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Abstract. 5G networks offer novel communication infrastructure for Internet of
Things applications, especially for healthcare applications. There, edge computing
enabled Internet of Medical Things provides online patient status monitoring. In
this contribution, a Chicken Swarm Optimization algorithm, based on Energy
Efficient Multi-objective clustering is applied in an IoMT system. An effective
fitness function is designed for cluster head selection. In a simulated environment,
performance of proposed scheme is evaluated.
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1 Introduction

Within Internet of Things (IoT), availability of 5G networks empowers raise of Internet
of Everything [1, 2]. IoT materializes also in healthcare, and is often referred to as
Internet of Medical Things (IoMT) [3, 4]. Typically, [oMT systems are linked with
wireless body area networks (WBAN) connecting biosensor nodes [5], which act like a
personal digital assistant ([6, 7]). However, if the energy in the biosensor is exhausted,
the WBAN collapses [8, 9]. Note that biosensor replacement is very difficult, when it
is placed inside the patient [10]. Here, energy-efficient clustering protocols are needed
to achieve effective cluster head selection [11, 12]. However, existing energy-aware
clustering and routing schemes suffer from network overhead [13, 14]. Separately, fuzzy
control based energy efficient clustering protocol [15] still lacks in energy consumption.
Moreover, heterogeneity based energy aware clustering protocols have been designed in
[16, 17]. The key contribution of this work is to propose a clustering approach, which
offers energy-aware communication in 5G enabled, edge-based ecosystems. Here, loMT
deployment consists of resource-limited wearable sensors (SNs), which transmit data
through a 5G-enabled base station (BS). Transmission and reception of data takes more
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power. Hence, to maximize lifespan of a system, a multi objective cluster head (CH)
selection, based on Chicken Swarm Optimization (CSQ), is used for cluster formation.

2 System Model and Assumptions

In this work, it is assumed that uniform level of energy is allocated to all wearable
SNs and energy needed to perform intra-cluster communication is represented by an
arbitrary value, within the pre-determined range (including “sleeping mode”). Network
lifespan is reduced when SN battery is drained. Hence, energy-efficiency has to be taken
into account when electing the CH, amid the accessible SNs. The model of the system
illustrating the proposed clustering scheme is depicted in Fig. 1.
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Fig. 1. Proposed clustering scheme system model framework

In what follows, the energy model, found in [18], has been selected. The equation
for calculating energy consumption of data packet of size s bits for distance (d) is
Efians(d) = (TApsd® + Ep)s. Ep denotes energy consumption of a device, TAfrg is the
free space model amplifier of a transmitter, and « denotes the path loss exponents, with
2 < o < 4. Energy use to obtain data packet is represented by Eg,..(d) = 5 x Ep. The
cumulative energy use, of each wearable SN (to send or receive data), is based on distance
d, and represented as Ecy,, = {(TA)d” + 2(Ep)}s. Selection of cluster head relies on the
objective function. Here, selection of energy efficient CH depends on residual energy,
queuing delay, communication cost, link quality and node centrality.

Residual Energy: Initially, wearable SNs, deployed inside the [oMT, gather sensitive
patient data and forward it to the CH. Energy consumption of CHs, during data gathering
from SN, is:

Ech_sy = Dp x (EPH;: + AEpg x (\/{aCH —agn)? + (ben — bSN)E)),
where (acy,bcy) is the position of CH and (agy, bsy) is the position of
SN; Dg is the number of bits in the data packet, Epg, is the energy needed,
per bit, for data forwarding, and AEpp is the amplification energy. Data for-
warding from CH to BS can be computed as follows: Egs_cy = Dp X

(EPB_::(% — 1) + (Epp; x (%)) + Epp, +AEpp x (\/(Gss —acy)* + (bps — b(.‘H)z)),
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where (aps — bps) is the position of BS, Epg,. is the energy used for data forwarding,
N is the total number of SN's in the [oMT system, ¥ denotes the number of SNs in the
cluster. Finally, the cumulative energy consumption of each cluster is computed as:
Ec = Eps_cu + ((%) —1) x Eci—sn-

Communication Cost: Commination cost is defined as the power needed for data for-

-
av, ,r,

. dy,
warding: Comc = 7
0

, where d,, denotes the average distance between given SN and

its neighbor SN, and dy represents the forwarding radius of an SN.

Queuing Delay: Dg,., depends on the rate of arrival of packets (to SN), and the outward
link forwarding capacity. For Ag, the arrival rate of packets P; to the SN and F¢ the
forwarding capacity, the queuing delay Dg,.becomes: Doy, = (Ag + Fc)/P;.

Link Quality: In IoMT, fading of a channel is highly irregular. If the receiver does
not receive the complete signal, re-forwarding happens. This requires additional energy

from the transmitter. Therefore, the link quality is estimated as:LQ = %‘L‘%ﬂ— where
max mn

LQ,,. and L@, denote upper and lower range of re-forwarding; and LQ; represents
entire re-transmission cost among neighbors and given (i-th) SN.

Node Centrality: Node centrality measure i determines number of times a node acts as

‘ ‘ Komni
alink on the shortest paths among two nodes. It is computed as: Nc = 3_,,, 2, 2per o

where Ay, is the number of shortest paths between node rm and i, and A.,,,,,;) is the number
of paths via i. Here, every node follows the fitness function based on calculated objective
function values, along with the weighted coefficients, as follows: Fitnesspn, = w1 x

Ec+wax (Cwﬂf )—f—w; X ( )—}—m;xLQ-{—ws x Nc.Here, wi +wa+wi+wa+ws = 1

and, 0 < w; < 1,Vi,1 <i < 5. The central goal is to: Maxnmgezl lFrrneuﬁmg such
that 1 < i < |CH|. Node, which fulfills all objectives will be sclccted as a CH. In
every cluster, the selected CH is responsible for data gathering and forwarding to BS.
Specifically, after CH selection, for each CH, route will be established for transferring
collected data to BS.

The proposed approach is based on the chicken swarm optimization (CSO) intro-
duced in [19] for CH selection. The most important aspects of CSO, in the considered
problem, are as follows.

Chicken Movement: *‘best node” is the rooster, “worst node” is the chick, while the
remaining nodes are hens. Let R, be count of roosters, H, count of hens, C,, count of
chicks, and M,, count of mother hens; while B — be the number of iterations. Chicken
positions can be denoted LU"’ wherei € [1,2,.....N]andj € [1, 2, ......D], for time ¢,
in D dimensional space. In the proposed approach the rooster is the CH with optimal
fitness value.

Rooster Movement: Following [19], movement of roosters is computed as:

ch":r' = (‘U:‘i’ [l + Randn((}‘ag)] (D
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Liffi = fi

2 _ _
o= {exp('&_l__g;)orhenvise; kel[l,N,k#£i

where cu?_}' ! depicts the movement of the rooster, Randn(O, 02) denotes the Gaussian

distribution, with mean value 0 and standard deviation o2, ¢ denotes a constant value
added to avoid zero-division, k implies the index of the rooster, selected randomly from
the group, and f; denotes the value of fitness of rooster x;.

Hen Movement: Following [19], hen movement is represented as:

(.'U:‘\‘;.'H = LU?} + 81 x Rand x (CU :‘HI\;' —cy :‘\‘;) + 852 x Rand x (CU fr"zj — LU:{})
(2)

where 1 = exp(u}{i,gim), §2 = exp(f,2 — f;).Rand is a random number in [0, 1],

rl € [1,2,.....N] is the index of the mate of i hen, r2 € [1, 2, ......N] is the index of
randomly chosen rooster (or hen), S1 and S2 are the influence factors.

Chick Movement: Following [17], chick movement can be formulated as:
o I o o a
CU;.;‘JF = "U:\;‘ +FL x (CU::I.j - CU;.,;) @)

where ¢y . denotes the location of the mother of i" chick, for m € [1,2,...N], FLe
[1, 2] denotes the randomly selected speed of the chick following the mother.

For selecting the CH, accessible SNs become chickens; nodes with best fitness values
become roosters, with worst fitness are chicks, while the remaining nodes are hens. In
each round, location of the rooster is updated using formula (1). Following the rooster,
location of every hen is updated using formula (2). The chicks searching for food around
their mother explore search spaces, which is captured in formula (3). Ranking of chickens
maintains hierarchical order. Based on fitness values, chickens are ranked. After ranking,
relationships between mothers and chicks are identified, to find differences between the
chicks. Algorithm 1 depicts the proposed algorithm for CH selection. The SN, selected
by the CSO algorithm, becomes a CH, while remaining SNs form its cluster. After CH
selection, patient data is sent to the CH, and can be removed.
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Algorithm 1: Multi objective based CSO Algorithm for CH selection
Input: N number of CHs, CS0 parameters; Output: Pareto Solution S indicating the nodes that act as CHs.

1. Initialize all the parameters
R.. H,.C, M,and B
2. Initialize the chickens in the swarm randomly

asCyli=12,......9)
3. Initiglize the total count of iterations as
Max .,

4. While T, < Max, do

5. If(T.%B = 0) then

6. Establish the hierarchical order through rank-
ing of chickens

7. Partition the swarm group and identify the
mother-child relationship

8 Endif

9. for (i = Ddo

10. If(i == rooster)do

13. If(i == hen)do

14. Perform local update of the hen’s location us-
ing (2)

15. Endif

16. If (i == chick)do

17.  Perform local update of the chick’s location
using (3)

18. Endif

19. Estimate the fitness of the obtained solution
using Fitnessg;nq;

20. If the solution outperforms the older one —»

update location

21. End for

22, label the best solution as pareto optimal so-
lution S

11. Perform local update of the rooster’s location 23, End while
using (1) 24. Return S
12. Endif

3 Experimental Results and Discussion

Performance of the proposed solution was measured using: cluster formation time;
energy consumption: energy consumed by SNs (in mlJ); network lifetime: for how many
rounds, network remains operational; throughput: CHs-BS (Mb/s); delay: transmission
time SN-BS via CH (ms). Proposed approach was compared to EO-uGA [20], ABCSA
[21], BCO [22] and PSO [23]. Simulated network parameters were: Number of SNs:
1000; IoMT sensing area: 500m?; BS position: (500,500); Packets Size:1500 bits; Max
Throughput: 1 Mbps; Initial Node Energy: 2I; Electronics energy: 30 nJ/bit; Data aggre-
gation energy: 3 nl/bit/signal; Transmitting power: 9 mW; Max number of rounds:
500. The CSO algorithm parameters were: Population Size: 100; Number of rosters: 3;
Number of hens: 5; Update time steps: 10; Maximum Iterations: 150.

As shown in Fig. 2a, CSO-based clustering has the lowest cluster formation time.
Moreover, the proposed CSO minimizes the cost by 1.9%, 2.7%, 3.8% and 4.9% in
comparison to EO-pwGA, ABCSA, BCO and PSO, respectively (Fig. 2b). Next, when
number of SNs varied from 50 to 1000 (Fig. 2c¢), the proposed scheme minimized energy
consumption by 3.4% to 7.1%. It was also most optimal from the perspective of energy
consumption, for transmission power between —25 dBm and —5 dBm (Fig. 2d). Proposed
solution improved network lifetime (for 50 to 1000 SNs; Fig. 2e) by 3.2% to 17%.
Network lifetime was also evaluated with respect to the number of clusters (from 3 to
10; Fig. 2f). Here, the gain was between 5.7% and 21.3%. The throughput was simulated
for 50 to 1000 SN’s (Fig. 2g). The performance gain was 0.1% to 39%. Throughput was
also evaluated when varying transmission power (—25 dBm to —5 dBm; Fig. 2h) and the
improvement was 6.8% to 48,2%. Finally, Fig. 2i depicts propagation delay for varying
number of SN, from 50 to 1000. Results confirm that proposed SCO scheme reduces
propagation delay by 0.05 ms to 0.56 ms.
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Fig. 2. (a) Cluster formation time;

(b) Energy consumption (EC)/number of packets; (c) EC/

number of SNs; (d) EC/transmission power ranges; (e) Network Lifetime (NL)/number of SNs;
(f) NL/number of Clusters; (g) Throughput (T)/number of SNs; (h) T/transmission power ranges;
(i) Propagation delay/number of SNs.
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Concluding Remarks

In this work, an energy efficient CSO-based clustering scheme was proposed for loMT
ecosystems. The proposed scheme uses fitness function, based on residual energy, queu-
ing delay, communication cost, link quality and node centrality. Additional details about
the approach, including extensive literature review can be found in [24]. The perfor-
mance of the proposed scheme was compared with EO-pGA, ABCSA, BCO and PSO
approaches. CSO-based approach was more efficient in all categories, with reduction of
energy consumption by 3-7%. In the future, the proposed scheme will be extended with
respect to mobility of nodes, body actions, and cross layer optimization.
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