Experimenting With a Multi-Agent E-Commerce
Environment

Costin Bidici', Maria Ganzha?, Marcin Paprzycki®, and Amalia Pirvinescu®

! University of Craiova, Software Engineering Department
Bvd.Decebal 107, Craiova, 200440, Romania
badica_costin@software.ucv.ro
2 Gizycko Private Higher Educational Institute, Department of Informatics
Gizycko, Poland
ganzha@pwsz.net
3 Oklahoma State University, Computer Science Department
Tulsa, OK, 74106, USA and
Computer Science, SWPS, 03-815 Warsaw, Poland
marcin@cs.okstate.edu
4 SoftExpert SRL
Str.Vasile Conta, bl.U25, Craiova, Romania
amaliap@soft-expert.com

Abstract. Agent technology is often claimed to be the most natural approach
for automating e-commerce business processes. Despite these claims, up till now,
the most successful e-commerce systems are still based on humans to make the
most important decisions in various stages of an e-commerce transaction. Conse-
quently, it is difficult to find successful actually implemented and working large-
scale agent-based e-commerce applications to confirm agents superiority. Here,
we discuss an abstract e-commerce environment that allows agents of different
types to interact with each other and operate with an overarching goal of support-
ing an e-commerce transaction. A prototype system that implements this vision
using JADE agent platform is also described. Finally, we report on experiments
with the implemented system skeleton.

1 Introduction

E-commerce involves complex processes with many facets, spanning areas that cover
business modeling, information technology and social and legal aspects ([9]). A recent
survey ([8]) pointed out to useful applications of intelligent and mobile agents in sup-
port of advanced e-commerce. The main message permeating his (and other) work is
that agent technology is expected to bring efficiency to businesses and thus improve its
profitability (e.g. by improving the rate of successful transactions from the total num-
ber of attempted transactions, or by decreasing the total time required to complete a
transaction), but also to benefit individual users (e.g. by assuring “price-optimality” of
purchases or by increasing customer satisfaction). However, taking into account the
high diversity of e-commerce activities involving electronic payments, business docu-
ment processing (orders, bills, requests for quotes, etc.), advertising, negotiation, user

mobility, delivery of goods, security etc., it is clear that a lot more work needs to be done
to achieve the vision of a global distributed e-commerce environment supported by in-
telligent software agents. This claim is further supported by the fact that it is almost
impossible to point out to an existing (and used in day-to-day operation) large-scale
implementation of an e-commerce agent system. While a number of possible reasons
for this situation have been suggested (see, for instance, [10]), one of them has been
recently dispelled. It was shown that modern agent environments (e.g. JADE, [7]) can
easily scale to 1500 agents and 300000 messages ([3]). Since these results have been
obtained on a set of 8 antiquated Sun workstations, it is easy to extrapolate the true scal-
ability of JADE on modern computers and thus it is possible to build and experiment
with large-scale agent systems. This is the general direction of agent system develop-
ment that will be addressed in this paper. If mobile and intelligent software agents are
to become an important part of the e-commerce infrastructure, we have to start imple-
menting such systems that involve large number of agents interacting in a way that is
to model realistic scenarios arising in an e-marketplace. This process has to have at
least two goals in mind: (1) to focus on the technical aspects of the system, such as
agent functionalities, their interactions and communication, agent mobility etc., and (2)
to focus on modeling the economical processes occurring in an e-marketplace, such as:
effects of pricing strategies, of negotiation protocols and strategies, flow of commodities
etc. The first goal attempts to address the problem of lack of large-scale agent systems
implemented using agent environments (we are aware of large bio-inspired agent sim-
ulations written in C, but this is not what we are interested in). Without being able to
show that it is actually possible to implement such systems, using tools that are appar-
ently designed with this goal in mind, agent research will never be able to reach beyond
academia. The second goal points to a possible application of the system. While we do
not try to convince anyone that as system like ours will be immediately usable in real-
life e-commerce, we can point to an interesting way to utilize our system. This possible
application is e-commerce modeling. Due to the agent flexibility it will be relatively
easy to experiment with the above described as well as other factors appearing in var-
ious e-commerce scenarios. While both of these developmental paths are very closely
related to each other in this paper we are more concerned with the former.

In this broad context, our goal is to create a system with a multitude of agents that
play variety of roles and interact with each-other in an abstract e-commerce environ-
ment. Currently, we follow our earlier work, where first, we have implemented a set of
lightweight agents capable of adaptive behavior in context of price negotiations (by dy-
namically loading appropriate software modules; see [11] and work referenced there).
Second, we have implemented a simplistic skeleton for an e-commerce simulation ([2]).
Third, we have combined these two developmental threads into a unified e-commerce
environment [12]. One of the important limitations of our work reported thus far was
the fact that we have experimented only with a very limited number artifacts populating
our system (products, negotiation mechanisms and strategies, agents of various types,
computers). The aim of this paper is to report on the results of our experiments when
the size of the system has been increased considerably. In the remaining parts of this
paper we, first, present the top level description of the system. We follow by a summary

of the implementation-specific information as well as an example illustrating its work
in a larger-scale setting.

2 System Description

In our work we aim at implementing a multi-agent e-commerce system that in a long
run will help carrying out experiments with real-world e-commerce scenarios. In this
context, note the exploratory nature of our work: the system is based on an abstract
e-commerce environment describing an artificial world in which e-commerce agents
perform variety of functions typically involved in e-commerce, rather than on a solu-
tion to a specific business problem in terms of a limited number of application-specific
agents.

Our e-commerce model extends and builds on the e-commerce structures presented
in [2] and [11]. Basically, our environment acts as a distributed marketplace that hosts
e-shops and allows e-clients to visit them and purchase products. Clients have the option
to negotiate with the shops, to bid for products and to choose the shop from which to
make a purchase. Conversely, shops may be approached “instantly” by multiple clients
and consequently, through negotiation mechanisms (including auctions), have an option
to choose the buyer. At this stage the system is under development and has a number
of limitations. (1) Only four negotiation protocols have been implemented: FIPA En-
glish auction, FIPA Dutch auction, iterative bargaining and fixed price (also known as
take-it-or-leave-it). Note that the first two are one-to-many negotiations while the last
two are one-to-one negotiations (see [1] for a discussion on how various negotiation
mechanisms can be parameterized). (2) The two strategy modules are trivial and are
there only to show that such modules can be downloaded upon request. (3) We have
only shops that are allowed to advertise commodities (clients cannot advertise products
they are seeking). (4) While various strategies could be employed to decide where to
buy from (e.g. the best price, the safest offer, the most trusted offer, etc.), we are using
only the best negotiated price. (5) We have implemented only single-item negotiations.
In the case of multi-item negotiations there exist a much large number of factors influ-
encing purchase decision. (6) Our system can be (but is not) made adaptable through
data mining (e.g. history of buyer-seller interactions can lead to negotiation strategy
adjustment). We plan to address these serious restrictions in the near future.

Shops and clients can be created through a GUI interface that links users (buyers and
sellers) with their Personal Agents. However, these agents are in many ways spurious
for the operation of our system (especially in the context of e-commerce modeling -
goal (2) above). Furthermore, a Personal Agent is considered to be an envoy of the
user that resides on her machine and represents her interests in all aspects of e-life.
Thus, in the context of our system its role is ~only” to create Client / Shop agents
that will be a part of the e-commerce system; and therefore the Personal Agent is not
further discussed. Note that it is also possible to create Client and Shop agents via a
command-line line interface. This facility extremely is useful for preparing experiments
via scripting programs.

The top level conceptual architecture of the system illustrating proposed types of
agents and their interactions in a particular configuration is shown in Figure 1. Let us
now describe each agent appearing in that figure and their respective functionalities.

Fig. 1. The abstract e-commerce environment (two-client; two-shop version).

A Client agent (CA) is created by the Personal agent to act within the marketplace
on behalf of a user that attempts to buy ”something.” Similarly, a Shop agent represents
user who plans to sell “something” within the e-marketplace. After being created both
Shop and Client agents register with the CIC agent to be able to operate within the
marketplace. Returning agents will receive their existing IDs. In this way we provide
support for the future goal of agent behavior adaptability. Here, agents in the system are
able to recognize status of their counterparts and differentiate their behavior depending
if this is a ”returning” or a “new” agent that they interact with.

There is only one Client Information Center (CIC) agent in the system (in the fu-
ture we may need to address this potential bottleneck [3]). It is responsible for storing,
managing and providing information about all “’participants” existing in the system. To
be able to participate in the marketplace all Shop and Client agents must register with
the CIC agent, which stores information in the Client Information Database (CICDB).
The CICDB combines the function of client registry, by storing information about and
unique IDs for all users and of yellow pages, by storing information about of all shops
known in the marketplace. Thus Client agents (new and returning) communicate with
the CIC agent to find out which stores are available in the system at any given time.
In this way we are (i) following the general philosophy of agent system development,
where each function is embodied in an agent and (ii) utilizing the publisher-subscriber
mechanism based on distributed object oriented systems. Furthermore, this approach
provides us with a simple mechanism of correctly handling the concurrent accesses to a
shared repository without having to deal with typical problems of mutual exclusion etc.

Actually, all these problems are automatically handled by JADE’s agent communication
service.

A Client agent is created for each customer that is using the system. Each Client
agent creates an appropriate number of ’slave” negotiation agents with the “buyer role”
(Buyer agents hereafter). One Buyer agent is created for each store, within the market-
place, selling sought goods.

On the supply side, a single Shop agent is created for each merchant in the system
and it is responsible for creating a slave negotiation agent with the “’seller role” (Seller
agent hereafter) for each product sold by the merchant within her e-store.

Finally, Database agents are responsible for performing all database operations (up-
dates and queries). For each database in the system we create one database agent (in the
future we may need to address this possible bottleneck [3]. In this way we decouple
the actual database management activities from the rest of the system (i.e. the database
management system can be modified in any way without affecting the agent side of the
system and vice-versa). Currently, there are two databases in the system: a single CI-
CDB database (operated by the CICDB agent containing the information about clients,
shops and product catalogues, and a single Shop Database (ShopDB) operated by the
ShopDB agent storing information about sales and available supplies for each merchant
registered within the system.

The central part of the system operation is comprised by price negotiations. Buyer
agents negotiate price with Seller agents. For this purpose Buyer agents migrate to the
e-stores known by the CIC agent to carry sought after commodity. In case of multiple
Buyer agents attempting at purchasing the same item, they may compete in an auction.
Results of price negotiations are send by the Shop agent to the Client agent that decides
where to attempt at making a purchase. Note that the system is fully asynchronous and
thus an attempt at making a purchase does not have to result in a success as by the
time the offer is made other Buyer agents may have already purchased the last available
item. In this way we proceed with an e-commerce model similar to the airline ticket
reservation where until an actual purchase is made item is reserved, but may not be
available at a later time. Note that once the complete system is created, changing this
policy will require only a limited amount of work. Furthermore, it will be possible
to add different scenarios of completing negotiations to the system and build a mega-
system, where all of these strategies will exist together. Ability to achieve this goal
by simply adding new agents with new behaviors illustrates the power of agent-based
system design.

3 Implementation and Experiments

3.1 System Implementation

The current implementation of the proposed environment has been made within the
JADE 3.3 agent platform ([7]). The main reason for this selection was the fact that
JADE is one of the best modern agent environments. JADE is open-source, it is FIPA
compliant and runs on a variety of operating systems including Windows and Linux
(and, as illustrated below, it is also possible to run JADE in a mixed environment).
Furthermore, as reported above, in [3] we have observed its very good scalability.

JADE provides a flexible and configurable architecture that matches well with our
requirements. Negotiations between Seller and Buyer agents take place in JADE con-
tainers. There is one Main container that hosts the CIC agent. Users (customers and
merchants) can create as many containers they need to hold their Client and Shop agents
(e.g. one container for each e-store). Buyer agents created by Client agents use JADE
mobile agent technology to migrate to the Shop agent containers to engage in nego-
tiations. In this context, a container simulates a marketplace where various Seller and
Buyer agents meet and negotiate. Moreover, all these containers linked via the agent
platform simulate a bazaar filled with marketplaces filled with trading agents.

The current implementation is based on several Java classes organized into several
categories. Each category is implemented as a separate Java package.

— Agent classes. Classes of this package are used for describing various agent types
used in the system. Each agent class incorporates a subset of agent activity classes,
also called behaviors. Behaviors are used as an abstraction that represents an atomic
activity performed by an agent.

— Database classes. Classes of this package are used for describing agents that are
responsible for management of database connections.

— Negotiation classes. Classes of this package implement a simple framework for de-
scribing various negotiation protocols. This framework uses the Initiator and Par-
ticipant roles, as defined by the FIPA Contract Net Interaction protocol ([5]).

— Reasoning classes. These classes used for the implementation of the various reason-
ing models employed by the negotiation agents; see [11] for more details concern-
ing model of negotiation agents. Our implementation supports agents that dynami-
cally load their negotiation protocols and reasoning modules. The implementation
combines the Factory design pattern ([4]) and dynamical loading of Java classes
([11D.

— Ontology classes. These classes are necessary for implementing agent communi-
cation semantics, using concepts and relations. Current implementation uses an
extremely simple ontology that defines a single concept for describing Client and
Shop preferences including prices, product names and negotiation protocols.

— Other classes. This package contains various helper classes.

In our system, agent communication is implemented using FIPA ACL messages [5].
We have used the following messages: SUBSCRIBE, REQUEST, INFORM, FAIL-
URE, CFP, PROPOSE, ACCEPT-PROPOSAL, REJECT-PROPOSAL, REFUSE.
SUBSCRIBE messages are used by the Shop and Client agents to register with the
CIC agent and for the Buyer agents to register (to participate in auctions) with the
Seller agent. REQUEST messages are used by Client agents to query the CIC agent
about what shops are selling a specific product and for Client agents to ask the Shop
agent for a final confirmation of a transaction. INFORM messages are used as re-
sponses to SUBSCRIBE or REQUEST messages. For example, after subscribing
to the CIC agent, a Client agent will get an INFORM message that contains its ID,
or after requesting the names of the shops that sell a specific product, a Client agent
will receive a list of the Shop agent IDs in an INFORM message. Buyer agents are
using FAILURE messages to inform the master Client agents about the unsuccess-
ful result of an auction. Finally, CFP, PROPOSE, ACCEPT-PROPOSAL, REJECT-
PROPOSAL and REFUSE messages are being used by negotiating agents.

3.2 Experiments

The system can be run in a simple setting for demonstration purposes by manually
creating Shop and Client agents via the GUI, or directly from command-line when a
large number of agents, containers, products etc. is to be created [6].

For the purpose of this paper we have utilized experiments involving multiple agents
residing on multiple computers. First, Client agents resided on a single computer and
Buyers migrated to Shop agents residing on the remaining 19 machines. Second, Client
agents resided on 4 computers, while the remaining 16 machines contained Shop agents.
Furthermore, to illustrate heterogeneity of the environment in which our system can
run, in both experimental settings the Main container of the agent platform resided on
a computer running Linux, while the remaining 20 computers run Windows. In addi-
tion JADEs Sniffer agent also was executed, on the Linux PC,. This agent is provided
by JADE and its role is to report on communications between agents in the system.
Figure 2 presents agent communication captured with help of this agent (note Linux
environment).

Plik Nowy Zakiadki
SR JIRES .
4 B3 AgentPlatforms [~
" - Contamer o NN BN BN BN BN BE BN X
o @ Main-Container
o @8 Container
o B Container—1 SUBSCRIBESKESS)
o @ Container-2 UBECRIBEBERBA L | 1
o @ Container-3
o @ Container-4 INFORM:BEES1 ()
o & Container-5 SUBSCRIBE:BF69Z 1
o @ Container-6
¢ @ Container-7
B SHOP9@Masha: 1099/ J4DE
@ SellerOFromSHOPI@Masha: 10;
@ SellerlFromSHOPS@Masha:10§_
@ SellerzFromsHOPI@Masha:10]
B Buy ha: 1 REN
@ sniffer0-on-Container-7@Mas| | s
¢ @8 Container-8 3
B SHOPLO@Masha 1093/ JADE 4
SellerOF rormSHOP10@Masha: 1 .
@ SellerlFromsHOP10@Masha: 1 Z
@ seller2FromSHOPLO@Mashail 7
@ Buyer4FromClient15@Masha:l 4
3
0
1
2
3
4
5
5

o)

INFORM:BEE95 {3

SUBSCRIE!

INRQRI-6E638 ¢ | 3

INFORM

WRQR:G6702 ¢ Lo

UBECRIBE:B5705 [

INQRI4-66706 ¢ | 3

B Buyer7FromClientl6@Masha:l
¢ @8 Container-9
B SHOP11@Masha:1099/J4DE
@ SellerOFromsHOP11@Masha: 1
B SellerlFrom3HOP1 1 @Masha; 1
@ Seller2FromSHOP11@Masha: 1
B BuyerSFromClientls@Masha:l
& Buyer8FromiClientl6@Masha;l
o @ Container-10 o

o @8 Canrainer-11 >
4l i I ¥ 4] | I

SCRIBESEFS4 L 3

UBECRIBE:86700 [

INFQRNGE710 ¢ |

FORMBEFS7 ()

UBECRIGEG6713 [

Message:28 SUBSCRIBE ¢ cid= rw= irt= proto=null onto=nilly

BOSH0 sl

) me- asha~fagenis - Fo. 5 Javatang Thread 3] ~ @ Hi’éﬂuﬂi‘ﬂ L @‘l %ﬁm‘*

& Kusader [3) -

Fig. 2. The beginning of work of the system — registration with CIC and CICDB agents

In the experiment shown in Fig 2 every Shop had three different products. Thus, at
the beginning of an experimental run every Shop registered with the CIC agent, then
created 3 Sellers (one Seller for each product). Seller agents also registered with the
CIC agent and then waited for the incoming Buyer(s). Communication involved in these
operations can be seen in Fig 2. There exist two events which are necessary for to start
negotiations: appearance of at least one Buyer and an interrupt caused by the timer (see
Figure 3).

at http:-~jade.cselt. it

B85 -@85—-17 17:-17:-41 Jade.core.ﬂaseSerulce dinit

IHFO- Sal‘ull:l: Jjade _core. -AgentM t dnitialized
17 17:17:41 jade -core- HaseSeru:u:e dinit

TNPO: Borcice Jads core:mossading . Messaging initialized

S -—@A5 17 17:17:42 jade _core_BaseService init

INFG: Serwvice jade core.mobility.AgentMability initialized

A5 -—@5 17 17:17:42 jade _core_BaseService

THPG: Boreice Jads core Gvent Metification initialized

Iggg—BE—l'? 17:17:42 jade_.core_figentContainerImpl joinPlatform

gent container Container—4BJADE-IMIP:- ~kB6s12 is ready.

P _agent: SHOPS a—auction—dutch._pl. 180;p2.280;:p3. 128
lDPEngLSIZ:lm?/J DE —» dis starting
SHOPS started?

reating she

lBe1lerZFraoms
[SellerZFromS
Etartiegobehaviaur —> initiaced
Is I[nitiator? < nt—identifier zname SelleriFromSHOPSPkBAl1is12:1899-JADE
aes <acquence http: i HBL312:7778-ace >3~ check the subscribe list to load
adu
initiated

$ ok s dent if i Zname SellerZ2FromSHOPSPKkB1s12:1899 -JADE z
lesos (soquance hiep: rhBLolZi7o7B ace 23— check Che subseribe 1ist e load
jprropriate protocol module

T nt i SellerlFromSHOPSPk@1s12:1099 /JADE :
[sses (sesguence http //}iBislz '?'?'?H/acz: »>— check the subscribe list to load
rruprlate protocol module

u
= 1n1tiated
r dentifier —name Seller@FromSHOPSPkA1s12:18099-JADE H
[Eses (seguence htbper KBLolZ: PPoBace »3= Ghock Che subseribe 1ist to load
rropriate protocol module
28BS -a5-17 {7:20:03 jads-core-mobility.AgentMobilityServicesSeruiceConponent cro
atefigent
IHFO- [ncﬂming agent < agent—identifier :iname BuyeriFromClientl5PkA1s12:1899-JAD|
addresses <(segquence http:-~kBlisl12:7778~acc_ >>
vaag B5 17 17:200:83 jade.cors.mobility.AgentHobilityServicesServiceComponent cre
ate nt
INFOT Agent < a ent—identiffer cname BuyeriFronClicnt1SEKB1s12:1@99/JADE :addre
[sses (seguence #A7kB1Ls12=27P78/ace 33 reconstruct
Boes-65-17 17720505 Jate . cors mebility.AgenchobilityservicesServiceComponent cre

fier name BuyerlFromCllentlSEkGlle 1999 -JADE saddre
http: - ~kBl1s12:7778-acc >> inserted into LADT
BBS 85 1? 1? 28:81 Jade.corc.mohility.AgentMobilityService?ServiceCGonponent han
dleTransferResu
INFQO:= Lncoming agent < agent—identifier -name BuyerlFromClientl>PkB1s12:1877 - JAD|
E caddresses (sequence http: ~kBls12:?778-/acc >> activated
Restoring buffered state 2

4 start 25 l CWINDOWS sy sten...

Fig. 3. The beginning of work of the system — DOS window

After creation, Client registered with the CIC agent. Upon user request, it obtained
list of Shops, where product(s) of interest were sold and created Buyer agents and sends
them to the selected Shops. When Buyer arrived at the marketplace it asked about cur-
rent negotiation protocol, communicated with its Client and obtained a corresponding
strategy module and waited for start of negotiations. After finishing negotiations, Seller
informed Shop agent about their results and Shop agent notified appropriate Client about
successful result of negotiations (see also Fig 2).

In the experiment represented in Fig 2 and Fig 3 we used three products, which
Client could buy. Thus, we had a total of more than 200 agents populating the system.
It should be pointed out that the most time-consuming operation is system initialization
(creation of containers). However, since containers are created once, they have only
minimal impact on the operations of the system.

We have run multiple experiments, changing the number of (a) containers, (b) com-
puters, (c) Clients, (d) Shops, (e) negotiation protocols, (f) products (g) mixture of Linux
and Windows environments, etc. In each case experiments run smoothly and supported
our general claim that the proposed system, when further developed can: (1) can be
scaled to a truly large size, and (2) be used for e-commerce modeling.

4 Concluding Remarks

In this paper we have introduced an agent-based e-commerce system that has actually
been implemented and show to fulfill the basic promises of agent systems. The most

important of them were: (1) system scalability, (2) flexibility, and (3) heterogeneity.
Obviously, the proposed system has a number of shortcomings that we are aware off,
and we will work vigorously to remove them and develop and implement a truly com-
prehensive system. We will report on our progress in subsequent reports.

References

1. Bartolini, C., Preist, C., Jennings, N.R.: A Software Framework for Automated Negotiation.
In: Proceedings of SELMAS’2004, LNCS 3390, Springer Verlag (2005) 213-235.

2. Chmiel, K. et al.: Agent Technology in Modelling E-Commerce Processes; Sample Imple-
mentation. In: C. Danilowicz (ed.): Multimedia and Network Information Systems, Volume 2,
Wroclaw University of Technology Press, (2004) 13-22.

3. Chmiel, K. et al.: Testing the Efficiency of JADE Agent Platform. In: Proceedings of the
3rd International Symposium on Parallel and Distributed Computing, Cork, Ireland, IEEE
Computer Society Press, Los Alamitos, CA, (2004) 49-57.

4. Cooper, J.W.: Java Design Patterns. A Tutorial. Addison-Wesley, (2000).

5. FIPA: The foundation for intelligent physical agents. See http://www.fipa.org.

6. Ganzha, M., Paprzycki, M., Pirvdnescu, A., Badica, C., Abraham, A.: JADE-based Multi-
Agent E-Commerce Environment: Initial Implementation. In: Analele Universitdtii din
Timisoara, Seria Matematicd-Informaticd (to appear), (2005).

7. JADE: Java Agent Development Framework. See http://jade.cselt.it.

8. Kowalczyk, R. et al.: Integrating Mobile and Intelligent Agents. In: Advanced E-commerce: A
Survey. Agent Technologies, Infrastructures, Tools, and Applications for E-Services, Proceed-
ings NODe’2002 Agent-Related Workshops, Erfurt, Germany, LNAI 2592, Springer Verlag,
(2002) 295-313.

9. Laudon, K.C., Traver, C.G.: E-Commerce. Business, Technology, Society (2nd ed.). Pearson
Addison-Wesley, (2004).

10. Paprzycki, M., Abraham, A.: Agent Systems Today; Methodological Considerations. In:
Proceedings of 2003 International Conference on Management of e-Commerce and e-
Government, Jangxi Science and Technology Press, Nanchang, China, (2003) 416-421.

11. Paprzycki, M., Abraham, A.. Pirvanescu, A., Bédica, C.: Implementing Agents Capable of
Dynamic Negotiations. In: Petcu, P. and Negru, V. (eds.): Proceedings of SYNASC’04: Sym-
bolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, Mirton Press,
Timigoara, Romania (2004) 369-380.

12. Pirvéinescu, A., Badica, C., Paprzycki, M.: Developing a JADE-based Multi-Agent E-
Commerce Environment. In: Guimaraes, N. and Isaias, P. (eds.): Proceedings IADIS AC’05:
International Conference on Applied Computing, Algarve, Portugal, IADIS Press, Lisbon,
Portugal (2005) 425-432.

