
Alignment Format for Semantic
Translation

Paweł Szmeja, Wiesław Pawłowski, Maria Ganzha, Marcin Paprzycki,
and Katarzyna Wasielewska-Michniewska

Abstract Abundance of vastly heterogeneous, high-volume/high-velocity data pro-
ducers/consumers, predominantly caused by proliferation of IoT-based solutions,
results in an urgent need for efficient semantic interoperability solutions. Hence, the
need to solve the problems of domain understanding, domain formal representation,
and expression of mappings between different data models arise. In this contribu-
tion,we present an alignment format called IPSM-AF, for persisting correspondences
between ontologies that can be used for semantic translation. Specifically, alignments
represented using the IPSM-AF can be efficiently parsed and consumed by the IPSM
tool, which performs the actual translation (possibly on streaming data). The pro-
posed format is compliant with the Alignment API format, level 2.

Keywords Semantic translation · Semantic stream processing · Ontology ·
Alignments · Internet of Things

1 Introduction

The rise of the Internet of Things [2, 18], in which “everything” can be connected,
and used as data publisher or subscriber, leads to new challenges in data processing.
IoT-based solutions either already are or very soon will be one of the foundational
ingredients of almost every modern technological solution. Concepts such as Smart
City, Smart Grid, or Supervisory Control and Data Acquisition (SCADA) systems
are just a few, but prominent examples. With rapidly growing number of deployed
IoT artifacts (platforms, applications, devices), one of the key problems is the abil-
ity to understand, integrate, and uniformly process data, materializing/existing in

P. Szmeja · M. Ganzha · M. Paprzycki · K. Wasielewska-Michniewska
Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland

W. Pawłowski (B)
Faculty of Mathematics Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308
Gdańsk, Poland
e-mail: wieslaw.pawlowski@ug.edu.pl

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
V. Mahajan et al. (eds.), Sustainable Technology and Advanced Computing
in Electrical Engineering, Lecture Notes in Electrical Engineering 939,
https://doi.org/10.1007/978-981-19-4364-5_47

651

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-4364-5_47&domain=pdf
mailto:wieslaw.pawlowski@ug.edu.pl
https://doi.org/10.1007/978-981-19-4364-5_47

652 P. Szmeja et al.

different formats and semantics, often in heterogeneous domains. The task of data
format conversion/translation, also called syntactic translation, is reasonably well
understood, and there are many tools, both open-source and commercial, that sup-
port it. Data interoperability/integration at the level of semantics, on the other hand,
poses a much bigger challenge, especially in IoT environments where, naturally
occurring, high volume/velocity, heterogeneous data streams have to be considered
and efficiently handled. The viability and the need for integration of heterogeneous
data streams in IoT, including real-time analytics, is well demonstrated, understood,
and often includes semantic data [14]. The solutions are, however, limited to sys-
tems that already implement common semantics and operate on directly interoperable
and exchangeable data. Communication between semantically incompatible systems
requires the addition of semantic translation.

The problem of “meaningful communication” (data exchange) between IoT arti-
facts becomes evenmore pronounced over time. Typically, initial deployments of IoT
ecosystems exist within homogeneous, domain- or vendor-specific “silos,” which do
not need to communicate externally. For instance, companies X and Y installed
smog monitoring ecosystem, while companies A, B, and C provided (in the same
city) infrastructure for electric scooters rental (with GPS sensors build into them, to
be able to track their location). Each company used its own data representation and
semantics to deal with geospatial data. Now, the City would like to combine informa-
tion from both ecosystems to develop a novel user-centric application, where smog
data is combined with scooter location to help user decide, which road to take. Here,
for all practical purposes, it cannot be mandated, that either the providers of the
smog alert data, or the electric scooter rental companies, are required to reengineer
their systems to adapt the geospatial data model to the one used by the other (or to
yet another data model that the City is supporting). Situations like this are becom-
ing more and more common, as numerous IoT-based solutions/services are being
combined to provide users with ubiquitous “smart environments.”

In our earlier works [8, 9], we have proposed a viable solution to the seman-
tic interoperability problem, based on the concept of a semantic mediator, offering
(streaming) semantic translation capabilities for data. The mediator takes “transla-
tion rule-sets” as arguments, and by “applying” them, creates appropriate translation
channels. An efficient and scalable [12] implementation was subsequently created
within the INTER-IoT project [7, 17],1 and later further enhanced and adopted as
the “kernel part” of the interoperability solution for the ASSIST-IoT project.2 The
architecture of the Inter-Platform Semantic Mediator (IPSM) utilizes a concept of
modular central ontology, to minimize the number of necessary translation rule-
sets. Since the data models of artifacts are assumed to be formally represented in
the form of an ontology,3 it is natural to consider (partial) alignments between these
ontologies, and the central ontology, as the basis for the rule-sets. “Partiality” of the

1 http://www.inter-iot-project.eu.
2 https://assist-iot.eu/.
3 Comprehensive discussion concerning what needs to be done if the original local data represen-
tation is not ontology-based can be found in [5, 11].

http://www.inter-iot-project.eu
https://assist-iot.eu/

Alignment Format for Semantic Translation 653

alignments reflects the fact that only the information that is to be communicated/ex-
changed between pertinent artifacts needs to be taken into account. This, in turn, is a
consequence of the assumption that all details of data streams that are to be translated,
are fully known to the IoT ecosystems developers. As a consequence, the alignments
required for the translation do not have to cover complete data models of communi-
cating artifacts and therefore have reasonable both size and complexity. As a result,
translation time is limited, as it involves only information needed in the context of
a given “type of conversation.” Here, note that this assumption, which is grounded
in real-world scenarios observed during the INTER-IoT project (and the remaining
six EU projects from the same call) makes an important difference in what follows.
While there exists a body of research, which includes, also, an ontology matching
competition,4 it focuses on establishing relationships between complete data models.
While this academic problem is very challenging and stimulating, it is not necessarily
required to facilitate semantic interoperability between IoT deployments, where data
streams are produced, exchanged, and consumed.

Whereas in ontology matching competitions, the main use of an alignment format
is to enable direct comparison between outputs of different automatic or semiauto-
matic tools [16], it is not required to be human-readable, highly expressive, and
“executable” as input for data transformation. In other words, the requirements that
it answers do not fully cover the challenges of dynamic data translation in IoT, which,
for us, was the starting point.

The focus of this paper, and its main contribution, is to discuss an alignment for-
mat introduced for formally representing and persisting mappings between different
semantic domain models that are consumed by the IPSM tool, to perform semantic
translation. Since the initial version, described in [21], both the alignment format
and the IPSM tool have been updated and extended in different ways. In particular,
support for an elegant, concise, and much more readable/comprehensible syntax,
based on the RDF Turtle was added. As will be shown, while there exists a large
body of work devoted to ontology alignments and their representation, they seem
to be slightly off the mark, when application of semantic technologies to streaming
translation is concerned. The aim of this work is not only to propose the format but
also to show how the IPSM-AF can be used in real-world applications. Examples
will be based on actual pilot implementations that have been delivered during the
INTER-IoT project. To this effect, we proceed as follows. First, we will discuss
existing approaches for persisting alignments, then we will introduce the alignment
format that we propose, and finally, we will conclude by giving examples of its
application.

4 http://oaei.ontologymatching.org/.

http://oaei.ontologymatching.org/

654 P. Szmeja et al.

2 Quest for the Mapping Language

Even though ontologies are said to provide a “formal specification of a shared concep-
tualization” [1], in real-life, models of concepts represented in ontologies can differ
in many ways. A domain can be perceived from different perspectives, depending
on the modeling purpose or/and approach. Starting from the most simple cases—the
same term can describe different concepts, or different terms can be used to denote
the same concept. The simplest example can be expressing the same term in different
languages, e.g., name and Vorname, using abbreviations, e.g., temperature and temp,
or using synonyms, e.g., car and automobile. More involved differences can result
from the adoption of different modeling paradigms and/or granularity levels, e.g.,
address with all components contained in a text literal, or address decomposed into
attributes like country, city, street, house and flat number, or decision what should
be represented by a concept and what by a property. Of course, the list of examples
continues and is easy to construct.

The process of discovering relations/correspondences between entities originating
from a pair of ontologies, such as classes, properties, or individuals, is called aligning
or matching. Because of the possible modeling differences between ontologies, the
matching task can be (and in most cases is) highly non-trivial, even though some
guidelines and patterns have been identified and described in the literature [19, 20].
The result of the matching process is called an alignment. At a very abstract level,
an alignment can be seen as a set of correspondences, i.e., triples (eA, r, eB), where
eA and eB are entities from ontologies A and B, respectively (or expressions that
use said entities), and r is a relation, such as subsumption and equivalence [4, 24].
Alignments have been utilized as the basis for many ontology-related operations
such as ontology merging, query rewriting, or data integration.

In order to “apply” the correspondences forming the alignment to any task, how-
ever, they have to be represented/persisted using a mapping language. Obviously, a
particular choice of themapping language highly depends on the intended application
scenario, but also on the complexity and the level of sophistication of the correspon-
dences constituting the alignment. Themore involved the alignment correspondences
are, the more expressive mapping language they require.

Within the INTER-IoT project, we were interested in utilizing alignments in the
process of semantic translation of (high velocity) streams of IoT-originated data.
Here, let us note that, to the best of our knowledge, alignments have not been directly
applied in such a scenario before. Therefore, we have started our quest for the “right”
mapping language by considering the available options. In [10], we have analyzed
existing tools for ontology matching. Here, one of their most important features was
the mapping languages they used to persist the matching results (as these matchings
were to be used in the dynamic translation process). We have found that, although
in some cases alignments were encoded in different application-specific formats,
the standard way to express mapping(s) between (complete) ontologies is to use the
Alignment API format [3].

Alignment Format for Semantic Translation 655

Apart from the Alignment API, there were, of course, also other possibilities
to consider. The technologies relevant to our needs were not limited to those, that
directly express alignments, but also included those, that are capable of express-
ing mappings between any ontologically described data, or even one-way trans-
formations, that could potentially be used to build alignments. Consequently, the
research included alignment, mapping or transformation languages and technolo-
gies for OWL or RDF, such as SPARQL,5 its extension SPARQL Inference Notation
(SPIN),6 SemanticWebRuleLanguage (SWRL),7 ShEx,8 SHACL,9 SILK [25], RDF
Mapping Language (RML10) and RMLEditor [13], Simple Knowledge Organization
System (SKOS)11 [15], and even the Web Ontology Language OWL12 itself. How-
ever, therewere three important aspects/features of the neededmapping language that
we were particularly interested in. We wanted it to: (1) be expressive, in particular
allowing flexible value processing/transformation; (2) provide clean and compre-
hensible syntax for expressing alignments; (3) have tools that would support it in our
scenario (translation of streaming data). Upon in-depth analysis, we have established
that none of, just listed, “secondary” options met all three of these requirements at
once. Therefore, they have been excluded from further considerations.

The Alignment API format that we identified as the most widely used (and possi-
bly useful for our purpose) defines several levels, where higher level indicates higher
expressiveness. Specifically, the available levels are: 0—not depending on any par-
ticular language correspondences between discrete entities (identified by URIs), 1—
replaces pairs of entities by pairs of sets (or lists) of entities, 2—directional, and
language-dependent, sets of expressions of a particular language with variables in
these expressions.

Unfortunately, as we have established in our work, and reported in [10], even if
a tool produced Alignment API compliant mapping, it was on level 1 (only simple
correspondences without transformations). Moreover, even then, we did not find any
tool that could consume such alignment file and perform automatic translation based
on the defined mappings.

On the other hand, there is a detailed description language for expressing align-
ments on the Alignment API format level 2. It is the EDOAL (Expressive andDeclar-
ative Ontology Alignment Language13 [3, 4]). In principle, it allows to represent
complex correspondences, to precisely describe the relation between the entities
including: construction, restrictions, transformations, and conditions for equivalence.
However, from the point of view of our intended application, i.e., streaming semantic

5 https://www.w3.org/TR/sparql11-overview/.
6 https://www.w3.org/Submission/spin-overview/
7 https://www.w3.org/Submission/SWRL/
8 https://shex.io/
9 https://www.w3.org/TR/shacl/.
10 https://rml.io/
11 https://www.w3.org/TR/skos-reference/
12 https://www.w3.org/TR/owl2-overview/.
13 http://alignapi.gforge.inria.fr/edoal.html.

https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/Submission/SWRL/
https://shex.io/
https://www.w3.org/TR/shacl/
https://rml.io/
https://www.w3.org/TR/skos-reference/
https://www.w3.org/TR/owl2-overview/
http://alignapi.gforge.inria.fr/edoal.html

656 P. Szmeja et al.

translation, it did not offer enough support for the “transformations,” which accord-
ing to the official documentation are “still work in progress.” Moreover, although
EDOAL allows to state directionality of individual mappings, it does not express
it explicitly in the alignment’s header, which seems important and natural in the
context of (streaming) translation. Our investigation also showed that there were no
alignment creation tools that would actually use the full expressive power of EDOAL
format for their output.14 Therefore, we had to accept the fact, that alignments will
need to be mostly “handcrafted.” Moreover, in most cases, we could not assume
that they will be created by experienced ontology engineers. Therefore, we needed
a mapping language, which would seem familiar and understandable to a “working
software engineer.” As its name suggests, EDOALmainly (although not exclusively)
supports the declarative style of defining mappings. This style, although elegant and
often more concise, tends to be considerably more difficult to understand and use
by practitioners than the imperative/procedural one. This aspect became also an
important factor in our quest.

Consequently, we have decided to design a dedicated mapping language that will
be sufficiently expressive andwill have comprehensible syntax dedicated to semantic
translation. The proposed solution, called IPSM Alignment Format (IPSM-AF), is
compliant with the Alignment API format, allows to express complex correspon-
dences involving, e.g., transformations, supports the imperative/procedural style of
defining alignments, and is directly supported by the Inter-Platform Semantic Medi-
ator (IPSM) translation tool. Among advantages of being compliant with the Align-
ment API are the possibility to store alignments in the Alignment Server,15 which
enables different actors to share available alignments, networks of ontologies, and
ontology matching methods.

3 IPSM Alignment Format

Although semantically annotated data can be, in principle, expressed in many differ-
ent ways, today, the unquestionable standard is the Resource Description Framework
(RDF).16 Therefore, we have decided that the alignment format should follow the
assumption that data is expressed in the form of RDF graphs, whereas IPSM-AF
allows to persist translation rules between (selected fragments of) RDF graphs that
express the pair of underlying ontologies. For the format to be flexible and expres-
sive, IPSM-AF was defined as a level 2 Alignment API format extension. Therefore,
it is language-dependent and allows specifying compound constructs. In particular,
while designing it we have assumed that it should:

14 The situation has not changed much, ever since, as recently confirmed in [23, 24].
15 http://alignapi.gforge.inria.fr/server.html.
16 https://www.w3.org/RDF/.

http://alignapi.gforge.inria.fr/server.html
https://www.w3.org/RDF/

Alignment Format for Semantic Translation 657

• be able to express mappings of sets of expressions, e.g., RDF graphs (not only
individual triples or entities),

• allow using variables for expressing RDF graph patterns,
• utilize callable functions, to perform value transformations, e.g., concatenate
strings, apply regular expression to select part of the value, perform arithmetic
operations, etc.

• enable expressing restrictions on datatypes, both in source and in target patterns,
• be able to remove parts of the source RDF graph and to add new elements to it.

It should be stressed that these assumptions were based, in large part, on the require-
ment analysis of the use cases of the INTER-IoTproject. Therefore, they are grounded
in real-world needs of streaming semantic translations, in IoT ecosystems.

To introduce the proposed format, let us start by considering the overall structure
of an IPSM-AF alignment, expressed in RDF/XML as shown in Listing 1. The main
element—analign:Alignment—contains three “sections,” giving the alignmentmeta-
data, specifying the steps, i.e., the ordering, in which individual mappings should be
considered, and defining the mappings themselves. The namespace prefixes that are
used in the examples that follow are expanded in Table 1.

<rdf:RDF xmlns="http://www.inter-iot.eu/sripas#"% other xml namespaces % >
<align:Alignment>

%--------------------%
% alignment metadata %
%--------------------%
%-------------------%
% alignment "steps" %
%-------------------%
%--------------------%
% alignment mappings %
%--------------------%

</align:Alignment>
</rdf:RDF>

Listing 1 IPSM-AF - alignment structure

The metadata section, as illustrated in Listing 2, provides the title and version,
specifies creator and gives a short description of the alignment. These items, in
particular the name, version, and creator, allow for tracking changes and using ver-
sioning schemes, which are necessary procedures in any evolving ecosystem. Since
the IPSM-AF is compliantwith theAlignmentAPI, themetadata section also needs to
specify the needed Alignment-API-specific properties. In particular, the align:level
whose value “2IPSM,” states that the alignment is on “level 2” in the Alignment
API terminology. The elements align:onto1 and align:onto2, structure of which is
also defined by the Alignment API Format, specify the source and target ontologies,
for the alignment, respectively. The IPSM-AF alignments are always considered to
be unidirectional—mapping entities of the ontology align:onto1 to entities of the
ontology align:onto2. Here, the source ontology can be that of the IoT artifact and
the target ontology can be a central ontology, used in the ecosystem. This assump-
tion allows the creator to focus on the translation-targeted task, without the need
to consider “reversibility” of the individual mappings defined by the alignment. If
translation is needed in both directions then two alignments should be created. The

658 P. Szmeja et al.

last metadata item, presented in Listing 2, is the element sripas:cellFormat, which
specifies syntax used for representing RDF graph patterns, contained in the align-
ment mappings. By default, it is RDF/XML but IPSM also supports Turtle, which is
more concise and readable.

<dcelem:title> % alignment title % </dcelem:title>
<exmo:version> % alignment version % </exmo:version>
<dcelem:creator> % alignment creator % </dcelem:creator>
<dcelem:description> % alignemnt description % </dcelem:description>

<align:level>2IPSM</align:level>
% other Alignment API specific metadata %

<align:onto1> % source ontology specification % </align:onto1>
<align:onto2> % target ontology specification % </align:onto2>

<sripas:cellFormat>
<iiot:DataFormat rdf:about="&sripas;turtle"/>

</sripas:cellFormat>

Listing 2 IPSM-AF alignment metadata

The alignment steps section (see, Listing 3) allows to specify the default order, in
which specificmappings of the alignment should be considered (“applied”), possibly
allowing any of them to be used more than once or, perhaps, excluded from the
translation (i.e., not used at all). When defining a specific translation channel, based
on the alignment, the IPSM tool allows to overwrite the default sequence of steps,
if needed. Each step (represented by the sripas:step element) refers to a specific
mapping within the alignment via its identifier represented by URI. The idea of steps
reflects the procedural style of IPSM-AF that makes the format more accessible for
the less “semantically proficient” users.

<sripas:steps rdf:parseType="Literal">
<sripas:step sripas:order="1" sripas:cell="cell_id"/>
% more alignment steps %

</sripas:steps>

Listing 3 IPSM-AF - alignament steps specification

<align:map>
<align:Cell rdf:about="&sripas;cell_id">

<align:entity1 rdf:datatype="&xsd;string">
% source RDF graph pattern %

</align:entity1>
<align:entity2 rdf:datatype="&xsd;string">

% target RDF graph pattern %
</align:entity2>
<align:relation>=</align:relation>
% optional transformations, filters and typing restrictions %

</align:Cell>
</align:map>

Listing 4 IPSM-AF - alignment map/cell

The mappings section of the alignment consists of a sequence of align:map ele-
ments, each containing a single cell, defining a specific correspondence between two
entities (or compound entity descriptions). Entity can be a class, instance/individual,

Alignment Format for Semantic Translation 659

Table 1 Namespaces in IPSM-AF

Prefix Namespace

sripas http://www.inter-iot.eu/sripas#

var http://www.inter-iot.eu/sripas:node_

pred http://www.inter-iot.eu/sripas:pred_

align http://knowledgeweb.semanticweb.org/heterogeneity/alignment#

dcelem http://purl.org/dc/elements/1.1/

exmo http://exmo.inrialpes.fr/align/ext/1.0/#

xsd http://www.w3.org/2001/XMLSchema#

object, or datatype property. Cells are elements, in which all the mapping logic of the
alignment is expressed. The structure of a cell has been outlined in Listing 4. Within
align:entity1, the source RDF graph pattern is specified that is matched against input
ontology. The align:entity2 defines the target structure of the result of the mapping.
When the alignment cell is used/applied, by a translator tool, then any RDF content
matching the pattern in the align:entity1, will be modified into an RDF graph match-
ing the pattern from align:entity2. To relate parts of the source and the target RDF
graph patterns, IPSM-AF utilizes variables appearing in the entity1 that can be later
referenced from the entity2 and, possibly, also used by the optional cell components,
described in the next paragraph. Variables should belong to the namespace var. For
instance, var:A is expanded to http://www.inter-iot.eu/sripas:node_A. Variables can
be used in places of data and object properties’ values. They serve as placeholders
for values/entities that match the pattern. Additionally, each mapping cell can have
optional elements: sripas:transformation, sripas:filters, and sripas:typings. These
allow to, respectively, perform function calls during cell application, filter entities
based on datatypes, and assign datatypes to entities in the target RDF graph. List-
ing 5 shows the structure that is to be used to include optional elements. If, for
example, in the transformation, a reference to a SPARQL function is passed, the tool
that consumes IPSM-AF content should be able to use any RDF library that supports
SPARQL to apply the function to arguments specified by the sripas:param elements.
For instance, the IPSM internally utilizes Apache Jena, which makes it possible to
define and employ arbitrary external function libraries, thanks to the ARQ query
engine.

<sripas:transformation rdf:parseType="Literal">
<sripas:function about="{function name}">

<sripas:param order="1" val="{simple value}"/>
<sripas:param order="2" about="{variable URI}"/>
% more parameter descriptions %
<sripas:return about="{variable URI}"/>

</sripas:function>
% more function application descriptions %

</sripas:transformation>
<sripas:filters rdf:parseType="Literal">

<sripas:filter about="{variable URI}" datatype="{datatype}"/>
% more filters %

http://www.inter-iot.eu/sripas#
http://www.inter-iot.eu/sripas:node_
http://www.inter-iot.eu/sripas:pred_
http://knowledgeweb.semanticweb.org/heterogeneity/alignment#
http://purl.org/dc/elements/1.1/
http://exmo.inrialpes.fr/align/ext/1.0/#
http://www.w3.org/2001/XMLSchema#
http://www.inter-iot.eu/sripas:node_A

660 P. Szmeja et al.

</sripas:filters>
<sripas:typings rdf:parseType="Literal">

<sripas:typing about="{variable URI}" datatype="{datatype}"/>
% more typings %

</sripas:typings>

Listing 5 IPSM-AF - optional cell properties

4 Basic Translation Constructs

Thus far we have introduced the general structure of alignments, expressed in IPSM-
AF, and indicated that the “translation cells” are the “workhorse” of the semantic
translation. Let us now discuss some basic constructs that can be used within such
translation cells. These constructs can be further composed, to define more complex
patterns and correspondences, to be matched against the input data (RDF graphs).
Since every RDF graph is a set of triples, “atomic” translations that can be applied to
such graphs work on triples. Let us start with the case of translating just the predicate
connecting the subject and the object of a triple. Listing 6 shows an example, in
which the predicate of all matching triples will be changed from ont1:hasName to
ont2:hasVorname.

<align:Cell rdf:about="&sripas;name_mapping_example">
<align:entity1 rdf:datatype="&xsd;string">

var:X ont1:hasName var:Y .
</align:entity1>
<align:entity2 rdf:datatype="&xsd;string">

var:X ont2:hasVorname var:Y .
</align:entity2>
<align:relation>=</align:relation>

</align:Cell>

Listing 6 IPSM-AF triple mapping

Let us now assume that our goal is to “translate” a specific URI. In any alignment
cell both entity1 and entity2 are RDF graph patterns, i.e., sets of RDF triple patterns.
Therefore, to change the URI we need to explicitly use it in the entity1 triple pattern,
and substitute it with the “replacement” URI in the entity2 pattern. Listing 7 presents
a cell defining such a translation. In this example, ont1:res1 is equivalent to ont2:res1
in the target ontology.

<align:Cell rdf:about="&sripas;uri_mapping_example">
<align:entity1 rdf:datatype="&xsd;string">

var:X a sosa:Observation ;
sosa:hasResult ont1:res1 .

</align:entity1>
<align:entity2 rdf:datatype="&xsd;string">

var:X a sosa:Observation ;
sosa:hasResult ont2:res1 .

</align:entity2>
<align:relation>=</align:relation>

</align:Cell>

Listing 7 IPSM-AF URI mapping

Alignment Format for Semantic Translation 661

Listing 8 shows an example of a mapping where, in the target semantics, we want
to specify new named entity, generated based on an entity from the source ontology,
matched by a variable. To create the named entity, a standard SPARQL IRI function
is used.

<align:Cell rdf:about="&sripas;named_entity_example">
<align:entity1 rdf:datatype="&xsd;string">

var:elem a pt:Element ;
pt:hasDeviceId var:device_id .

</align:entity1>
<align:entity2 rdf:datatype="&xsd;string">

var:device a iiot:IoTDevice, sosa:Sensor ;
iiotex:hasLocalId var:device_id .

</align:entity2>
<align:relation>=</align:relation>
<sripas:transformation rdf:parseType="Literal">

<function about="IRI">
<param order="1" about="&var;device_id"/>
<return about="&var;device"/>

</function>
</sripas:transformation>

</align:Cell>

Listing 8 IPSM-AF named entity

When creating an alignment, it is often necessary to remove triples matching a
given triple pattern. An example of a cell defining such a “translation” is depicted
in Listing 9. The “removal” is achieved by mapping the source triple pattern to an
empty pattern.

<align:Cell rdf:about="&sripas;triple_removal_example">
<align:entity1 rdf:datatype="&xsd;string">

var:X ont1:hasName var:Y .
</align:entity1>
<align:entity2 rdf:datatype="&xsd;string">
</align:entity2>
<align:relation>=</align:relation>

</align:Cell>

Listing 9 IPSM-AF remove part of a graph

Finally, Listing 10 shows an example of adding new triples to an RDF graph. The
original triple is preserved, but two additional are included. Here, we assume that
the values of variables var:V and var:Z can be calculated from the result of applying
the cell transformation (otherwise, the cell would be ill-formed).

<align:Cell rdf:about="&sripas;adding_new_triples">
<align:entity1 rdf:datatype="&xsd;string">

var:X ont1:hasName var:Y .
</align:entity1>
<align:entity2 rdf:datatype="&xsd;string">

var:X ont1:hasName var:Y .
var:X ont1:hasFirstName var:V .
var:X ont1:hasName var:Z .

</align:entity2>
<align:relation>=</align:relation>
<sripas:transformation rdf:parseType="Literal">

% transformation %
</sripas:transformation>

</align:Cell>

662 P. Szmeja et al.

Listing 10 IPSM-AF add triples to a graph

It is important to note, that application of the alignment cell translates all the
triples of an RDF graph that match the align:entity1 graph pattern, preserving at the
same time all the unmatched ones.

Based on analysis of the literature, requirements analysis of the use cases of the
project pilots, and implementation of semantic translation within their scope we
believe that the above-presented set of transformations covers majority of practical
needs. However, it should be stressed that the proposed approach is flexible and can
easily be extended to capture additional practical needs.

5 Example

Let us now illustrate the usage of IPSM-AF format, by presenting a fragment of
an alignment between a port ontology, that describes (among others) meteo stations
and data they produce, and a suitably extended Generic IoT Platform Ontology
(GOIoTP ontology17). The GOIoTP is a modular core ontology developed during
the INTER-IoT project, which allows describing various aspects of IoT deployments,
such as devices, platforms, observations, units and measurements, location, services,
and users. GOIoTP imports and uses parts of several standard ontologies, such as
SSN/SOSA,18 GeoSPARQL,19 and NASA SWEET units.20 Since GOIoTP is a core
ontology, it has been further extended to form theGenericOntology for IoTPlatforms
Extended (GOIoTPex)—a vertical module that imports the GOIoTP ontology, and
augments and “fills” selected stub concepts fromGOIoTPwithmore specific classes,
properties, and individuals. In short,GOIoTPexontology extendsGOIoTPwith terms
required in the concrete instantiations of the INTER-IoT solution. In particular, it
serves as a central ontology for semantic translations executedwithin the INTER-IoT
pilot applications, where both IPSM-AF and IPSMwere utilized to provide a flexible
and efficient semantic interoperability solution.

As discussed in [9], depending on the application/domain needs, practically any
ontology can be selected as the central one, since the choice does not influence
the semantic translation engine. However, semantic engineer should keep in mind
that central ontology should: (i) cover all “topics” of conversations in the ecosys-
tem, (ii) be clear enough to enable querying and reasoning done directly on it, and
(iii) contain subject-specific modules that can be independently maintained and ver-
sioned. In this respect, GOIoTPex can be seen as an excellent “foundational” central
ontology for any IoT-centric ecosystem.

17 https://inter-iot.github.io/ontology/.
18 https://www.w3.org/TR/vocab-ssn/.
19 https://www.ogc.org/standards/geosparql.
20 http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl.

https://inter-iot.github.io/ontology/
https://www.w3.org/TR/vocab-ssn/
https://www.ogc.org/standards/geosparql
http://sweet.jpl.nasa.gov/2.3/reprSciUnits.owl

Alignment Format for Semantic Translation 663

Table 2 Prefixes used in the examples

Prefix Namespace

Source

port http://inter-iot.eu/syntax/WSO2Port#

Target

vp http://inter-iot.eu/LogVPmod#

iiot http://inter-iot.eu/GOIoTP#

iiotex http://inter-iot.eu/GOIoTPex#

geo http://www.opengis.net/ont/geosparql#

ogis http://www.opengis.net/def/sf/

sosa http://www.w3.org/ns/sosa/

meteo http://www.inter-iot.eu/wso2port/weather/stations/

The example alignment consists of just two mappings (cells). Both refer to an
ecosystem, in whichmeteorological data is important and, in addition, artifacts form-
ing the ecosystem might be interested in data arriving from specific “registered”
meteo stations. In the first mapping, we are interested in translating RDF messages
exchanged within the ecosystem that represents meteo station “registration.” The
second mapping should enable translation of RDF graph structures into actual mea-
surements coming frommeteo stations. In both cases, we shall utilize the GOIoTPex
as the target ontology. We assume that input data is represented in a (simple) port
ontology expressing “flat” data coming from the port platform. Both examples (with
some simplifications) originate from the INTER-IoT project pilot, in which data
gathered by different IoT platforms is published and processed in an INTER-IoT
ecosystem, deployed at the Port of Valencia, in Spain. The ontologies/prefixes used
in the example alignment are listed in Table 2.

Let us start with the first example, in which a message describing a meteo station
registration needs to be translated from the port ontology, and expressed in terms of
the central ontology. In Listing 11, a meteo station called “P.Felipe” is characterized
by a set of datatype properties (expressed using RDF Turtle notation).

[] a port:Element ;
port:haslatitude "26.94442"^^xsd:float ;
port:haslongitude "19.29351"^^xsd:float ;
port:hasmeteoStationId "2"^^xsd:int ;
port:hasname "P.Felipe" .

Listing 11 “P.Felipe” meteo station metadata

Alignment cell given in Listing 12 contains RDF graph patterns that generate
correspondences (translation rules) that “match” any meteo station registration mes-
sage, and produce its counterpart, expressed in terms of the GOIoTPex ontology.

<align:Cell rdf:about="&sripas;1_meteo_stations">

http://inter-iot.eu/syntax/WSO2Port#
http://inter-iot.eu/LogVPmod#
http://inter-iot.eu/GOIoTP#
http://inter-iot.eu/GOIoTPex#
http://www.opengis.net/ont/geosparql#
http://www.opengis.net/def/sf/
http://www.w3.org/ns/sosa/
http://www.inter-iot.eu/wso2port/weather/stations/

664 P. Szmeja et al.

<align:entity1 rdf:datatype="&xsd;string">
var:elem a port:Element ;

port:haslatitude var:lat ;
port:haslongitude var:long ;
port:hasmeteoStationId var:id ;
port:hasname var:name .

</align:entity1>
<align:entity2 rdf:datatype="&xsd;string">

var:station a vp:MeteoStation, iiot:IoTDevice, sosa:Sensor ;
iiotex:hasLocalId var:id ;
iiot:hasName var:name ;
iiot:hasLocation [

a iiot:Location ;
geo:asWKT var:geopos

] .
</align:entity2>
<align:relation>=</align:relation>
<sripas:transformation rdf:parseType="Literal">

<function about="STR">
<param order="1" about="&var;id"/>
<return about="&var;sid"/>

</function>
<function about="CONCAT">

<param order="1" val="&meteo;"/>
<param order="2" about="&var;sid"/>
<return about="&var;id_uri"/>

</function>
<function about="IRI">

<param order="1" about="&var;id_uri"/>
<return about="&var;station"/>

</function>
<function about="STR">

<param order="1" about="&var;lat"/>
<return about="&var;slat"/>

</function>
<function about="STR">

<param order="1" about="&var;long"/>
<return about="&var;slong"/>

</function>
<function about="CONCAT">

<param order="1" val="Point("/>
<param order="2" about="&var;slat"/>
<param order="3" val=" "/>
<param order="4" about="&var;slong"/>
<param order="5" val=")"/>
<return about="&var;geopos"/>

</function>
</sripas:transformation>
<sripas:filters rdf:parseType="Literal">

<filter about="&var;lat" datatype="&xsd;float"/>
<filter about="&var;long" datatype="&xsd;float"/>
<filter about="&var;slat" datatype="&xsd;string"/>
<filter about="&var;slong" datatype="&xsd;string"/>

</sripas:filters>
<sripas:typings rdf:parseType="Literal">

<typing about="&var;geopos" datatype="&ogis;wktLiteral"/>
</sripas:typings>

</align:Cell>

Listing 12 Alignment cell mapping meteo station “registration”

The message from Listing 11, when matched against the pattern from entity1,
establishes appropriate “variable bindings” that are subsequently utilized/referenced
in entity2, transformation, and filters sections of the cell. The structure of the RDF
graph of the message together with the “variable bindings” is depicted in Fig. 1.

Alignment Format for Semantic Translation 665

Fig. 1 RDF graph of the registration message

Because of the structure of the RDF graph pattern from entity2 (Listing 12), and
the created variable bindings, an instance of vp:MeteoStation, iiot:IoTDevice, and
sosa:Sensor needs to be generated from the value that was matched by the var:id
variable. This way, a numerical property of a blank node, representing ameteo station
in the source data, is translated into an identifier (URI) of an entity representing the
station in the target ontology. Therefore, in transformations sections, functions are
called to cast it into string (STR), concatenate it with proper prefix (CONCAT),
and generate the URI (IRI). The result is stored in the var:station variable that is
referenced in the graph pattern from entity2. The source port:hasname property is
mapped to the iiot:hasName property from the target (central) ontology.

The third important part of the mapping is defining the correspondences between
geospatial data representations. Properties port:haslatitude and port:haslongitude
are mapped onto iiot:hasLocation property, from GOIoTPex, with value being an
instance of iiot:Location that has geo:asWKT property. Geospatial data, in the WKT
format, needs to be computed (concatenated), which is done by applying the CON-

Fig. 2 RDF graph of the translated registration message and IPSM-AF variable bindings created
by the alignment cell

666 P. Szmeja et al.

CAT function that is called from the transformation. CONCAT takes as parameters
string values; therefore, the STR function is called first, on source variables var:lat
and var:long. Note that, in this case, sripas:filters and sripas:typings are used to
include type filters and assign ogis:wktLiteral to the output variable. Figure 2 shows
the structure of the translated RDF graph of the “registration” message, together with
the variable bindings.

The result of the translation, represented in RDF Turtle notation, is given in
Listing 13.

meteo:2 a vp:MeteoStation , iiot:IoTDevice , sosa:Sensor ;
iiot:hasLocation [

a iiot:Location ;
geo:asWKT "Point(26.94442 19.29351)"^^ogis:wktLiteral

] ;
iiot:hasName "P.Felipe" ;
iiotex:hasLocalId "2"^^xsd:int .

Listing 13 “P.Felipe” registration message after translation

The second example shows a mapping between meteorological data (observa-
tion) expressed in different semantics. Listing 14 shows sample RDF instance of an
observation.

[] a port:Element ;
port:hasdate "2020-07-15T09:50:01.000Z" ;
port:hasmeasurementId "3181710"^^xsd:int ;
port:hasmeteoStationId "9"^^xsd:int ;
port:haspressure "1025.552"^^xsd:float ;
port:hasseaTemperature "0.0"^^xsd:float ;
port:haswindDirection "177.4603"^^xsd:float .

Listing 14 RDF instance representing meteorological observation

The instance, with a given numerical measurement identifier, is described with
date and identifier of the station it originated from and includes measured values for
pressure, temperature, and wind direction. The cell, for mapping observation data,
is presented in Listing 15. The mapping defines how to transform input RDF graph,
based on the port ontology, into an output RDF graph, based on the GOIoTPex ontol-
ogy, with additional module for the meteorological data. The RDF graph structures,
for the instance and the variable bindings that result from matching the alignment
cell, are depicted in Fig. 3.

<align:Cell rdf:about="&sripas;1_weather_measurement">
<align:entity1 rdf:datatype="&xsd;string">

var:elem a port:Element ;
port:hasmeasurementId var:meas_id ;
port:hasmeteoStationId var:station_id ;
port:hasdate var:date ;
port:haswindDirection var:direct ;
port:hasseaTemperature var:seatemp ;
port:haspressure var:pressure .

</align:entity1>
<align:entity2 rdf:datatype="&xsd;string">

var:station a vp:MeteoStation, iiot:IoTDevice, sosa:Sensor ;
iiotex:hasLocalId var:station_id .

var:measurment a sosa:Observation, vp:WeatherMeasurement ;
iiotex:hasLocalId var:meas_id ;

Alignment Format for Semantic Translation 667

Fig. 3 RDF graph of the meteorological observation

sosa:madeBySensor var:station ;
sosa:hasResult [

a sosa:Result, vp:WindDirection ;
iiot:hasResultValue var:direct

], [
a sosa:Result, vp:SeaTemperature ;
iiot:hasResultValue var:seatemp

], [
a sosa:Result, vp:Pressure ;
iiot:hasResultValue var:pressure

] ;
sosa:resultTime var:date .

</align:entity2>
<align:relation>=</align:relation>
<sripas:transformation rdf:parseType="Literal">

<function about="STR">
<param order="1" about="&var;station_id"/>
<return about="&var;sid"/>

</function>
<function about="CONCAT">

<param order="1" val="&meteo;"/>
<param order="2" about="&var;sid"/>
<return about="&var;sid_uri"/>

</function>
<function about="IRI">

<param order="1" about="&var;sid_uri"/>
<return about="&var;station"/>

</function>
<function about="STR">

<param order="1" about="&var;meas_id"/>
<return about="&var;mid"/>

</function>
<function about="CONCAT">

<param order="1" about="&var;id_uri"/>
<param order="1" val="/"/>
<param order="2" about="&var;mid"/>

668 P. Szmeja et al.

<return about="&var;meas_id_uri"/>
</function>
<function about="IRI">

<param order="1" about="&var;meas_id_uri"/>
<return about="&var;measurment"/>

</function>
</sripas:transformation>
<sripas:typings rdf:parseType="Literal">

<sripas:typing about="&var;date" datatype="&xsd;dateTimeStamp"/>
</sripas:typings>

</align:Cell>

Listing 15 Alignment cell for translation of meteorological observations

Next, the alignment is applied to transform the data, and the resulting output is as
in Listing 16.

<http://www.inter-iot.eu/wso2port/weather/stations/9/3181710>
a sosa:Observation , vp:WeatherMeasurement ;
iiotex:hasLocalId "3181710"^^xsd:int ;
sosa:hasResult [

a sosa:Result , vp:WindDirection ;
iiot:hasResultValue "177.4603"^^xsd:float

] ;
sosa:hasResult [

a sosa:Result , vp:SeaTemperature ;
iiot:hasResultValue "0.0"^^xsd:float

] ;
sosa:hasResult [

a sosa:Result , vp:Pressure ;
iiot:hasResultValue "1025.552"^^xsd:float

] ;
sosa:madeBySensor meteo:9 ;
sosa:resultTime "2020-07-15T09:50:01.000Z"^^xsd:dateTimeStamp .

meteo:9
a vp:MeteoStation , iiot:IoTDevice , sosa:Sensor ;
iiotex:hasLocalId "9"^^xsd:int .

Listing 16 Output for translation of meteorological observation

In the translation, identifiers of measurement and meteo station are transformed
from numerical values into entities using IRI function applied to the source variables
identifiers concatenated with prefixes. Meteo station is an instance of iiot:IoTDevice,
sosa:Sensor, vp:MeteoStation, whereas measurement is an instance of sosa:
Observation, vp:WeatherMeasurement. An observation is annotated with a refer-
ence to the specific sensor (meteo station), by which it was taken, as well as a result
time and three results with values and classes, which indicate what was actually
measured (Fig. 4).

6 Concluding Remarks

With the growing popularity of IoT-based solutions, big data processing, and systems
integration, the need arose not only to be able to express correspondences (align-
ments) between data models, but also to use them in practices to realize needed (pos-

Alignment Format for Semantic Translation 669

Fig. 4 RDF graph of the translated meteorological observation

sibly streaming) translations. Alignments should be persisted in a machine-readable
format that can be automatically consumed by software tools, but is also easy to
pick-up by humans. Here, IPSM-AF proves to be an expressive language for defin-
ing alignments that can be used by IPSM which automatically executes semantic
translation. IPSM-AF was tested in two pilot applications and open call projects
where different requirements for semantic translation needed to be fulfilled. Com-
pliance with well-known Alignment API format enables alignments expressed in
IPSM-AF to be consumed (if required after adjusting) by other semantic translators
that may be developed in the future.

Outside of the validation of IPSM-AF in the INTER-IoT project [17], the format is
supported by a rich number of concrete “recipes”21 and guides for practical usage,22

21 https://inter-iot.readthedocs.io/projects/inter-iot-cookbook/en/latest/inter-layer/ds2ds/recipes/
alignment/.
22 https://inter-iot.readthedocs.io/projects/inter-iot-cookbook/en/latest/inter-layer/ds2ds/
appendices/products/.

https://inter-iot.readthedocs.io/projects/inter-iot-cookbook/en/latest/inter-layer/ds2ds/recipes/alignment/
https://inter-iot.readthedocs.io/projects/inter-iot-cookbook/en/latest/inter-layer/ds2ds/recipes/alignment/
https://inter-iot.readthedocs.io/projects/inter-iot-cookbook/en/latest/inter-layer/ds2ds/appendices/products/
https://inter-iot.readthedocs.io/projects/inter-iot-cookbook/en/latest/inter-layer/ds2ds/appendices/products/

670 P. Szmeja et al.

including deeply analyzed examples, e.g., for mapping of geolocation data [6], as
well as comparison with other possible alternatives [22].

The complete source code for the Inter-PlatformSemanticMediator (IPSM)canbe
freely obtained from the INTER-IoTofficial code repository23 onGitHub. The easiest
way to test/use IPSM is to follow the IPSM Docker image deployment instructions
available from the INTER-IoT IPSM documentation site.24

Acknowledgments This researchwas partially supported by theEuropeanUnion’s “Horizon2020”
research and innovation program as part of the “Interoperability of Heterogeneous IoT Platforms”
(INTER-IoT) project under the Grant Agreement No. 687283.

References

1. Borst WN (1997) Construction of engineering ontologies for knowledge sharing and
reuse. Ph.D. thesis. University of Twente, Enschede, Netherlands. base-search.net (ftuni-
vtwente:oai:doc.utwente.nl:17864)

2. Cousin P (ed) Internet of Things success stories, series 1-3. Internet of Things European
Research Cluster (IERC) and Smart Action, 2014–2015

3. David J, Euzenat J, Scharffe F, Trojahn dos Santos C (2011) The alignment API 4.0. Semantic
Web 2(1):3–10

4. Euzenat J, Shvaiko P (2013) Ontology matching, 2nd edn. Springer
5. FerdinandM,ZirpinsC,TrastourD (2004)LiftingXMLschema toOWL. In:KochN,Fraternali

P, Wirsing W (eds) Web engineering—4th International Conference. ICWE 2004, Munich,
Germany, 26–30 July 2004, Proceedings. Springer, Heidelberg, pp 354–358

6. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K (2017) Alignment-based
semantic translation of geospatial data. In: Proceedings of 3rd International conference on
advances in computing, communication & automation (ICACCA)

7. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K (2017) Semantic interoper-
ability in the Internet of Things: an overview from the INTER-IoT perspective. J Netw Comput
Appl 81:111–124

8. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K (2017) Streaming semantic
translations. In Proceedings of 21st international conference on system theory, control and
computing ICSTCC. IEEE, pp 1–8

9. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K (2017) Towards semantic
interoperability between Internet of Things platforms. In: Gravina R, Palau CE, Manso M,
Liotta A, Fortino G (eds) Integration. Interconnection, and interoperability of IoT systems.
Springer, Cham, pp 103–127

10. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K, Fortino G (2016) Tools for
ontology matching—Practical considerations from INTER-IoT perspective. In: Proceedings
of the 8th international conference on internet and distributed computing systems, vol 9864 of
LNCS. Springer, pp 296–307

11. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K, Palau CE (2017) From
implicit semantics towards ontologies—Practical considerations from the INTER-IoT per-
spective (submitted for publication). In: Proceedings of 1st edition of globe-IoT 2017: towards
global interoperability among IoT systems

23 https://github.com/INTER-IoT/ipsm-core.
24 https://inter-iot-ipsm.readthedocs.io/en/latest/Deployment/Docker-image/.

https://github.com/INTER-IoT/ipsm-core
https://inter-iot-ipsm.readthedocs.io/en/latest/Deployment/Docker-image/

Alignment Format for Semantic Translation 671

12. Ganzha M, Paprzycki M, Pawłowski W, Szmeja P, Wasielewska K, Solarz-Niesłuchowski B,
de Puga García JS (2018) Towards high throughput semantic translation. In: Fortino G, Palau
CE, Guerrieri A, Cuppens NCF, Chaouchi H, Gabillon A (eds) Interoperability, safety and
security in IoT. Springer, Cham, pp 67–74

13. Heyvaert P, Dimou A, De Meester B, Seymoens T, Herregodts A-L, Verborgh R, Schuurman
D, Mannens E (2018) Specification and implementation of mapping rule visualization and
editing: MapVOWL and the RMLEditor. J Web Semantics 49:31–50

14. Kharlamov E, Kotidis Y, Mailis T, Neuenstadt C, Nikolaou C, Özçep Ö, Svingos C,
Zheleznyakov D, Ioannidis Y, Lamparter S, Möller R, Waaler A (2019) An ontology-mediated
analytics-aware approach to support monitoring and diagnostics of static and streaming data.
J Web Semantics 56:30–55

15. MilesA,MatthewsB,WilsonM,BrickleyD (2005) SKOScore: simple knowledge organisation
for the web. In: Proceedings of the 2005 international conference on dublin core and metadata
applications: vocabularies in practice, DCMI’05. Dublin Core Metadata Initiative, pp 1–9

16. Mohammadi M, Rezaei J (2020) Evaluating and comparing ontology alignment systems: an
MCDM approach. J Web Semantics 64:100592

17. Palau CE, Fortino G, Montesinos M, Exarchakos G, Giménez P, Markarian G, Castay M, Fuart
F, Pawłowski W, Mortara M, Bassi A, Gevers F, Ibañez G, Huet I (eds) (2021) Interoperability
of Heterogeneous IoT platforms—A layered approach. Internet of Things. Springer

18. Perera C, Liu CH, Jayawardena S, Chen M (2015) Context-aware computing in the Inter-
net of Things: a survey on Internet of Things from industrial market perspective. In: CoRR.
abs/1502.00164

19. Scharffe F (2009) Correspondence patterns representation. Ph.D. thesis. University of Inns-
bruck

20. Scharffe F, Zamazal O, Fensel D (2014) Ontology alignment design patterns. Knowl Inf Syst
40:1–28, 7

21. Szmeja P, Ganzha M, Paprzycki M, Pawłowski W, Wasielewska K (2018) Declarative ontol-
ogy alignment format for semantic translation. In: 3rd International conference on Internet of
Things: smart innovation and usages (IoT-SIU 2018). IEEE Xplore, pp 1–6

22. Szmeja P, Prud’hommeaux E (2021) ShExMap and IPSM-AF—comparison of RDF trans-
formation technologies. In: Intelligent systems, technologies and applications, Proceedings of
sixth ISTA 2020, India. Springer, Berlin, Germany, pp 29–46

23. Thiéblin E (2019) Automatic generation of complex ontology alignments. Ph.D. thesis. Institut
de Recherche en Informatique de Toulouse, Toulouse, 10 2019

24. Thieblin E, Haemmerlé O, Hernandez N, dos Santos CT (2019) Survey on complex ontology
matching. Semantic Web

25. Volz J, Bizer C, Gaedke M, Kobilarov G. Silk—A link discovery framework for the web of
data. LDOW, 538

