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Abstract. The Management and Orchestration framework (MANO) is the main 

element of the Network Function Virtualization paradigm. It is in charge of 

managing the lifecycle of virtualized functions, from instantiation to 

manageability, live configuration and termination. This kind of framework was 

originally designed to orchestrate network functions over virtual machines. 

However, the Cloud-Native approach, based on containers and microservices, 

has emerged and needs to be included as a part of MANO, to leverage all the 

inherent benefits that it brings. This contribution identifies the key enablers that 

have to be addressed, from the MANO perspective, to fully exploit the 

capabilities and to obtain real added value from implementing this novel 

approach, focusing mainly on resource-constrained environments. Besides, an 

analysis of current status of open-source frameworks aiming at the Cloud-

Native adaptation is presented, showing that while Cloud-Native approaches 

vís-a-vis network functions are widely accepted (at least, by the research 

community), there is still room for further research and integration.  
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Introduction 

Edge computing and Network Function Virtualization (NFV) have been two of the 

main technological paradigms of the IT environments that emerged during past years. 

The former is focused on bringing computation capabilities as close to the source of 

data (and actuation) as possible, hence optimizing network bandwidth usage, 

supporting low-latency applications and reducing privacy and security breaches in 

contrast to traditional cloud computing models [1]. The latter (NFV) aims at 

virtualizing network functions, facilitating their instantiation on general purpose 

equipment, thus decoupling the provided services from the hardware that deliver them 

[2]. 

The European Telecommunications Standards Institute (ETSI) defined an 

architectural framework for NFV Management and Orchestration (MANO) [3], with 

the objective of facilitating the management of the lifecycle of the Virtualized 

Network Functions (VNFs), from their instantiation to their configuration and 

termination. This framework has had a great acceptance not only by researchers but 
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also within the business scope, due to great possibilities that it brings for developing 

new applications and business models. 

However, MANO initially relied on Virtual Machines (VMs) for delivering the 

intended functionalities. Therefore, it was focused mostly on cloud infrastructures, 

which do not integrate well with the current move towards the Cloud-Native 

approach. Rather than referring to the place where applications are instantiated, 

Cloud-Native is about the way in which they are created and deployed [4], aiming at 

increasing their speed (of development and deployment), offering better scaling, and 

leveraging only the required hardware resources. 

Current research has shown that offering the VNFs with containers rather that with 

VMs can provide great benefits, while opening the execution environment 

possibilities. Specifically, it can enable managing and orchestrating network (and 

non-network) virtualized functions in hardware with less resources. This, in turn, can 

promote emergence of new (or improved) use cases and business models. However, 

Cloud-Native solutions have to be integrated within MANO frameworks to be useful. 
This contribution focuses on the current status of the integration of NFV and the 

Cloud-Native approach for edge distributed deployments, analyzing the key enablers 
and potential future of this technological symbiosis. The remainder of this paper is 
organized as follows: Section 2 presents a review of MANO, edge computing and the 
Cloud-Native model; Section 3 focuses on the key enablers and technologies for 
unlocking the adoption of Cloud-Native Virtualized Network Functions (CNFs); 
afterwards, in Section 4 an analysis of the current MANO solutions is presented, 
whereas in Section 5 an analysis of barriers and potential future of this paradigm 
transformation is considered. Finally, conclusions are drawn in Section 6. 

MANO framework and Edge within IoT 

ETSI MANO for NFV 

ETSI was selected to host the Industry Specification Group for Network Function 

Virtualization (ETSI ISG NFV). Apart from the MANO architectural framework, the 

initial documents include an overview of the infrastructure, descriptions of the 

network, hypervisor, computing domains, and additional aspects such as security and 

trust, resilience, and quality of service. Based on these documents, the MANO 

architecture is presented in Fig. 1. 

NFV requires access to hardware computing, storage, and network resources, 

which are provided by the NFV Infrastructure (NFVI) and assigned to the VNFs, 

depending on the specific demands. VNFs can be managed locally by the Element 

Management System (EMS). 
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Fig. 1. MANO architecture. 

All the hardware/virtual systems and the virtualized functions are managed by the 
NFV Management and Orchestration (MANO), that is composed of three elements: the 
NFV Orchestrator (NFVO), the VNF Manager (VNFM), and the Virtualised 
Infrastructure Manager (VIM).  

The NFVI is managed by the VIM. Here, computation, storage and network-related 

resources are assigned to the virtual resources needed by specific functions. 

A VNF accesses its respective resources, globally configured, and supervised by the 

VNFM component. The VNFM also performs the respective coordination and 

adaptation role for configuration and event reporting between the VIM and the 

EMS. 

The NFVO is responsible of connecting or combining NFVs as building blocks, 

managing orchestration of NFVI resources across multiple VIMs and lifecycle 

management of Network Services (NSs). 

Edge computing and NFV 

Since the beginning, edge computing has been divided into three main categories of 

implementation: Multi-access Edge Computing (MEC), cloudlets, and fog computing 

[5]. All of them share the vision of edge computing and strongly rely on mechanisms 

such as virtualization, safety resources management and metering. However, there are 

clear differences in configuration, characteristics and scope. In summary: 

Multi-access (formerly, mobile) edge computing is associated with Radio Access 

Network (RAN), where the edge capabilities are located at the base stations. This 

implementation is oriented towards ISP providers and is focused on achieving edge 

computing benefits for 4/5G use cases.Cloudlets can be understood as “replicas” of 

the cloud capabilities but closer to the edge of the network, thus reducing latency, 

round-trip time and backhaul bandwidth consumption. They are conceived as 
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“cloud in a box”, acting as cloud running over one, or a cluster of, resource-rich 

server(s). 

Fog computing (FC), instead, aims at leveraging the flexibility of IoT, to perform 

edge computing functions. Using “fog nodes”, that can be spanned through the 

edge-to-cloud continuum creating 1 to N “near-end” layers or tiers, FC orchestrates 

their functioning to take advantage of wide range of devices in the continuum of 

the spectrum.  

The combination of NFV and edge implementations provides great benefits, 

especially when considering distributed environments such as Industrial IoT. First of 

all, NFV allows instantiating and modifying existing services much faster, leveraging 

general-purpose equipment and avoiding the need of deploying dedicated hardware. 

Moreover, NFV enables the possibility of deploying and configuring services 

automatically, which can be further enhanced via intent-based methods [6], or self-

organizing techniques [7]. Besides, NFV enables network slicing, so both network 

bandwidth and latency can be optimized, boosting the inherent latency reduction 

provided by the edge computing paradigm. Hence, it is clearly visible how NFV came 

into play with the objective of reducing both the time and cost related to initial 

deployments and operations, i.e., for reducing CAPEX and OPEX. 

 

Benefits of the Cloud-Native approach for NFV 

As aforementioned, edge deployments can benefit from NFV, when compared to the 

use of dedicated hardware equipment. Still, as will be argued in what follows, the 

NFV model can be further improved if extended with the Cloud-Native approach, 

based on microservices and containers rather than virtual machines and traditional 

software architectures: 

Reducing (further) development and operational costs: Cloud Native applications 

are based on a set of granular, small microservices, which can be developed, 

deployed and optimized independently, improving software DevOps cycles 

(avoiding having to package a complete, monolithic solution). At the edge, where 

hardware resources can be limited, containers reduce the amount of overhead 

required by the VMs, resulting in an effective reduction of costs. 

Improving the agility of a system: In contrast to VMs, containers (that host the 

microservices) are much faster to deploy, substitute and scale. The latter is a key 

feature in an edge environment since containers are flexible, using only the 

required resources and leaving space for other applications. 

Novel business paradigm: The paradigm shifts towards renting additional servers 

on-demand, rather than acquiring a fixed set of VMs in advance. This model 

entails reduction of costs to both infrastructure operators and to end users. In 

addition, less storage is needed, as Cloud-Native paradigm pushes towards stateless 

microservices. 
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Cloud-Native MANO enablers 

Evolving from VNFs to CNFs is not just as trivial as changing the VIM from 

OpenStack (or a similar infrastructure management technology) to a container 

orchestrator platform, such as Kubernetes (k8s). This is particularly the case if this 

evolution is intended to extract all the potential brought by the Cloud-Native 

approach. The key enablers that MANO and CNFs need to support are presented in 

this section. 

Microservices 

The Cloud-Native approach follows an architecture design paradigm based on 

microservices. It provides a robust solution as a set of small, loosely-coupled, 

independent services, which are isolated in small coherent and autonomous units, to 

solve the problem of complex architectures and code redundancies. Microservices 

architecture allows scaling, or updating, each service without affecting the rest of the 

services of the system. 

Although Service-Oriented Architecture could be adopted, this paradigm is not as 

flexible as microservices, especially in those cases where the development team is 

spread out, the components have clear functionality boundaries, and if components 

can be potentially reused for other applications: microservices extract the full 

potential of DevOps cycles 

Containerization 

It is a lightweight, agile virtualization alternative to VMs. A container packages all 

the software needed to run a single application or microservice, including all code, 

libraries, and required dependencies. They are smaller, faster and more portable than 

VMs, since they do not require including guest Operative System (OS) in each 

instance, leveraging the host kernel (OS virtualization), instead of the virtualized 

hardware infrastructure (as the VMs do). Here, despite the fact that Docker is 

currently the most popular container engine, there are also alternatives, such as CRI-

O, Containerd or runc. 

Apart from containers, another lightweight virtualization technology that is worth 

to mention, is unikernels. Unikernels are similar to virtual machines, but without 

many of the inherent services from the OS, leaving just the ones that are actually 

needed for executing their application [8]. In principle, they are more difficult to 

design than VMs or containers, but they have at least the same potential of 

performance as containers plus improved security and isolation features, which can be 

a valuable aspect in distributed environments (lesser attack surfaces). 

Container Orchestration Technologies 

VIMs, like OpenStack, OpenVIM, or other available vendor alternatives, have been 

designed for managing virtualized hardware resources to deploy VMs, not for 

managing virtualized OS spaces, therefore they are not valid for orchestrating 
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containers: specific container orchestration technologies are needed, among which 

one can find k8s, the de facto standard, Docker Swarm, or Apache Mesos.  

Apart from k8s, lightweight alternatives based on it such as k3s or MicroK8s are 

also very interesting for distributed, resource-constrained environments, like 

Industrial IoT. 

Packaging and management of functions: Helm charts and Juju charts 

Both Helm and Juju are package and operations managers for k8s. A Helm chart is a 

collection of files that describes a set of k8s resources, and that can be used for 

deploying either an application or a component of a larger application. It provides 

templating, which allows users to declare variables and use functions to modify 

parameters of the applications (in this case, of CNFs).  

Despite Helm charts being more widespread, Juju charts, based on hooks (typically 

written as shell scripts) are claimed to be a more scalable tool and more effective for 

complex container lifecycle operations. 

Networking 

Typical networking schemas that apply for VMs, are not valid for containers. This is 

due to the fact that containers are processes that share the kernel of the host system. 

Therefore, from the outside world perspective, they have a common IP address.  

Currently, there are two solutions for addressing this issue: Container Network 

Model (CNM) and Container Network Interface (CNI). Here, the latter is close to 

becoming the de facto standard, despite the fact the former is being supported by 

Docker. 

A CNI is a plugin that implements a network interface within the container 

namespace, assigning an IP address to it and setting the required bridges with the 

host. There are different technologies for supporting networking, like Flannel, Canal 

and Weave. Networking technologies can address different connectivity aspects, from 

L2/L3 networking, VXLAN, Overlay and BGP, which can be of great interest for 

improving the NSs deployed and enable more efficient schemas of multi-cluster 

networking. 

Service mesh and Service Discovery 

Service mesh is a software infrastructure layer for controlling the communication 

between services. In a similar way to SDN, it decouples the control plane from the 

data plane. The latter is implemented as proxies on top of microservices, transparent 

to the business functionality, whereas the former interacts with proxies to provide 

different functionalities related to connectivity (service discovery, load balancing, 

dynamic routing control), security (encryption, policy enforcement) and observability 

(alerting based on traffic alerts).  

In contrast to the networking section, service mesh provides application level 

features. Here, among the most popular tools, one can find Istio, Linkerd and Consul. 

Besides, service discovery mechanisms are required when large number of 

microservices are available. To that end, a dedicated database of services (i.e., service 
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registry) should be in place and expose the location of services (IPs addresses, ports) 

when queried by rightful users/services. Consul and CoreDNS are examples of service 

discovery engines. 

 

Communication bus 

Microservices require communication and exchange of information for delivering a 

standalone service or application. In general, REST APIs are enough to handle it. 

Still, some network services may require larger information and telemetry data 

exchange. Here, a dedicated bus (e.g., Apache Kafka) may be needed for providing 

scalable, reliable and resilient communication. 

 

Bare-metal deployment 

Another deployment paradigm that is recently evolving, consists in running 

container orchestration platforms in bare metal, instead of a virtualized infrastructure. 

It involves executing Cloud-Native applications in containers running directly on the 

hardware, which results in a great simplification of network setup. Getting rid of the 

virtualized infrastructure layer comes with many benefits among which one can find: 

increase of the available resources, since less overhead for virtualization is needed 

(can be key for resource-constrained environments); improvement of the operational 

performance; and reduction of costs related to licenses. 

Nevertheless, MANO systems are designed to communicated to NFVI, so 

integration effort is required in most cases. 

Hybrid Network Services Support 

The emergence of CNFs does not involve elimination of VNFs or Physical Network 

Functions (PNFs, provided by specialized hardware) from the MANO ecosystem; at 

least not yet. 

Great effort has been put into designing and implementing VNFs. However, 

migrating them to CNFs is not a trivial task, especially for big appliances (for 

instance, a firewall with all the functionalities it provides). Hence, MANO should 

have the capability of managing all network function types, either Physical, Virtual 

(on top of a VIM) and Cloud-Native ones (leveraging a container orchestrator 

platform). Nevertheless, over time, full migration to Cloud-Native should occur, as 

“edge world” can’t afford to have two computing environments. 

Current status of MANO solutions 

In this section, a summary of the current status of different open-source MANO 

frameworks, for supporting CNFs, is provided. Although in different maturity levels, 

all of them support CNF creation and management, illustrating the already-achieved 

pervasiveness of Cloud-Native approaches (at least, as considered from the research 

sector), despite the fact that further effort is needed, especially as what concerns 

standardization and integration activities. 
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Tacker 

Tacker is a generic VNFM and an NFVO from OpenStack, based on ETSI MANO, 

developed to operate VNFs and compose NSs on an infrastructure platform like 

OpenStack or Kubernetes. Tacker proposes an architecture, in which Kubernetes acts 

as a VIM, parallel to OpenStack (see Fig. 2). Tacker is composed by a set of drivers 

to act over both VIMs: (1) infra, responsible of the operations to operate the VIMs; 

(2) vim, in charge of their registration; (3) mgmt, which facilitates the configuration of 

VNFs; (4) monitor, responsible for executing actions towards that end; and (5) policy, 

for VNF operations based on policies. Support for k8s has only been provided for the 

first two plugins. 

However, the information regarding different Cloud-Native aspects is quite low, 

from both official documentation and existing literature. No reference to packaging 

and management functions, networking or service mesh is provided, so any of these 

functionalities have to be provided outside of the scope of MANO. 

 

Fig. 2. Tacker architecture. 

OSM 

OSM is the MANO framework developed under the ETSI umbrella. To manage 

CNFs, OSM is able to register k8s clusters as long as they are connected to an 

OpenStack-like VIM, as depicted in Fig. 3, allowing hybrid deployments (they can be 

connected to a “dummy” VIM, in which case those hybrid deployments are not 

possible).  

OSM provides support for both Helm and Juju, which allow not only deploying but 

also configuring CNFs via primitives using charts or charms. Some features related to 

k8s networking, and service mesh, are not implemented yet, as a part of the 

framework (these features can be managed externally). This is hindering the 

orchestration for managing different clusters in multi-domain environments. This 
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problem can be addressed by connecting each of them to VIMs to manage inter-

cluster networking. 

 

Fig. 3. Interaction between VIMs and Kubernetes in OSM. 

Anuket 

Anuket is based on the merge between OPNFV and the CNTT, and developed 

under the umbrella of the Linux Foundation. It is one of the actions that push towards 

fully exploiting all Cloud-Native capabilities. It defines a Reference Architecture 

(RA, see Fig. 4) and a set of requirements to be fulfilled during its development and 

implementation. Up to this moment, it supports only the first of the two defined RAs, 

with basic features regarding CNF instantiation (e.g., Helm chart packaging is not yet 

supported). 

The project is currently working on fully integrating Cloud-Native approach, from 

the networking perspective to k8s add-ons management (service mesh, monitoring, 

logging, tracing, etc.). It shows great potential and is worthy further monitoring. 
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Fig. 4. Anuket architecture. 

ONAP 

ONAP is one of the largest automation frameworks, composed of different 

subsystems, covering much more aspects than the rest to create an end-to-end 

platform. ETSI MANO architecture blocks can be mapped to ONAP ones, although 

alignment work is still being done to make it fully compliant. 

ONAP allows packaging, deploying and configuring CNFs with Helm charts. 

Current version contains dedicated APIs for creating and modifying k8s resource 

templates, check services’ health status and communicating with telemetry tools, 

while also supporting hybrid and multi-cluster environments. Its future role regarding 

CNF networking, inventory and service mesh enablers still needs to be evaluated. 

Other MANO frameworks 

Let us now briefly summarize two other MANO frameworks. SONATA was one of 

the first MANO frameworks providing support to CNFs on top of k8s. It includes 

CNF lifecycle support and descriptor validation, allows defining and collecting 

custom metrics from both CNFs and k8s infrastructure, and implementing hybrid 

network schemas. Unlike OSM, SONATA has a plugin to connect directly to k8s 

VIM (as well as ONAP and Tacker’s vim driver). 

Besides, Cloudify is an open-source solution that goes beyond MANO purposes, 

similarly to ONAP. It has evolved differently to other alternatives to integrate 

multiple cloud environments (many platforms supported e.g., k8s, Azure, AWS, etc.), 

and Cloud-Native features into the network orchestration model, aligned but not fully 

embracing MANO specifications. Among its features, Cloudify includes instantiation 

and configuration of CNFs, intent placement based on policies, networking among 

clusters and hybrid NSs support, being one of the most advanced open-source solution 
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EMCO 

The Edge Multi-Cluster Orchestrator (EMCO), previously known as ONAP4K8S, is a 

different framework compared to the previous ones, as it is not following the MANO 

specifications (see Fig. 5). It is designed for deploying and orchestrating only Cloud-

Native applications over a set of k8s clusters, from cloud to edge (hence multi-cloud 

but not supporting hybrid network schemas). This framework has been leveraged by 

two vendor open-source projects, Intel Openness and Aarna Networks AMCOP. 

 

Fig. 5. EMCO architecture. 

Being focused purely on Cloud-Native approach, the functionalities provided for 

CNFs are much more advanced in comparison to other frameworks (e.g., mesh 

network supported with Istio, better analytics gathering and service discovery 

features), while being more adapted to the edge environments. They allow hybrid 

deployments (VNF and PNF support), although without following MANO 

specifications, which in the long term may cause some interoperability issues. 

Summarizing what has been described thus far, in Table 1, main features of noted 

frameworks have been presented. 

Table 1. Comparative table between MANO frameworks. 

Feature 
MANO frameworks 

Tacker OSM Anuket ONAP SONATA Cloudify  EMCO AMCOP 

MANO compliance Yes Yes Yes Partially Yes Partially No No 

CNF onboarding Yes Yes Yes Yes Yes Yes Yes Yes 

CNF validation Proposed Yes Yes Yes Yes Yes No Yes 

CNF Helm/Juju support No Yes No Yes No Yes Yes Yes 

CNF monitoring No No Proposed Yes Yes Yes Yes Yes 
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CNI-based networking No No Proposed No No Yes Yes Yes 

Service mesh No No Proposed No No No Yes Yes 

Hybrid deployment support Yes Yes Yes Yes Yes Yes No Yes 

Multi-cluster k8s support Yes Yes Yes Yes Yes Yes Yes Yes 

Discussion and expected outcomes 

This section aims at outlining the set of existing barriers, as well as the expected 

evolution of MANO frameworks, towards achieving full Cloud-Native support. Here, 

note that the state of evolution among the different frameworks depends on different 

aspects. First of all, those solutions that have been present for some years need more 

adaptation effort to optimally accommodate CNFs. This becomes more challenging if 

they strictly follow the MANO specifications, since specifications towards the 

embracement of Cloud-Native additional features are not yet finalized (including the 

role of some of the enablers identified in Section 3).  

On the contrary, novel solutions such as EMCO (and other non-open-source 

solutions) have greater potential as they are very agile embracing novel Cloud-Native 

solutions. Still, specifications are needed so the NFV ecosystem keeps the high 

interoperability level that was brought by ETSI MANO.  

Among the current initiatives (and besides ETSI MANO), Anuket is the one 

promoting harder a standard RA that includes both VNFs and CNFs, deployed either 

over k8s and OpenStack-like VIMs.  

To the authors’ expectations, hybrid deployments will be the norm during current 

decade, since there has been a great effort put into developing VNFs and deploying 

complete virtualized infrastructures, which will not be immediately substituted by the 

Cloud-Native paradigm (besides, some VNFs are very challenging to be containerized 

into CNFs). Further explanation of the expected evolution has been presented in [4], 

and is summarized in Fig. 6.  

In the future, a model purely based on kubernetes, for both VNFs and CNFs, 

leveraging technologies like KubeVirt or Virtlet to deploy those network functions 

that couldn’t be deployed as containers is foreseen. 
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Fig. 6. Expected evolution of MANO towards the Cloud-Native approach. 

Cloud-Native approach promises great benefits, like an automated installation and 

configuration of CNFs; dynamic scaling according to workload; self-healing and 

fault-tolerant reliable mechanisms; automated performance monitoring; high 

reusability and portability, etc. [9]. However, as any novel paradigm, it faces 

challenges and barriers to overcome, such as trust issues over administrative domains; 

isolation and security of CNFs (containers are less secure than VMs); network 

function chaining; adaptability of existing VNFs; change from the software 

development point of view, moving towards microservices approach; business 

adaptation delay needed for transforming current model towards Cloud-Native; and 

necessity needs for further research and, most importantly, of standardization actions 

[4], [9]. 

In some implementations, although CNF onboarding, configurations and metrics 

retrieval can be performed via MANO, Cloud-Native capabilities are not managed by 

the framework. Features such as container networking, service mesh (layer 7 or even 

novel layer 3, IP models) and service discovery are left outside the scope of it, and are 

expected to be managed externally via auxiliary tools. This diminishes the potential 

that can be obtained from integrating those features within the scope of MANO, 

especially in the networking area, in the same manner than SDN and WAN schemas 

were introduced, in the past, for managing NFV networks. 

Concluding remarks 

This paper provides a comprehensive evaluation of the key enablers for bringing the 

Cloud-Native benefits to the NFV ecosystem, especially for edge deployments, along 

with the current evolution of existing MANO frameworks and expected barriers and 

future developments related to this approach. 
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There are different aspects related to container orchestration, such as service mesh, 

networking, service discovery, etc. that have not yet been addressed directly by the 

existing frameworks, especially by those that follow the MANO specifications.  

This shows the necessity of advancing current NFV standardization activities 

towards Cloud-Native, effort that, for instance, the Anuket project is pushing forward 

with its Reference Architecture. In this context, there are already solutions that fully 

embrace the Cloud-Native model, integrating many of its features while keeping 

support for traditional VNFs and for composing hybrid network services. On the one 

hand, they show the benefits that can be extracted from it, but on the other hand, the 

lack of standards is very likely to cause interoperability problems in the long term. 

Hybrid services, combining VNFs, CNFs and PNFs, are expected to remain for 

many years. Cloud-Native brings many benefits, but it is still a novel, and hence an 

immature concept.  

Further work is needed not just for integrating existing MANO frameworks with 

Cloud-Native technologies, but for delivering specifications agreed by all the actors 

involved in the NFV ecosystem, as well as for attracting both developers and market 

towards this new paradigm. 
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