for start of negotiations) informgsuc minations. The time event triggers checking existing reser
incomplete agents that there is a change in the negotiatiorvations. If reserved products whose reservation time has
template and provides them with the new one. As a result,expired are found, these reservations are canceled, egserv
Buyer agents have to re-request negotiation strategy (seeproducts are added to the pool of products available for sale
Figure 4, loop “new template”). Note that our system andtheShopagentisinformed abouta new amount of avail-
allows loosingBuyer agents to stay at the host and re-enter able commaodities. Note that the information about can-
negotiations after updating protocol templates (the “old celled reservation is provided to ti&op agent only when
Buyer” path). Finally, in a special case when a given prod- a purchase is requested by tBayer agent and the&hop
uct has been soldfband will not be replenished, tHéop agentis checking if a transaction can be completed. Finally
agent terminates thgeller responsible for selling it and the if quantity of some product becomes 0O, tharehouse agent
Gatekeeper informs awaitingBuyer agents about this fact. informs about it theShop agent, which may decide to termi-
War ehouse Agent TheShop agent interacts directly also nate the correspondirggller agent. In this case it informs
with the Warehouse agent. In the early stages of its func- about it both theClIC and theGatekeeper agents.
tioning theWarehouse agent is supplied (through messages Seller agent Finally, the last agent working on the supply

N
[Moving to the Host I Registering part 1 I

entry / get(Gatekeeper address) arrive
exit / go(Gatekeeper address))
[OK] [rejection]
\|/ '
A4

Registering part 2] [Requesting a strategy]readyl Waiting for the start of negotiations|
do / get(protocol, template) entry / state=not ready

7l do/request(CA, strategy)
[new template]

start negotiations

I Re-registering
| do / get(Template)

[decision=continue]

\|/[no more product] / Result=no|more product

Notification of CA Waiting for decision
[not matching price] entry / send(CA,Result))

lt=Won] [Resultbos
Waiting for confirmation L J

Requesting
do / send(What's next?)
[CA says YES] [decision=end]
[Cancelling of purchase " Finalisation of purchase] é
l entry / send(Shop,refuse) |l entry / send(Shop, YES) J

JEES——
Notification of CA
Waiting for Shop answer do / send(CA,answer)
Shop answer

Figure 4. UML statechart diagram of the Buyer agent

[CA says NOJ

side of the system is what appear to be a singpleer agent. that Buyer agents re-engage in price negotiations — thus
Its apparent simplicity comes form the fact that it encom- awaiting a better opportunity, or (iii) to declare the puasa
passes the complete negotiation framework proposed in [1impossible and notify the customer accordingly. Note that,
2]. Note that not all negotiations have to end by establghin in a realistic system, th®ICDM analysis should be truly
a winner and our system is able to handle such an event. Atmulticriterial and include factors such as: price, histofy
the same time, all data about negotiations is send t8hbe dealing with a given e-shop, delivery conditions etc.
agent that collects and analyses them. Thus, for instance, a When the attempt at completing a purchase is successful,
sequence of failures should result in a change in templatethen theClient agent sends messages to Biliyer agents
resulting form the multicriterial analysis that it perfesm ordering them to self-destruct. The situation is slightly
Client agent On the purchasing side, we have two more complicated when the attempt was unsuccessful and
agents. The&Client agent exists in a complex state. On the purchase was not deemed impossible. Then Ghient
one hand it listens for orders from the customer and, to ful- agent undertakes the following actions: (1) informs all
fill them: (1) queries theCIC agent which stores sell the Buyer agents that have already reported to cancel current
requested product, (2) then dispatcBeger agents to each reservations and return to price negotiations and (2) seset
such e-store (identified by itSatekeeper agent). On the timer establishing how long it will wait before the next
other hand, it directly manages the process of making pur-MCDM analysis. Observe that it is possible that the first
chases on behalf of the customer, on the basBugér no- MCDM analysis was undertaken before Bllyer agents
tifications informing about the results of price negotinio ~ have complete their “first round” of price negotiations.
For a specific amount of time ti@ient collects reports ~ They could have contacted ti@ient while it was “think-
(messages) sent Buyer agents (eacBuyer agentreportis ~ ing” which of the existing @ers to choose. In this way,
also stored in a database for further information extrajtio Some agents make their second attempt at negotiating
When the wait-time is over (or when @lyer agents have prices, while some agents have just finished the first. As
reported back) th€lient agent enters a complex state. On this process continues in an asynchronous fashion various
the one hand it continues listening for messages fBoer Buyer agents will make dferent number of attempts at
agents (obviously if all have reported then no messageshegotiating price that is acceptable to Ciéent agent. This
will be coming). On the other hand it goes through a multi- process will terminate when all orders submitted by the
criterial decision procedurd(CDM) that has one of three ~ customer have been either honored or abandoned.
possible outcomes: (i) to attempt at completing a selected Buyer agent Finally, the Buyer agent (see Figure 4) is
purchase, (ii) to cancel the existing reservations andestqu the only mobile agent in the system. It is dispatched by

the Client agent to all stores that carry product desired by Client Shop Services
the customer. It arrives at the e-store (identified by the
address of thé&atekeeper agent) and communicates with
the Gatekeeper agent (see Figure 2,3) to obtain entry to the CIOPB poene

negotiations (in case when entry is not granted it informs

its Client agent and is ordered to self-destruct). When entry f
is granted theBuyer obtains, from theGatekeeper, the

. . . . Start MCDM Start MCDM Creation
negotiation protocol and the current negotiation template Gome™) | (oo Vinamise)
In the next step,Buyer agent requests and obtains an } ®

appropriate strategy module from thl&ient agent (see
also the above description of the case when the negotiation
template changes while thiRiyer agent awaits the strategy
module). When all three modules are install&lyer
informs theGatekeeper that it is ready and when prompted
proceeds to negotiate with an approprigger; note the
special treatment of fixed-price negotiations by both the oo cient S
Buyer and theGatekeeper agents. Upon completion of []
negotiations,Buyer informs theClient about their result
and, if necessary (when an attempt at completing purchase
is made), acts as an intermediary betweenGhent and

the Shop. In the case when purchase was not attempted or
was not successfuBuyer agent awaits the decision of the
Client and if requested proceeds back to participate in price
negotiations (before doing so it updates its negotiation te
plate and the strategy module). This process continuels unti
the Buyer agent is killed on the request of tiient agent.

Let us emphasize that in the proposed system we observe
two types adaptability. First, the “negotiations mechariis !
adaptability—whereBuyer agents adapt their behavior to Listof registered Buyers
that expected in the e-store. This mechanism has been al- <<sional sending
ready implemented (see [6]). There are also other places | negoatons
where adaptability materializes: (8hop agent adjusting
negotiation templates (e.g. mechanism or minimal price)
based on the flow of products, (3op agent adjusting the
negotiation strategy for each product category, C8ent . S)
agent creating specific negotiation strategies (iVMiGDM Figure 6. UML activity diagram of actions tak-
“subsystem”) that depend, among others, on the negotiation Ng place during preparations to negotiations
mechanism, product and particular store (responding to tha
e-store strategy), (4Flient agent utilizes its'CDM mod-
ule to select which store to make a purchase from. That
MCDM process is adaptable in two senses: (i) it depends on
historical data (e.g. past interactions with e-stores), @h
it represents the user on behalf of which @ieent acts and
thus adjusts to. These forms of adaptability are currently
being considered in our research.

Finally, to summarize what has been presented thus far,
in Figures 5, 6, 7, we present the complete flow of actions
in the system.

Figure 5. UML activity diagram of the initial-
ization of the system

Waiting for an) (Wamng for an

order order
Creation Requesting
Seller addresses
cic
L response

L

Creation and

List of addresses
departure of <
Buyers

Notifying
Gatekeeper:
new Seller

Preparing
negotiations

should one usenobile agents instead of messaging?” It
could be (and it has been) argued that agmaatiility is un-
necessary. We have also seen papers, where agent mobility
was clearly spurious in the context of the problem in ques-
tion. At the same time, we believe that in the system under
consideration agent mobility plays an important role.

Let us start by considering someone who, sitting behind
a slow Internet connection (which is not an uncommon sit-
uation), tries to participate in an eBay auction. In thisecas
it is almost impossible to be sure that ones bid (1) reaches
. eBay server in time, (2) is $iiciently large to outbid op-
5 Agent mobility ponents that have been bidding while connected over a fast
link (information about auction progress as well as our re-
Let us now devote our attention to the question that is sponses may not be able to reach their destinatiofis su
constantly being discussed in the agent community: “Why ciently fast). Here, network-caused delays can be signifi-

Warehouse

Shop

Product
reservation

Reservation
checking

<<signal sending>> \

Updating Shop’s
Knowledge Base
<<signal sending>>
Check reservation

reservation

Notification Buyer
about Nr_res
<<signal sending>>
SA:Rejection

Buyer

<<signal sending>>
= T 9
CA:l am winner

/ <<signal sending>>

Client

Updating Client's Making
Knowledge Base decision
<<signal sending>>
Buyer: Rejection

_&

<<signal sending>> \

AN SA:Confirm

<<signal sending>>
Gatekeeper:continue

SA: reservation expired /

Buyer:reservation
expired /

<<signal sending>>
CA:Reservation expired]

<<signal sending>>
Confirm
<<signal sending>>
Continue
9‘ User notification ’

T

Killing Buyers

‘ Sale completion ’

Figure 7. UML activity diagram of actions taking place after

-

negotiations are complete

cant for the outcome of negotiations (purchase of the de-the load that is to be transported over the network and thus
sired product may be prevented). Obviously, problem de- attempts at addressing at least a part of this problem.
scribed here can be avoided if an agent representing user is Separately, one may suggest that a very large number
located at the same server where the negotiations take placeyf agents visiting an e-shop and computing their bidding
Letus stress, that we take very seriously the notion of agentstrategies in real-time may result in a substantial usage of
autonomy. Thus we assume that an agent that represents ityoca| resources. This, in turn, may constitute an argument
user is capable of autonomously completing the requestedagainst agent mobility (why should an e-store supply all
task (purchase chosen product(s)). these resources?). In response, let us consider economical
Assuming that mobile agents are to be used to moveforces driving e-commerce. Here, we have buyers who
negotiating agents within the auction-carrying server; Wantto purchase certain goods and sellers who want to sell
resulting in dfers being made fast enough tfigently them. Obviously, it is the sellers, who benefit financially
participate in price negotiations, one can ask about tepri from selling products and thus have to do “whatever it
that is to be paid for moving autonomous agents across thé@kes” to satisfy their customers. Therefore, it is likedy t
network. Obviously, it is possible that an agent may not be P& enough that one e-shop provides infrastructure that will
able to participate in a particular auction because it doesb® robust enough for buyer-agents to use it successfully,
not reach the auction server in time. Our response comegnd the remaining e-shops will have to follow. This is just
in four parts. (1) If it is a particular auction that the useri @nother version of what is happening in old-commerce. If
interested in, then agent not reaching the auction senger ha@ given store is too small afat inconvenient to handle 100
exactly the samefect as not being able to win because clients at a time then they are likely go to the larger store
of bid(s) being late. (2) Therefore, it is only an agent that and the inconvenient store will loose clients. Furthermore
reaches the server in time that gives its user any chance tdet us note that the proposal put forward in our research is
effectively participate in price negotiations. (3) Further- @lso capable of addressing some aspects of this problem.
more, if an agent reaches its destination, it will be able to ASSuming that agents are to be mobile and they are to visit
effectively participate in all upcoming negotiations within €-Shops (as argued above) then loading only necessary
that server, while delays caused by networkficamay modules produces agents that are as slim as possible. In
permanently prevent user from sudfieetive negotiations. ~ this way, agents advocated here result in minimal resource
(4) Finally, it is exactly the proposal presented in thisgrap ~ (€-9- computer memory) consumption.
(dynamically loadable negotiation modules) that reduces Let us now consider one more possibility, tHztyer

agents are assembled completely or partially before theey ar to frequent them and negotiate prices. We have followed
send to the e-store. Obviously, since both the negotiationby arguments why the proposed solution, based on dy-
protocol and template can be obtained within the e-store,namically loadable modules, helps reduce auction-server
carrying them across the network makes no sense. Thereresource utilization and whBuyer agents should not be
fore, maybe it would be possible to seBdyer agents with assembled before they reach their destination. Finally
the negotiation strategy module already loaded? The mainwe have discussed why there is no simple solution to the
problem with this proposal is a result of our assumption that problem of finding the optimalféer when multiple agents
e-stores can respond to the flow of commodities by actively negotiate prices within multiple e-stores and thus why our
changing their negotiation templates. This being the case,solution is as optimal as any other.
by the time that the /3 assembledBuyer reaches its des- System described here is currently being re-implemented
tination, its strategy module may be already outdated andusing JADE and JESS toolkits [3, 4] (the previous version
the first thing it would have to do, would be to request a of the system, while fully functional [6], did not involvegh
new one (resulting, among others, in extra messages beingeneral framework introduced in [1, 2]). We will report on
exchanged). Therefore, we have elected to send across theur progress in subsequent papers.
network only a minimal agent-skeleton and outfit it with ap-
propriate module within the e-store. Note that this appnoac References
considerably simplifies the overall system design.

Finally, let us consider one more problem that is related

. [1] Bartolini, C., Preist, C., Jennings, N.R.: Architedifior
to agent mobility. Let us recall th@uyer agents are rela-

Reuse: A Software Framework for Automated Negotiation.

tively simplistic and it is theClient agent that makes the fi- In: Proceedings of AOSE'2002: International Workshop
nal determination where to attempt at making the purchase. on Agent-Oriented Software Engineering, Bologna, Italy,
Therefore Client agents have to communicate selected (re- LNCS 2585, Springer Verlag (2002) 88-100.

motely locatedBuyer agents and their request to complete [2] Bartolini, C., Preist, C., Jennings, N.R.: A Softwareffre-
purchase may be network-delayed, resulting in an expired work for Automated Negotiation. In: Proceedings of SEL-
reservation and inability to complete the task. Unfortu- MAS’2004, LNCS 3390, Springer Verlag (2005) 213-235.
nately, this problem does not seem to have a simple solution, [l i’:?E_:// ‘_]:C‘{: ngli”tit Development Framework. ~ See
since dter comparison requires 9°r."m“r?'°at.'°” between [4] JESpS: ’ Java Expert System Shell. See
agents participating in price negotiations (i.e.in outteys http://herzberg.ca.sandia.gov/jess/.

we have selected a central pointGhent agent — that will [5] Fuggetta, A., Picco, G.P., Vigha, G.: Understanding €od
collect all dfers, instead of all-to-all communication, but Mobility. In: IEEE Transactions on Software Engineering,
the same problem haunts all possible approaches to finding vol.24, no.5, IEEE Computer Science Press (1998) 342—361.
one dfer among many). Furthermore, since not all sites can [6] Maria Ganzha, Marcin Paprzycki, Amalia Pirvanescu,
be expected to conduct their price negotiations at the same ~ Costin Badica, Ajith Abraham (2005) JADE-based Multi-
time, and with the same “urgency,” it is simply impossible to agent E-commerce Environment: Initial Implementation,
assure that the besffer will still be available, when the “re- Analele Universitafii din Timisoara, Seria Matematic™
maining” agents complete their negotiations. Therefoue, o Informatica(to appear)

luti . timal in t f reducing total network [7] Tamma, V., Wooldridge, M., Dickinson, I: An Ontology
solution remains optimal In terms of reducing total networ Based Approach to Automated Negotiation. noceedings

congestion by sending only minimal-size agents and mini- AMEC'02: Agent Mediated Electronic Commerce, LNAI
mizing the total number of messages send over the network. 2531, Springer-Verlag (2002) 219-237.
[8] Trastour, D., Bartolini, C., Preist, C.: Semantic WelpSu
6 Concluding Remarks port for the. Business-to-Bus’iness E-Commerce Lifecycle.
In: Proceedings of the WWW’02: International World Wide
Web Conference, Hawaii, USA, ACM Press, New York,

In this paper we have discussed a multi-agent e- USA (2002) 89-98.
commerce system that combines rule-based and mobile [9] Tu, M.T., Griffel, F., Merz, M., Lamersdorf, W.: A Plug-
agent technologies for implementing flexible automated in Architecture Providing Dynamic Negotiation Capabi
negotiations. After presenting an overview of the proposed for Mobile Agents. In:Proceedings MA'98: Mobile Agents,
system and UML diagrams of two of its agents as well as Stuttgart, Germany, (1998) 222-236.

a complete action-diagram, we have focused our attention (10 T]N(;]olo\lzf?ge,& '\g An (Iznct)roozd)uction to MultiAgent Systens,
. : : e ohn Wiley & Sons, .
?hna?:\ge:rzltorrlzgﬂ\i{[zlvizdtrzre] ?r%(;ntor;t?r?;;tgl\lj\tlie()r??\(;? ;rgued [11] Wurman, P, Wellman, M., Walsh W.: A Parameterization of
) the Auction Design Space. I@ames and Economic Behav-
e-commerce model considered here. Then we have shown ior, 35, Vol. 12 (30015)271_303_
why it can be expected that in the future e-stores will

provide an infrastructure robust enough for mobile agents

