
Mobile Agents in a Multi-Agent E-Commerce System

Costin Bădică
Software Engineering

Department
University of Craiova

Bvd. Decebal 107, Craiova,
200440 Romania

c badica@hotmail.com

Maria Ganzha
Department of Administration

Elbla̧g University of
Humanities and Economy

ul. Lotnicza 2
82-300 Elbla̧g, Poland

ganzha@op.pl

Marcin Paprzycki
Computer Science, OSU
Tulsa, OK, 74106, USA

and
Computer Science, SWPS
03-815 Warsaw, Poland
marcin@cs.okstate.edu

Abstract

Among features often attributed to software agents are
autonomyand mobility. Autonomyof e-commerce agents
involves adaptabilityto engage in negotiations governed by
mechanisms not known in advance, while their mobility
entails such negotiations taking place at remote locations.
This paper aims at combining adaptabilitywith mobility, by
joining rule-based mechanism representation with modular
agent design, and at UML-formalizing selected aspects of
the resulting system. Furthermore, we discuss the issue of
agent mobility and argue why such agents have been pro-
posed for the system under consideration.

1 Introduction

Current agent environments (e.g. JADE [3]) offer
sufficient support for implementing quasi-realistic models
of e-commerce. Moreover, advances in auction theory have
produced a general methodology of describing price negoti-
ations [11]. Combination of these factors gave new impetus
to research on automating e-commerce, and one of sug-
gested approaches was utilization ofautonomous, mobile
software agents. Sinceautonomy is a very broad concept,
we would like to focus onadaptability that can be viewed as
ability to update the negotiation “mechanism” to engage in
unknown in advance forms of negotiations [9]. Obviously,
another aspect ofautonomy is decision autonomy and
involves “intelligence” that can be understood as capability
to reason over past experiences and domain knowledge
in order to maximize utility. Note that such reasoning
possibly involves complex (resource consuming) numerical
and/or symbolic computations. This aspect ofautonomy,
while important, appears in this paper only as a “price” that
is to be paid (in terms of resource utilization) in the case

when mobile agents are to be employed. Agentmobility,
on the other hand, enables application components that
require strong interactions either between themselves (e.g.
in automated negotiations) or with a continuously evolving
information source (e.g. the stock market), to migrate close
to each other (e.g. to be collocated on the same server) or
close to that information source. It should be obvious, that
mobile agents have to be lightweight to be able to swiftly
move across the network. At the same time, intelligent
agents cannot be lightweight as they have to “carry” their
intelligence with them. This makes intelligent mobile
agents a clear case for the no-free-lunch theorem [10].

In this paper we describe an architecture of a multi-agent
e-commerce system that aims at combiningadaptability,
mobility andintelligence. In our system,autonomous agents
are engaged in matchmaking, negotiations and contracting
(including actually “purchasing” sought after products) on
behalf of their users: humans or businesses. Our proposal
builds on: (i) conceptual architecture of a multi-agent
e-commerce system described in [6] (see also references
to our earlier work collected there), (ii) flexible framework
that allows agents to participate in arbitrary negotiations
introduced in [1, 2], and (iii) lightweight agents migrating
to remote markets and engaging in “any” form of negotia-
tions via dynamically loadable modules [6]. Furthermore,
we proceed beyond what is typically considered in the
agent-literature: the “act” of price negotiation itself. While
in [8] negotiations were extended to include matchmaking,
in our work we conceptualize the negotiation as a part of a
more complete e-commerce scenario consisting of: request-
ing purchase, matchmaking, negotiating and completing
purchase. Interestingly, the final stage of an e-commerce
scenario: between completion of price negotiations and
actual purchase, while involving a number of interesting
possibilities, is practically forgotten in the literature.

We proceed as follows. In the next section outline the
negotiation framework introduced in [1, 2] and the modular

agents presented in [6] as well as how we combine them.
We follow with a general description of agents appearing
in the system and their basic interactions (Section 3) and
a detailed presentation and UML formalization of selected
agents appearing in our system (Section 4). Section 5 dis-
cusses the reasons why use of mobile agents is “optimal”
within the proposed system.

2 Components for Automated Negotiations

Authors of [1, 2] analyzed the existing approaches
to agent negotiations (primarily the FIPA-standardized
auction protocols) and argued that they do not provide
enough structure for the development of portable agent-
based e-commerce systems. They also outlined a new
agent negotiations framework, consisting ofbuyers and a
host where the negotiations take place. Within the host,
the infrastructure for negotiations was provided through
a number of sub-agents:Gatekeeper, Proposal Validator,
Protocol Enforcer, Information Updater, Negotiation Ter-
minator andAgreement Maker that interact with each-other
by direct messaging and via a blackboard. The central
point of their framework consisted of a generic negotiation
protocol and taxonomy of JESS [4] rules used for enforcing
specific negotiation mechanisms.

Independently, in our earlier work, we have followed
proposal outlined in [9] and implemented an agent-based
e-commerce skeleton, where agents were capable of nego-
tiation adaptation via dynamically loadable modules [6].
Negotiating agents consisted of three main components:
(i) communication module – responsible for messages ex-
changed between agents (part of the skeleton moving across
the network), ii)protocol module – responsible for enforc-
ing the (FIPA) protocol that governed negotiations (public
and downloadable form any server), and (iii)strategy mod-
ule – responsible for producing protocol-compliant actions
necessary to achieve agent goals (private and downloadable
from the home server).

Let us make three observations that allow us to combine
and extend the two approaches (due to the lack of space,
[6] and references presented there should be consulted for
further details):

• The framework introduced in [1, 2] assumes implic-
itly that Buyer agents are mobile and carry with them
the “generic negotiation protocol” thus making them
rather heavy; obviously, our approach based on plug-
gable negotiation modules can be employed here to
achieve lightweight mobility.

• The Gatekeeper sub-agent does not play any role in
actual price negotiations; it only allows buyers into the
negotiation space and provides them with the negoti-
ation protocol and the negotiation template; thus we

have removed it from the “negotiation infrastructure”
and placed in the system as a full-fledged agent (and
have added to it a number of additional “managerial
functions,” see below).

• Analysis presented in [1, 2] involves onlyBuyer agents
visiting a given host to make a purchase and becoming
involved in price negotiations; actions of the system
preceding and following negotiations are not consid-
ered; on the other hand these functions were a part of
our original system and have been further extended for
the current paper.

3 Agents in an E-Commerce Environment

Let us now briefly discuss architecture of the proposed
multi-agent e-commerce environment. Fundamentally, our
system represents a distributed marketplace that hosts e-
stores and allows e-clients to “visit” them to purchase prod-
ucts. Figure 1 introduces agents occurring in our system and
specifies which agents are in direct contact (solid arrows
denote communication; dashed arrow denotes agent move-
ment; rectangular boxes surround buyer and seller systems
and agents populating them). The only agent not repre-
sented there is an auxiliaryCICDB agent that interfaces the
CIC agent with the database of agents and products.Shop

Client

Buyer

Seller

Shop

Warehouse

CIC

Gatekeeper

Buyer

Figure 1. Agents in the e-commerce environ-
ment

and theClient agents represent system “users” — mer-
chants that sell products and buyers who want to purchase
them. After being created, during system initialization,
Client agents register with theCIC agent and await user
requests. Similarly,Shop agents createGatekeeper agents
and register them with theCIC agent. Furthermore, each
Shop agent registers there all products that are available

in its e-store (an initial list of available products). In this
way, theCIC agent combines the function of white pages,
by storing information (addresses and identifiers) about all
Shop, Gatekeeper andClient agents existing in the system,
and of yellow pages, by storing information about available
products (see also [8]). Due to its auxiliary role, in this
paper we omit theCIC agent from further considerations
(for more information see [6] and papers referenced there).

On the supply side,Shop agents are responsible for cre-
atingSeller agents (one for each product to be sold).Seller
agents implemented in our system embody the same func-
tionalities as theNegotiation host agents described in [1, 2].
Specifically, except of theGatekeeper agent that is not part
of negotiations and has a more complex role,Seller agents
consist of all sub-agents identified there; each playing ex-
actly the same role. Finally, eachSeller is provided (by the
Shop agent) with its initial negotiation template.

Client agents utilize mobileBuyer agents to seek the best
possible offer matching user-specified requirements.Buyer
agents engage in price negotiations and report results to the
Client agent, which gathers offers and decides where from
to attempt at making an actual purchase (or decides that pur-
chase that would satisfy its user cannot be made).

Finally, in addition to agents proposed in [6], we extend
our system and includeWarehouse agents, also created by
Shop agents during system initialization (one such agent
for every e-store in the system).Warehouse agents are
responsible for: (i) management of products available for
sale, (ii) management of reserved products, and (iii) in
the future, interfacing with an agent-based supply chain
management sub-system.

Let us now systematically describe each agent and its
function. Due to the lack of space we present complete
UML diagrams only of two most important agents in the
context of agent mobility: theGatekeeper and theBuyer.

4 Agents in the System

Shop Agent The Shop agent acts as the representative
of the “user” (seller). We assume that after it is created it
persistently exists in the system until the user decides that
it is no longer needed (in practice, it can be assumed that it
exists throughout the run of the system). Upon its creation,
theShop agent creates and initializes aGatekeeper agent, a
Warehouse agent andSeller agents (one for each category
of product sold). The initialization of theWarehouse agent
involves passing information about goods that are initially
available for sale, while initialization of theGatekeeper and
Seller agents involves providing them with templates that
are to be used initially in price negotiations. Furthermore,
the Gatekeeper agent and the list of available products are
registered with theCIC agent.

After initialization, the Shop agent enters a complex

state where it supervises negotiations and the product flow.
Within one execution thread it awaits finish of price nego-
tiations. If they were successful, supervisingSeller informs
theShop agent, which asks theWarehouse agent to reserve a
given quantity of a particular product (for a specific amount
of time). The events can then proceed according to three
different scenarios.Case 1: if the winningBuyer confirms
purchase theShop asks theWarehouse agent to check the
reservation. If the reservation did not expire then theShop
informs theBuyer agent about acceptance of transaction.
This event starts the final stage — named “Sale finalization”
which includes such actions as payment and delivery.Case
2: if the reservation has expired, then theShop agent sends
a rejection message to theBuyer agent.Case 3: if the Client
agent rejects purchase (and informs theShop agent about it
through theBuyer agent) theShop agent asks theWarehouse
agent to cancel the reservation. Completing one of these
three cases “closes” this branch ofShop agent execution.

Separately, theShop agent keeps track of all negotia-
tions and transactions and periodically performs multicri-
terial analysis (start of theMCDM — multicriterial deci-
sion making — module is a part of initialization of theShop
agent) that may result in changes in the negotiation template
(e.g. minimal price, type of price negotiation mechanism,
etc.). For instance, when only a few items are left they may
be deeply-discounted, or put on sale through an auction. In
this case a new template is generated and sent to theGate-
keeper agent that switches it in an appropriate moment (see
below, Figures 2,3).

Gatekeeper agent Shop agents cooperate directly with
Gatekeeper agents that (1) interact withBuyer agents:
admit them to the negotiations and provide with the pro-
tocol and the current negotiation template, (2) in suitable
moments releaseBuyer agents to appropriateSellers and
(3) manage updates of templates. The statechart diagram
of the Gatekeeper agent is presented in Figure 2 (the top
level depiction ofGatekeeper functionality) and continued
in Figure 3 (detailing negotiation preparations). When an
appropriate number ofBuyer agents have registered, the
Gatekeeper passes their identifiers to theSeller agent and
thus allows the negotiation to start. As soon as this step
is completed, theGatekeeper cleans the list of registered
Buyer agents and the admission/monitor process is restarted
(assuming that theSeller agent is still alive). Note that the
Gatekeeper admits to negotiations only “complete”Buyer
agents; such agents that have all modules installed and
confirmed that are ready (as indicated by the small loop
above the “Waiting for the Buyer msg” box).

When a new template module is delivered by theShop
agent a list of currently registeredBuyer agents is put into
a buffer (“Buffer registration list” box). These agents have
to be serviced first, using the current template that they
have been provided with upon entering the e-store. Since

[terminate]

[new Seller] / get(S_ID)

Preparing negotiations

[empty]

msg

Listen for the ShopAgent

Producing msg

[Seller(S_ID) is alive]

start negotiations Waiting for end of negotiations

[new template]

exit / notify (preregistration Buyers)
do / update(template(S_ID))
entry / "close" registration list

Updating tepmlate

do / send(all registered Buyers, no more product p)

Notification

[Seller(S_ID) is killed] [not empty]

do / push(S_ID,registration list,template)

Buffer registration list

Checking registration list

Figure 2. UML statechart diagram of the Gatekeeper agent

Checking buffer

[not busy]

[not empty] / pop(buffer list)

[not empty]

do / transfer(Seller,registration list,template)

Seller notification

[OK]

[fixed price]

exit / send(template(S_ID))
entry / register(Buyer)

Registration of Buyer

Checking Buyer

[new Buyer] [problem] / msg(B_ID,reject)

/ create new registration list

[busy] / restart timer

[empty] / restart timer

time is up / check seller

Waiting for the Buyer msg

[new Buyer]
do / request(CA, strategy(template(S_ID)))
entry / send(Protocol,template(S_ID))

Preregistration and notification of new Buyer

["old" Buyer]
 [new template] / request(CA,strategy(template(S_ID)))
entry / send(template(S_ID))

Preregistration and notification

do / register(new Buyer)

Buyer registration

[empty]

Checking registration list

Figure 3. Statechart diagram for Preparing Negotiations St ate

then, the new incoming agents will be provided with the
new template. Let us note, that here we have to deal with
one more case: whenBuyer agents have already received
negotiation protocol and template, but have not received
(from their Client agent) their negotiation strategy. In
this case, when the change of template takes place, the
Gatekeeper agent (even before bufferingBuyer agents that
are ready and waiting for start of negotiations) informs such
incomplete agents that there is a change in the negotiation
template and provides them with the new one. As a result,
Buyer agents have to re-request negotiation strategy (see
Figure 4, loop “new template”). Note that our system
allows loosingBuyer agents to stay at the host and re-enter
negotiations after updating protocol templates (the “old
Buyer” path). Finally, in a special case when a given prod-
uct has been sold-off and will not be replenished, theShop
agent terminates theSeller responsible for selling it and the
Gatekeeper informs awaitingBuyer agents about this fact.

Warehouse Agent TheShop agent interacts directly also
with the Warehouse agent. In the early stages of its func-
tioning theWarehouse agent is supplied (through messages

from theShop agent) with information about products and
their quantities (to be saved into a database). Then theWare-
house agent enters a complex state where it (a) awaits notifi-
cations from theShop agent and (b) manages time triggered
events. TheShop agent notifies theWarehouse agent about:
(i) registration of new products for sale, (ii) product reser-
vations, (iii) purchase confirmations, and (iv) purchase ter-
minations. The time event triggers checking existing reser-
vations. If reserved products whose reservation time has
expired are found, these reservations are canceled, reserved
products are added to the pool of products available for sale
and theShop agent is informed about a new amount of avail-
able commodities. Note that the information about can-
celled reservation is provided to theShop agent only when
a purchase is requested by theBuyer agent and theShop
agent is checking if a transaction can be completed. Finally,
if quantity of some product becomes 0, theWarehouse agent
informs about it theShop agent, which may decide to termi-
nate the correspondingSeller agent. In this case it informs
about it both theCIC and theGatekeeper agents.

Seller agent Finally, the last agent working on the supply

[decision=end]

[fixed price]

Requesting of the reservation

[not matching price] entry / send(CA,Result)

Notification of CA Waiting for decision

[CA says NO]

entry / send(Shop,refuse)

Cancelling of purchase

[CA says YES]

entry / send(Shop,YES)

Finalisation of purchase

Waiting for Shop answer

Negotiations process

[no more product] / Result=no more product

[matching price]

[OK]

do / get(protocol, template)

Registering part 2

Registering part 1

exit / go(Gatekeeper address)
entry / get(Gatekeeper address)

Moving to the Host

arrive

do / request(CA, strategy)
entry / state=not ready

Requesting a strategy

start negotiations

[rejection]

do / send(CA,answer)

Notification of CA

[Result=Lost]

Requesting

[Result=Won]
Waiting for confirmation

Shop answer

[new template]

[decision=continue]

do / get(Template)

Re−registering

ready Waiting for the start of negotiations

Figure 4. UML statechart diagram of the Buyer agent

side of the system is what appear to be a simpleSeller agent.
Its apparent simplicity comes form the fact that it encom-
passes the complete negotiation framework proposed in [1,
2]. Note that not all negotiations have to end by establishing
a winner and our system is able to handle such an event. At
the same time, all data about negotiations is send to theShop
agent that collects and analyses them. Thus, for instance, a
sequence of failures should result in a change in template
resulting form the multicriterial analysis that it performs.

Client agent On the purchasing side, we have two
agents. TheClient agent exists in a complex state. On the
one hand it listens for orders from the customer and, to ful-
fill them: (1) queries theCIC agent which stores sell the
requested product, (2) then dispatchesBuyer agents to each
such e-store (identified by itsGatekeeper agent). On the
other hand, it directly manages the process of making pur-
chases on behalf of the customer, on the basis ofBuyer no-
tifications informing about the results of price negotiations.

For a specific amount of time theClient collects reports
(messages) sent byBuyer agents (eachBuyer agent report is
also stored in a database for further information extraction).
When the wait-time is over (or when allBuyer agents have
reported back) theClient agent enters a complex state. On
the one hand it continues listening for messages fromBuyer
agents (obviously if all have reported then no messages
will be coming). On the other hand it goes through a multi-
criterial decision procedure (MCDM) that has one of three
possible outcomes: (i) to attempt at completing a selected
purchase, (ii) to cancel the existing reservations and request

that Buyer agents re-engage in price negotiations — thus
awaiting a better opportunity, or (iii) to declare the purchase
impossible and notify the customer accordingly. Note that,
in a realistic system, theMCDM analysis should be truly
multicriterial and include factors such as: price, historyof
dealing with a given e-shop, delivery conditions etc.

When the attempt at completing a purchase is successful,
then theClient agent sends messages to allBuyer agents
ordering them to self-destruct. The situation is slightly
more complicated when the attempt was unsuccessful and
purchase was not deemed impossible. Then theClient
agent undertakes the following actions: (1) informs all
Buyer agents that have already reported to cancel current
reservations and return to price negotiations and (2) resets
timer establishing how long it will wait before the next
MCDM analysis. Observe that it is possible that the first
MCDM analysis was undertaken before allBuyer agents
have complete their “first round” of price negotiations.
They could have contacted theClient while it was “think-
ing” which of the existing offers to choose. In this way,
some agents make their second attempt at negotiating
prices, while some agents have just finished the first. As
this process continues in an asynchronous fashion various
Buyer agents will make different number of attempts at
negotiating price that is acceptable to theClient agent. This
process will terminate when all orders submitted by the
customer have been either honored or abandoned.

Buyer agent Finally, theBuyer agent (see Figure 4) is
the only mobile agent in the system. It is dispatched by

the Client agent to all stores that carry product desired by
the customer. It arrives at the e-store (identified by the
address of theGatekeeper agent) and communicates with
theGatekeeper agent (see Figure 2,3) to obtain entry to the
negotiations (in case when entry is not granted it informs
its Client agent and is ordered to self-destruct). When entry
is granted theBuyer obtains, from theGatekeeper, the
negotiation protocol and the current negotiation template.
In the next step,Buyer agent requests and obtains an
appropriate strategy module from theClient agent (see
also the above description of the case when the negotiation
template changes while theBuyer agent awaits the strategy
module). When all three modules are installed,Buyer
informs theGatekeeper that it is ready and when prompted
proceeds to negotiate with an appropriateSeller; note the
special treatment of fixed-price negotiations by both the
Buyer and theGatekeeper agents. Upon completion of
negotiations,Buyer informs theClient about their result
and, if necessary (when an attempt at completing purchase
is made), acts as an intermediary between theClient and
theShop. In the case when purchase was not attempted or
was not successful,Buyer agent awaits the decision of the
Client and if requested proceeds back to participate in price
negotiations (before doing so it updates its negotiation tem-
plate and the strategy module). This process continues until
theBuyer agent is killed on the request of theClient agent.

Let us emphasize that in the proposed system we observe
two types adaptability. First, the “negotiations mechanism”
adaptability—whereBuyer agents adapt their behavior to
that expected in the e-store. This mechanism has been al-
ready implemented (see [6]). There are also other places
where adaptability materializes: (1)Shop agent adjusting
negotiation templates (e.g. mechanism or minimal price)
based on the flow of products, (2)Shop agent adjusting the
negotiation strategy for each product category, (3)Client
agent creating specific negotiation strategies (in itsMCDM
“subsystem”) that depend, among others, on the negotiation
mechanism, product and particular store (responding to that
e-store strategy), (4)Client agent utilizes itsMCDM mod-
ule to select which store to make a purchase from. That
MCDM process is adaptable in two senses: (i) it depends on
historical data (e.g. past interactions with e-stores), and (ii)
it represents the user on behalf of which theClient acts and
thus adjusts to. These forms of adaptability are currently
being considered in our research.

Finally, to summarize what has been presented thus far,
in Figures 5, 6, 7, we present the complete flow of actions
in the system.

5 Agent mobility

Let us now devote our attention to the question that is
constantly being discussed in the agent community: “Why

Shop

Creation
Shop Agent

Creation
Warehouse

Creation
GateKeeper

Start MCDM
process

Client

Start MCDM
process

Creation
Client Agent

Services

Creation CIC and
CICDB agents

Figure 5. UML activity diagram of the initial-
ization of the system

EnvironmentClientShop

Notifying
Gatekeeper:
new Seller

Waiting for an
order

Waiting for an
order

Requesting
addresses

<<signal sending>>
Start of
negotiations

List of registered Buyers

Creation and
departure of
Buyers

List of addresses

CIC
response

Creation
Seller

Preparing
negotiations

Notification Seller

Figure 6. UML activity diagram of actions tak-
ing place during preparations to negotiations

should one usemobile agents instead of messaging?” It
could be (and it has been) argued that agentmobility is un-
necessary. We have also seen papers, where agent mobility
was clearly spurious in the context of the problem in ques-
tion. At the same time, we believe that in the system under
consideration agent mobility plays an important role.

Let us start by considering someone who, sitting behind
a slow Internet connection (which is not an uncommon sit-
uation), tries to participate in an eBay auction. In this case
it is almost impossible to be sure that ones bid (1) reaches
eBay server in time, (2) is sufficiently large to outbid op-
ponents that have been bidding while connected over a fast
link (information about auction progress as well as our re-
sponses may not be able to reach their destinations suffi-
ciently fast). Here, network-caused delays can be signifi-

ClientShop BuyerWarehouse

Reservation
checking

Updating Shop’s
Knowledge Base

Product
reservation

Canceling
reservation

Updating Client’s
Knowledge Base

Making
decision

User notification

Notification Buyer
about Nr_res

Reservation

Killing Buyers

Sale completion

<<signal sending>>
Gatekeeper:continue

<<signal sending>>
Buyer:reservation
expired

<<signal sending>>
CA:Reservation expired

<<signal sending>>

SA: reservation expired

<<signal sending>>
Check reservation

<<signal sending>>
CA:I am winner

<<signal sending>>
SA:Rejection

<<signal sending>>
SA:Confirm

<<signal sending>>
Buyer: Rejection

<<signal sending>>
Confirm

<<signal sending>>
Continue

Figure 7. UML activity diagram of actions taking place after negotiations are complete

cant for the outcome of negotiations (purchase of the de-
sired product may be prevented). Obviously, problem de-
scribed here can be avoided if an agent representing user is
located at the same server where the negotiations take place.
Let us stress, that we take very seriously the notion of agent
autonomy. Thus we assume that an agent that represents its
user is capable of autonomously completing the requested
task (purchase chosen product(s)).

Assuming that mobile agents are to be used to move
negotiating agents within the auction-carrying server;
resulting in offers being made fast enough to efficiently
participate in price negotiations, one can ask about the price
that is to be paid for moving autonomous agents across the
network. Obviously, it is possible that an agent may not be
able to participate in a particular auction because it does
not reach the auction server in time. Our response comes
in four parts. (1) If it is a particular auction that the user is
interested in, then agent not reaching the auction server has
exactly the same effect as not being able to win because
of bid(s) being late. (2) Therefore, it is only an agent that
reaches the server in time that gives its user any chance to
effectively participate in price negotiations. (3) Further-
more, if an agent reaches its destination, it will be able to
effectively participate in all upcoming negotiations within
that server, while delays caused by network traffic may
permanently prevent user from such effective negotiations.
(4) Finally, it is exactly the proposal presented in this paper
(dynamically loadable negotiation modules) that reduces

the load that is to be transported over the network and thus
attempts at addressing at least a part of this problem.

Separately, one may suggest that a very large number
of agents visiting an e-shop and computing their bidding
strategies in real-time may result in a substantial usage of
local resources. This, in turn, may constitute an argument
against agent mobility (why should an e-store supply all
these resources?). In response, let us consider economical
forces driving e-commerce. Here, we have buyers who
want to purchase certain goods and sellers who want to sell
them. Obviously, it is the sellers, who benefit financially
from selling products and thus have to do “whatever it
takes” to satisfy their customers. Therefore, it is likely to
be enough that one e-shop provides infrastructure that will
be robust enough for buyer-agents to use it successfully,
and the remaining e-shops will have to follow. This is just
another version of what is happening in old-commerce. If
a given store is too small and/or inconvenient to handle 100
clients at a time then they are likely go to the larger store
and the inconvenient store will loose clients. Furthermore,
let us note that the proposal put forward in our research is
also capable of addressing some aspects of this problem.
Assuming that agents are to be mobile and they are to visit
e-shops (as argued above) then loading only necessary
modules produces agents that are as slim as possible. In
this way, agents advocated here result in minimal resource
(e.g. computer memory) consumption.

Let us now consider one more possibility, thatBuyer

agents are assembled completely or partially before they are
send to the e-store. Obviously, since both the negotiation
protocol and template can be obtained within the e-store,
carrying them across the network makes no sense. There-
fore, maybe it would be possible to sendBuyer agents with
the negotiation strategy module already loaded? The main
problem with this proposal is a result of our assumption that
e-stores can respond to the flow of commodities by actively
changing their negotiation templates. This being the case,
by the time that the 1/3 assembledBuyer reaches its des-
tination, its strategy module may be already outdated and
the first thing it would have to do, would be to request a
new one (resulting, among others, in extra messages being
exchanged). Therefore, we have elected to send across the
network only a minimal agent-skeleton and outfit it with ap-
propriate module within the e-store. Note that this approach
considerably simplifies the overall system design.

Finally, let us consider one more problem that is related
to agent mobility. Let us recall thatBuyer agents are rela-
tively simplistic and it is theClient agent that makes the fi-
nal determination where to attempt at making the purchase.
Therefore,Client agents have to communicate selected (re-
motely located)Buyer agents and their request to complete
purchase may be network-delayed, resulting in an expired
reservation and inability to complete the task. Unfortu-
nately, this problem does not seem to have a simple solution,
since offer comparison requires communication between
agents participating in price negotiations (i.e. in our system
we have selected a central point —Client agent — that will
collect all offers, instead of all-to-all communication, but
the same problem haunts all possible approaches to finding
one offer among many). Furthermore, since not all sites can
be expected to conduct their price negotiations at the same
time, and with the same “urgency,” it is simply impossible to
assure that the best offer will still be available, when the “re-
maining” agents complete their negotiations. Therefore, our
solution remains optimal in terms of reducing total network
congestion by sending only minimal-size agents and mini-
mizing the total number of messages send over the network.

6 Concluding Remarks

In this paper we have discussed a multi-agent e-
commerce system that combines rule-based and mobile
agent technologies for implementing flexible automated
negotiations. After presenting an overview of the proposed
system and UML diagrams of two of its agents as well as
a complete action-diagram, we have focused our attention
on questions involved in agent mobility. We have argued
that agent mobility is the most optimal solution for the
e-commerce model considered here. Then we have shown
why it can be expected that in the future e-stores will
provide an infrastructure robust enough for mobile agents

to frequent them and negotiate prices. We have followed
by arguments why the proposed solution, based on dy-
namically loadable modules, helps reduce auction-server
resource utilization and whyBuyer agents should not be
assembled before they reach their destination. Finally
we have discussed why there is no simple solution to the
problem of finding the optimal offer when multiple agents
negotiate prices within multiple e-stores and thus why our
solution is as optimal as any other.

System described here is currently being re-implemented
using JADE and JESS toolkits [3, 4] (the previous version
of the system, while fully functional [6], did not involve the
general framework introduced in [1, 2]). We will report on
our progress in subsequent papers.

References

[1] Bartolini, C., Preist, C., Jennings, N.R.: Architecting for
Reuse: A Software Framework for Automated Negotiation.
In: Proceedings of AOSE’2002: International Workshop
on Agent-Oriented Software Engineering, Bologna, Italy,
LNCS 2585, Springer Verlag (2002) 88–100.

[2] Bartolini, C., Preist, C., Jennings, N.R.: A Software Frame-
work for Automated Negotiation. In: Proceedings of SEL-
MAS’2004, LNCS 3390, Springer Verlag (2005) 213–235.

[3] JADE: Java Agent Development Framework. See
http://jade.cselt.it.

[4] JESS: Java Expert System Shell. See
http://herzberg.ca.sandia.gov/jess/.

[5] Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code
Mobility. In: IEEE Transactions on Software Engineering,
vol.24, no.5, IEEE Computer Science Press (1998) 342–361.

[6] Maria Ganzha, Marcin Paprzycki, Amalia Pı̂rvănescu,
Costin Bădică, Ajith Abraham (2005) JADE-based Multi-
agent E-commerce Environment: Initial Implementation,
Analele Universităţii din Timişoara, Seria Matematic˘a–
Informatică(to appear)

[7] Tamma, V., Wooldridge, M., Dickinson, I: An Ontology
Based Approach to Automated Negotiation. In:Proceedings
AMEC’02: Agent Mediated Electronic Commerce, LNAI
2531, Springer-Verlag (2002) 219–237.

[8] Trastour, D., Bartolini, C., Preist, C.: Semantic Web Sup-
port for the Business-to-Business E-Commerce Lifecycle.
In: Proceedings of the WWW’02: International World Wide
Web Conference, Hawaii, USA, ACM Press, New York,
USA (2002) 89–98.

[9] Tu, M.T., Griffel, F., Merz, M., Lamersdorf, W.: A Plug-
in Architecture Providing Dynamic Negotiation Capabilities
for Mobile Agents. In:Proceedings MA’98: Mobile Agents,
Stuttgart, Germany, (1998) 222–236.

[10] Wooldridge, M.: An Introduction to MultiAgent Systems,
John Wiley & Sons, (2002).

[11] Wurman, P, Wellman, M., Walsh W.: A Parameterization of
the Auction Design Space. In:Games and Economic Behav-
ior, 35, Vol. 1/2 (2001) 271–303.

