
 Informatica 25 (2001) xxx–yyy 1

Indexing agent gathered data in an e-travel system
Marcin Paprzycki, Austin Gilbert, Andy Nauli, Minor Gordon, Steve Williams, Jimmy Wright
Computer Science Department
Oklahoma State University
Tulsa, OK 74106, USA
(marcin, austirg, nauli, minorg, stw, jimmyww}@cs.okstate.edu

Keywords: content management, Internet, software agents, data indexing, ebXML registry/repository

Received: 12 October, 2003

In this paper we discuss the problem of indexing information available on the Internet, with the ultimate
goal of delivering personalized content to users of an Internet-based travel support system. We
introduce the form of index tokens that will be stored in the system and describe an agent-based
subsystem designed to support the indexing function. Finally, we discuss the search agent that was
developed to provide the system with index tokens and allow to experiment with the proposed design..

1 Introduction
In the past decade the travel services market has
developed a hugely diverse presence on the Internet, in
terms of both resources offered (hotel rooms, rental cars,
dinner reservations, golf tee times, “general tourist
information,” etc.) and approaches to offering them (e.g.
aggregation, personalization, mobile delivery). For
instance, a simple search using the keyword hotel on
Google search engine returns about 82,500,000 hits
sorted by their rank. Thus, as in most other domains, the
potential travel services user must often deal with one of
the crucial problems inherent in information diversity:
the lack of an encompassing catalogue through which the
content of interest may be located. Most, if not all,
Internet search engines provide only a non-categorized
and mostly non-intuitive means of locating and
representing data. Furthermore, search results in the
travel domain (as well as any other domain) are likely to
include too many hits unrelated to actual travel choices.
The Google and Yahoo directories are representative
attempts to organize access to and presentation of many
types of data including travel data, however, for instance,
they provide no organized booking interface for the data
they offer. Additionally, they do not provide any realistic
means of personalization of content delivery. Finally, the
Google directory consists of a mixture of travel resource
types and geographical categories (see [n18] for more
details) that does not necessarily constitute the best way
of supporting travelers. On the other hand, some of the
major travel sites such as Expedia, Travelzoo, etc.
organize and attempt to personalize a limited subset of
travel data (typically airline, car, hotel reservation as well
as cruise and vacation package arrangements), based on a
limited number of large providers and content stored in
tailor-made databases within the system. Here, the mass
of information stored on independent Internet sites is
completely ignored. Thus, we believe that neither search
engines nor the large travel sites are currently capable of
providing a complete support to a modern day traveler.

Ideally, a travel support system should act as a filtering
and organizing intermediary between travel consumers
and travel suppliers [15]. Its primary function [1] is to
find the travel information that is most relevant to a
given customer at a given moment and deliver it in a
well-organized and intuitive way [2]. In order to support
this content-delivery role, the system must explore the
Internet and other sources dynamically constructing and
managing a supply of travel content from known and
previously unknown providers [1, 3, 17].

In exploring the potential of such a travel support system,
we have followed a two-pronged approach. First, since
travel support is a paradigmatic example of the
application of agent technology [14, 16], we have
decided to utilize software agents as the framework of
our system [1, 6]. Second, as an information broker
between travel content suppliers and end users (travelers)
we must carefully consider the means by which we will
structure the information within the system, in order to
deliver the most relevant and accurate travel choices to
the consumer [2, 5, 17]. We believe that one of the more
promising approaches to structuring information from
diverse sources is to apply index-based techniques
similar to those described in [13] (with references
available there). This approach should allow us to
effectively deal with data available from multiple sources
across the Internet in such a way that pertinent
information may be efficiently and accurately selected
and delivered to consumers. Note that in our work we are
primarily interested in personalized delivery of travel
related informational content rather than booking of
travel arrangements.

The aim of our paper is twofold. First, we describe an
indexing method for storing the travel content. Second
we present an agent subsystem that is devoted to
management of index tokens in the central repository.

2 Informatica 23 (1999) xxx–yyy Informatica

Finally, we briefly describe a simple search agent that
has been developed to search the Internet for the travel
content and to deliver index tokens to the system.

2 Content management problem
In order for an e-travel support system to accurately
reflect available travel options and information, a robust
strategy for obtaining this content from sources on the
Internet and managing it within the system is required.
Existing content provision systems typically approach
this problem in one of two ways:

- by aggregation: retrieving beforehand all
information that the system will possibly need in the
future, and organizing it in databases in a predefined
(by humans) format for future retrieval,

- by selection: indexing information to maintain a
“map” as to what information (and where) is
available on the Internet, and retrieving the actual
content only as it becomes necessary to satisfy user’s
queries.

Most online travel content gateways (e.g. Expedia,
Travelersadvantage, etc.) employ the first method,
storing the majority of browseable content locally and
calling out to the primary source systems on the Internet
(e.g. those run by travel providers such as airlines) for
verification of locally-cached information (e.g. verified
flight schedules, seat availability and ticket prices). The
main advantage of this approach is the immediate local
availability of content; interestingly, this is also a
disadvantage, in that it leads to the problem of “data
coherency.” In addition, the amount of data that has to be
necessarily stored locally and continuous local
processing necessary for aggregation systems to operate
makes them extremely resource intensive.

The majority of search engines (e.g. Yahoo, Interia,
Lycos, etc.) take a hybrid approach, aggregating only a
limited store of data (such as page headers and a few
selected / cashed pages) necessary to support the search
function. This approach attempts at striking a balance
between the amount of content stored locally, frequency
of local information updates and the precision of the
search function. Rudimentary content organization and
differentiation available in browsers combined with the
relative freshness of data are a reasonable means for
satisfying typical content searches (i.e. where the content
changes infrequently); however, this approach is wanton
when applied to travel-oriented services where the
freshness of content is of paramount importance.

Our e-travel system fully embraces the second approach
to content management (by selection) by attempting to
develop a well-organized and highly cross-referenced
index of Internet-based content (for a description of a
number of similar systems see [1]). The proposed system
dynamically utilizes remote content by referencing local
indices – pointers. It focuses on the classification of
content instead of the content itself, as in a library

catalog (or in yellow pages), only storing enough
information in indices to satisfy user queries. This
approach eliminates the above mentioned problem of
data coherency and is aimed at reducing the overall
amount of data stored and managed locally. The
downside of this approach is that the actual content must
always be retrieved from a remote site. If a content
provider becomes unreachable, the e-travel system is
unable to retrieve the information and thus fails to fulfill
the user’s request. We have dealt with such a situation
when a remote site providing reverse geo-coding based
on an address has seized to exist leaving us with a much
less desirable choice for our GIS subsystem (see section
5.1). More generally, any slowdown in reaching the
primary content provider is reflected in the performance
of the system. Nevertheless, in designing the e-travel
system we felt that the advantages of accurate indexing
combined with ability to deliver up to the minute updated
information and possible optimization of local resource
utilization (resources can be utilized to provide user with
personalized content rather than to manage copious
volumes of data) outweighed the disadvantages of
remotely-stored content. We also expect that approach
based on indexing will improve the limited queries
options and result displays caused by traditional database
logic and principles [1, 15].

3 Agent-based travel support system

3.1 History
The initial design of the travel support system was
presented in [2, 5, 12, 13] and while it is being constantly
modified (this paper represents such a modification), the
general idea of dividing the functionality into two
coordinated subsystems, one handling content
management and the other content delivery [4], remains
unchanged. In this paper we concentrate on the content
management aspects of the system. Further details about
the systems and in particular the proposed content
delivery functionalities can be found in [2, 5, 12, 13].
The initial development of the system was initiated using
the Grasshopper agent platform [???], however we have
shortly realized that at that stage it did not fully
supported the FIPA [???] standards. We have therefore
switched to the JADE agent platform [???], which is
build around these FIPA standards.

3.2 Sources of content indices

The travel options and information that is presented by
the e-travel system originates from two types of sources
on the Internet: verified and unverified. Verified sources
are referred to as Verified Content Providers (VCP). This
designation implies a degree of conformance to expected
standards of accuracy, format, and availability of
described travel options. Content from VCPs can be
either fed directly to the system or gathered by search
agents, as described in [2]. In the first case we assume
that the incoming index tokens (pointers to available

Enter short title in File/Properties/Summary Informatica 23 (1999) xxx–yyy 3

 VCPs

Figure 1: Information gathering and indexing; 1 – flow of index tokens originating from the VCPs, ready for insertion
to the registry, 2 – flow of index tokens resulting from the Internet searches

information) are both in the required format and
complete, and thus can be immediately stored in the
system without further processing. In the second case,
the acquired content indices may be incomplete and/or
require further processing. When dealing with unverified
sources the situation is similar to the latter case with an
added component of necessary verification and
deconfliction of remote information. At this stage of
system design we will omit these last two issues of
verification and deconfliction, assuming they have been
successfully resolved. Let us note, that the proposed
approach allows us to address one of the important
research issues raised by Nwana and Ndumu in [11]; how
to deal with dynamically changing content and form of
the Internet-based information. Here, we assume that the
VCPs are in contractual agreement with the travel agency
and either, they will continue to deliver index tokens in
prescribed format, or any changes in their site design will
be communicated to our system, allowing it to be
adjusted accordingly. Since the VCPs are the primary
sources of the information, changes occurring in the
remaining sites do not threaten the functioning of our
system. Furthermore, this approach allows us to avoid
most questions related to the reliability of Internet-based
information. Finally, since the VCP provided information
is assumed to be trustworthy, we can rely on them as the
source of accurate information delivered to the user,
while other, unverified, sources can be utilized only as
supplementary resources. Regardless of source, the
acquired indices are stored in the central registry for later
access by the content delivery functions of the system.
When the user requests information, a relevant content
pointer is either found in the registry and the process of
content extraction from the provider(s) is initiated (while
additional search agents may be released to the Internet
seeking additional content relevant to the query; in order
to focus our presentation we will omit discussing this
possibility), or a new index search and acquisition is
forced in order discover relevant content (from both
VCPs and unverified sources). Since the case of complete
tokens being delivered directly by the VCPs is trivial

(only an indexing agent is required to receive them and
correctly store in the system), for the remaining part of
this paper we will concentrate our attention on the tokens
resulting from the Internet searches.

3.3 Semantics
Ideally, the content management subsystem should shield
the rest of the e-travel system from the supply / retrieval
mechanics of the travel content. Additionally, it should
allow the content delivery functions of the systems to
operate on the assumption that travel information is
accurately classified. In theory, this would require the
content management subsystem to semantically
“understand” the information it keeps track of [5, 17, 18].
Here we have to acknowledge that currently available
technology does not support this assumption of semantic
“understanding” (its foundations are being developed,
but are not widely accepted and thus cannot be assumed).
In the absence of such technology, our system attempts
the next best substitute. We apply a predefined
categorical overlay to the travel information managed by
the system, and allow the entire system to tune the
accuracy of this overlay (e.g. with user, agent and
supplier feedback, as described in [6]), with the
ostensible goal of simulating real semantic classification.
In addition, we pay close attention to the efforts initiated
by the Open Travel Alliance that attempts at introducing
a hierarchical description of the “world of travel” and
most important processes taking place there [9] (see also
[18n] for more details). Note that, while currently not
operating on the semantic level, most of the functions of
the proposed system can be adjusted to involve, for
instance, RDF / OWL based ontology / semantics.

4 Structure of index tokens
The e-travel system relies heavily on the accuracy and
completeness of local content indices. They must be
succinct enough to be easily acquired and stored, yet
verbose enough to satisfy all of the requirements of both
content management and content delivery subsystems.

unverified
sources

1

index registry 2

2

search
agent

Internet

indexing
agent

search
agent

4 Informatica 23 (1999) xxx–yyy Informatica

Consider the following scenario: a user wishes to make
travel arrangements to visit Mt. Rushmore, a historical
monument. The user must first travel to South Dakota
(requiring a means of transportation), and perhaps find a
place to stay (hotels in the area). She may also wish to
know about local restaurants or other places of interest.
In order to satisfy the user’s request for travel
arrangements, the system must initially make two major
distinctions based upon the query alone: location (South
Dakota) and desired destination/attraction (Mt.
Rushmore). In addition, the e-travel system must also be
able to resolve multiple providers of content relating to
Mt. Rushmore, in order to find those indices, which will
eventually yield the most desirable response for the user
(for the purpose of this paper we skip the question of
content provider ranking, which is one of the possible
ways of dealing with potential information overload).

Our current design of indices evolved from our early
attempts to develop a classification system of the world
of travel content [2], and was adapted to satisfy the above
requirements. We now describe an index as a tuple
consisting of:

 (<provider>,<type>,<location>,<?notes?>)
Here, the ?notes? component is added to the tuple to
support of various administrative functions necessary
when dealing with data delivered by the search agents
(for more details see Section 5). Let us now look into the
provider, type and location fields of the tuple in more
detail.

4.1 The provider component
The provider component describes the means of
accessing travel resources on the Internet. It is stored in
the form of a Uniform Resource Identifier (URI). This
URI describes the access method for the resource, the
location of the resource, and any marker data that may be
unique to this resource within the provider. In addition to
explicitly identifying the transport protocol, the protocol
section also (directly or indirectly) identifies the access
methods of the server. For example, http:// and ota://
each have their respective access methods (hypertext and
Open Travel Alliance protocols). Other possible
protocols include edi:// and soap://. The URI also
contains the host name to communicate with using this
protocol. Let us also note that our system is capable of
efficiently dealing with situation when multiple providers
supply information pertinent to a given travel resource.
In this case multiple index tokens varying only in the
provider component will be “co-stored” in the repository
for efficient retrieval (for more details see [17]).

4.2 The type component
The type component of a tuple describes the position of a
travel resource in the taxonomic hierarchy of all
resources (e.g. Accommodations -> Hotels -> Chains).
The system will utilize this information to filter out
content that for some reasons (i.e. in the context of a
given query, or for a particular user) is not pertinent to a

user's needs. Thus, it is the focal point for the proto-
semantic division of travel information. For example: if
the user is interested in hotels, an agent will be able to
retrieve only hotel indices from the repository. Current
version of our hierarchical taxonomy for the type
component is derived from the modified Yahoo!
directory of Travel and the Open Travel Alliance [9]
XML Schemas (see also [n18] for more details). The
content type is intended to define the relationships
between travel resources.

4.3 The location component
Geography and location are key factors for determining
the relevance of indexed travel resources to a particular
user’s travel plans. The location component must be
flexible enough to support the multiple ways it may be
utilized. Location information must be specific enough to
differentiate between different sites. It must be
hierarchical so that organizational relationships between
sites at different locations on different levels (continent,
country, state, city, et al.) can be surmised (e.g. the
destination is in a different country). Given these criteria,
our initial design of the location component consists of: a
taxonomic description based on the ISO-3166 standard,
which defines the continent, country, state or province,
and city; and the latitude and longitude for exact
locations and proximity searches. These are represented
in the ebXML hierarchy. However, in the tuple itself we
store the geographical information in the form of a
(latitude, longitude) pair. This form as been selected due
to the need of processing geospatial information beyond
simple information that a given place of interest is, for
instance, located in Claremore, Oklahoma, United States.

The type/location/provider tuple as described above,
located in hierarchical structures representing resources
and geospatial locations, is the basis of the classification
scheme to be utilized by all of the functions of the travel
support system, from the retrieval of content from travel
suppliers on the Internet to the delivery of travel choices
to the end user. It is with these functions in mind that we
proceed to manifest the tuple on the implementation
level, and, we hope, provide an efficient means of
communicating travel content. Let us also observe that
the proposed schematic solves the, above indicated,
problem of the Google directory [n18]. In our approach
we are able to untangle the geospatial information from
the travel resource information by providing two separate
but complimentary “looks” at our data. In this way, we
are also making an initial step toward developing
ontology of travel.

The following is an example of a complete index token
that is ready to be stored in the system (the ?notes? filed
is omitted, but in this case it would contain information
that the token is complete and no further processing is
required):

(edi://www.drp_sushi_palace.com/, restaurant,
(25’45’’, 34’67’’))

Enter short title in File/Properties/Summary Informatica 23 (1999) xxx–yyy 5

Figure 2: Proposed architecture for indexing travel data from the Internet.

Here, information about a restaurant is available at
www.drp_sushi_palace.com and the communication
protocol with that site is edi:// and the location of the
restaurant is 25’45’’, 34’67’’ (the details of the ISO-3166
location will be retrievable from the position of the token
in the geo-tree structure in the registry, while the
restaurant is positioned within a hierarchical structure of
types). Once a complete index token is successfully
inserted into the registry, it is ready for processing by the
content delivery subsystem (as described in [2, 5, 12])
and can be utilized to prepare responses to user queries.
To implement the storage of index tokens, we have
decided to utilize the turned to the ebXML Registry /
Repository (for an extended discussion of index storage
see [17]).

5 Index acquisition
We now consider the actual process of index acquisition.
As indicated above, there are two separable sources of
index tokens: VCPs that feed complete indices directly to
the system (this relationship is pre-defined by agreements
between selected providers and the e-travel system); and
search agents, which explore both the remaining VCPs
and other repositories on the Internet. Tokens acquired
by search agents may or may not be complete, and if
their source is unverified, the content referred to should
be validated and deconflicted (in the case when there is
no way to verify the information, the ?notes? field will
be utilized to store such an information so that in the
content delivery subsystem such information can be
treated accordingly, when delivered to the user). Within
the system all incoming tokens (from the VCPs and
search agents) are received and handled by an indexing
agent, which inserts them into the registry. Incomplete or
not yet validated tokens are marked as such in the

?notes? field of the index tuple. Furthermore, incoming
tokens may have various priority levels, also indicated in
the ?notes? field. For instance, tokens acquired by the
search agents for a user currently interacting with the
system will have to be made ready for use (completed,
and if necessary validated and deconflicted) as quickly as
possible, while other tokens (it is assumed that in a fully
operational system search agents continually traverse the
Internet in search of travel-related information, similarly,
for instance to the Google-bots) may be processed when
the system is “idle.” Thus the content management
subsystem, as we described it so far, consists of index
tokens being fed directly by the VCPs and search agents
that find location of pertinent travel related content and
generate index tokens; furthermore we have one or more
indexing agents that store index tokens in the registry
(number of indexing agents will depend on the scalability
needs of the system). The JADE-based implementation
of our system helps facilitating agent interactions. First,
communication between the search agents and the
indexing agent(s) (as well as all other inter-agent
communication) is facilitated using ACL messages
which are implemented in compliance of the FIPA
standard. Second, search agents can locate indexing
agent by simply querying the JADE Directory
Facilitator. The following code snippet illustrates the
method invoked to achieve this goal:

6 Informatica 23 (1999) xxx–yyy Informatica

When this method returns, the variable index will be
pointing to the Agent Identifier of the indexing agent.

5.1 The GIS agent
As noted above, the location component of the index
token tuple is to be represented as a (latitude, longitude)
pair. Typically, geospatial data available on the Internet
is not represented in such form. Thus most index tokens
delivered by the search agents will not have the correct
form; typically an empty location field and a note
specifying token’s incompleteness in the ?notes? field.
To deal with this situation as well as to support a number
of other important functions in the content delivery
subsystem a GIS agent has been developed. In the
context of this paper, the main role of the GIS agent is to
fill the (latitude, longitude) data of the index token. This
is the standard reverse geo-coding function, where the
input is an address (found within a web resource by the
search agents) and output is the (latitude, longitude) pair.
Current implementation of the GIS agent relies on
external party to provide reverse geo-coding
functionality. As mentioned above, initially we were able
to locate a service that provided free of charge the
required functionality, but shortly afterwards this site
seized to exist. Thus, in our subsequent experiments we
have utilized the http://mapper.acme.com site. This
website accepts the request for GIS queries interactively
(e.g. using a form and an input box). This can be easily
transformed using Java’s HttpURLConnection class.
The form is submitted using the get method and thus it
can be represented as a URL by appending the base
address of the website with parameter and value pair of
intended queries, e.g.

http://mapper.acme.com/find.cgi?zip=74075.

While, obviously, this particular service is only of
limited capability – it accepts only ZIP codes and only of
locations in US – this level of detail provided by a free of
charge system was satisfactory for our proof of concept
system. Obviously, in a real system geospatial
information would have to be more precise than one that
is based solely on ZIP codes. Such information is
available (including locations outside of United States)
and can be easily incorporated into our system.
Unfortunately, services delivering robust reverse geo-

coding are not provided free of charge and we have
decided to utilize ZIP-code-based service only.

Summarizing, in the current implementation of the
content management subsystem, the GIS agent receives
the ZIP code information from the indexing agent (send
as an ACL message) and contacts the acme.mapper.com
site to obtain the (latitude, longitude) pair (our
implementation utilizes a slight shortcut as the search
agents deliver also the ZIP code instead of a token with
an empty location field; this latter solution that was
postulated above requires implementation fo auxiliary
agents; see Sections 5.2). The resulting information is
send back to the indexing agent (again, as an ACL
message) which then completes the token and inserts it in
the repository. Overall, the simplified schema of the
system has been depicted in Figure 2.

As noted earlier, in a travel support system, there is a
need for a much broader support for geospatial data
processing. For instance, it will be necessary to be able to
respond to distance oriented queries of the type “how far
is from a given restaurant X to a given movie theater Y,”
or “which restaurants are in a certain distance from a
given hotel Z.” These functions can be either
implemented inside of the same GIS agent or each of the
particular sub-functions can be implemented as a
separate GIS agent. While the second solution seems to
follow more closely the spirit of agent system
development (where separate functions are represented
by separate agents) and, furthermore, the particular GIS
functions will be naturally separated between content
management and content delivery subsystems, the final
decision about the agent-based implementation of the
complete set of required geospatial data processing
functions will be made in the next iteration of system
development.

5.2 Auxiliary agents
As discussed above, one of the problems in indexing data
originating from the Internet is the need of dealing with
incomplete index tokens returned by the search agents.
No agent can acquire information that is simply not
available. As indicated above, the majority of content
providers do not provide geospatial information in the
form desired by our system. Rather they feature an
address (complete or partial). Thus the system will have
to properly manage incomplete index tokens (at this
stage we will consider as incomplete also tokens
gathered from unverified sources). To achieve this goal
incomplete tokens are flagged as incomplete in the
?notes? field, assigned priority and inserted into the
registry. They are then processed by token completion,
validation, deconfliction (CVD) agents. These agents
traverse the registry and process the incomplete /
unverified tokens. As an example let us consider the case
of a token that is missing the location data. It is known
who is the provider of the data, the type is also known (it
is a hotel), while the location field contains no data and
the ?notes? field specifies an incomplete token with high

http://mapper.acme.com/find.cgi?zip=74075

Enter short title in File/Properties/Summary Informatica 23 (1999) xxx–yyy 7

priority. The CVD agent will therefore create an instance
of a query agent. This agent will communicate with the
content provider (using the specified protocol available
from the provider field) and establish that the hotel in
question is the Fairmont Hotel in San Francisco and
recover its street address (from the provider, or from a
different content provider discovered during separate
web-searches). This information will be returned as an
ACL message to the CVD agent responsible for
managing this particular token. The CVD agent will then
contact (via. An ACL message) the above described GIS
agent (see [2, 12, 13] for more details) where reverse
geo-coding will result in the (latitude, longitude) pair.
This information will be then inserted it into the token
and the incompleteness flag removed form the ?notes?
field, thus making it a full member of the registry. While,
currently, this functionality is not yet implemented, its
implementation is one of our next goals in the
development of the system.

6 Content gathering
The difficult problems of content indexing and retrieval
are representative of a crucial issue confronted in
Internet-related research: how to introduce
“understanding” to machine-web interaction. One of the
reasons that many online content gateways choose the
aggregation approach to content management is because
it is easier to implement, despite its resource-
intensiveness. The more “intelligent”, selective approach
of indexing content for later utility requires an in-depth,
machine “understanding” of the content in order to
reliably utilize it.

6.1 Interpreting sources
In recent years there has been a resurgence of interest in
ontologies as a way of dealing with the problem of
machines “understanding” the semantics of information
on the web. Many claim that agents with ontologies will
be the next breakthrough technologies for web
applications [6]. This has been the thrust of the Semantic
Web project [14] – the development of an ontology-
described content infrastructure that will allow machines
to interpret semantics as opposed to mere syntax. This
capability has been realized in web pages hosted by
several organizations. According to the DAML Crawler
[3], as of the time of our writing, there are semantically
21,025 annotated web pages. Unfortunately, this number
is negligible compared to the total of 7 billion web pages
on the Internet. Therefore, today, it is not realistic to
assume that agents can simply understand the web-
content.

The design of our e-travel system takes into account the
eventual existence of a semantically-described web; and,
in particular, development of a complete and generally
accepted ontology of travel, but it does not rely on it.
Rather, we plan to implement an intermediate solution
that allows us to depend on agent “understanding” only
within the e-travel system, a working assumption which

is supported by adapting the perimeter of the system (i.e.
the index acquisition system) to simulate semantic
gathering [6, 14].

One of the typical approaches to developing agents with
the necessary functionalities is through topical web
crawlers [9]. Topical web crawlers take advantage of
knowing the context of the query to differentiate between
the relevant and irrelevant web pages. Web pages are
considered to be relevant if their similarity value satisfy a
given threshold. Similarity value is calculated based on
lexical analysis of the web page.

Another approach to semantic understanding of the web
is through application of wrappers. For example,
information agents in Heracles [15] are trained to locate
meaningful information in the web pages by being shown
examples consisting of web pages labeled with markers
to indicate where the information is located. These
examples are then used to develop a set of wrappers that
are subsequently utilized in intelligent searches.

6.2 Simple search agent
While acknowledging that the above described
techniques are already relatively sophisticated and new
techniques are constantly being developed, for the
purpose of our demonstrator system we have decided to
pursue a more simplistic approach. Note, however, that
we rely here on one of the important advantages of
agent-based system design. Our search agents were
implemented to verify the design of the system, to fill-in
the registry with tokens, to pursue initial efficiency and
scalability studies. As the system matures, our simple
search agents will be replaced by more sophisticated
agents and the system will continue its work without any
additional changes.

The search agent must be designed so that it can classify
a web page into the correct travel resource and finding
necessary information to create its index token. Our
approach is to use a simple statistical method to calculate
the similarity of a web page to a set of given keywords
(or query). This statistical method compares the content
of the web page with keywords that represent a travel
resource. The similarity value of the web page and the
keywords are then computed. This value is then used to
decide if the given web resource matches the travel
resource. In implementing this functionality we have
utilized existing software.

In designing our search agent, we utilized several
software packages. Assume that our agent accessed a
web page. First, the HTML Parser [7] was used to strip
out all HTML-based formatting instructions. The
stripped-out HTML page was then fed to the Apache
Lucene [2a] for statistical analysis. The statistical
analysis process begins with applying a lower case filter,
which turns all words into lower case. The second step
consists of removing the stop-words (words with no
meaning e.g. the, than, of, which, were, are, etc.). This

8 Informatica 23 (1999) xxx–yyy Informatica

allows us to reduce the size of the index file. The list of
stop words was based on [19n]. In the third step, Porter
Stem Filter [9a] was applied to convert words into their
basic form (e.g. running into run, watches into watch).
The final step was to compute the statistical similarity of
the filtered content to the travel resource keywords
provided to the system. The Apache Lucene package
includes all these steps. It also implements the vector
space model to calculate the similarity value. The vector
space model works by comparing the frequency of words
that appear in the document with a set of given keywords
using the formula:

where tdij denoted the ith term in the vector for the
document j, tqik denotes the ith term in the query vector k
and n number of unique terms in the data set.

We have experimented with the above described simple
search agent in two ways. First, to obtain some indication
of its accuracy. For this purpose we have implemented a
GUI front end to communicate with JADE agents. As
expected, due to the simplicity of the search agent, the
overall results were rather disappointing (correct
identification of about 25% of visited web pages, when a
single keyword was used). At the same time, these results
seem promising, as a much better recognition rate can be
easily obtained (more details about our experiments and
their results can be found in [20]). More importantly, we
were able to develop a working system in which search
agents searched the web and produced index tokens.
These index tokes were completed through interactions
between the indexing agent and the GIS agent. Finally,
the indexing agent was able to utilize the Java API for
XML Registry (JAXR) to insert completed tokens into
the ebXML Reiztry /Repositiry.

7 Concluding remarks
In this paper we have reported on our progress in
developing an agent-based travel support system. Our
principal motivation is an attempt at implementation of a
realistic agent system that can be used to establish
potential and limitations of a more general class of agent-
based systems. In this we follow the methodological lead
of Nwana and Ndumu [11] who have stressed the
importance of the implementation and experimentation
phases of agent system development. We are also
challenged by the fact that all the past projects have been
limited in scope [10, 16] or abandoned in early stages of
development.

At the time of writing of this paper we have implemented
(1) the hierarchical classification schemes for the type
and the location components and instantiated them in the
ebXML registry / repository [17]; (2) the simple search
agent, the indexing agent and the GIS agent; (3)

communication between them. In this way we were able
to perform initial experiments with inserting and storing
tokens in the registry.

These initial experiments indicate that we will have to
rethink the way in which the index tokens are stored and
operated on. For still unknown reasons we have run into
a number of problems with the ebXML
Registry/Repository. While all necessary operations
worked well when its native GUI interface was used, we
were constantly running into problems when combining
the Repository with the JAXR or other insertion
techniques. Some of these problems were of technical
nature e.g. hanging registry, runaway threads etc., but
also related to scalability e.g. when running into a brick
wall of impossibilities when attempting to instantiate in
the Registry a complete ISO-3166 classification for the
United States. Since the latter problems could not have
been related to the computer hardware (we have been
using P4, 2.4 GHz based server with 1 Gbyte of
memory), we tend to believe that this may be a problem
with the currently existing implementation of the
Registry. Establishing this fact was one of the important
lessons learned from our experiments. This will force us
to re-evaluate the token storage technology before the
next step in system design and implementation. Observe,
however, that while the token storage technology may
change, this will no affect other parts of the system.

Obviously, we recognize the drawbacks of relying on
third-party GIS subsystem as the primary source for
latitude and longitude information (limited to US and
Canadian address only). However, as indicated above,
we consider such drawbacks to be insignificant during
the system development time. Finally, our categorization
of the world of travel (the hierarchy used to structure the
information stored in the type field) is primarily based on
the Yahoo! catalog and the work of the Open Travel
Alliance (OTA) [18n] and, obviously it needs to be re-
thought and improved on the basis of our experiments.

This leads us to the obvious fact that there exist a large
number of research and/or practical issues that need to be
addressed in the near future. Let us list some of them
(and, obviously, this list is only a partial one): (1) re-
evaluation of the index storage technology, with a strong
possibility of replacing the ebXML Registry/Repository
by a more robust solution; (2) completion of the content
management subsystem as described in this paper
(including the auxiliary agents) – this would allow us to
launch the system to automatically collect index tokens
and populate the registry for further experiments; (3)
addressing the question of intelligence of search agents –
we would like them to be effective in filtering web
content and supplying our system with complete index
tokens while being relatively lightweight – and,
definitely we need high reliability results when we will
start to automatically populate the repository (here it will
be better to reject a correctly categorized resource than to
accept an incorrectly categorized one); (4) investigating
how many agents of various types (indexing, token

Enter short title in File/Properties/Summary Informatica 23 (1999) xxx–yyy 9

completion, search, GIS etc.) are required to prevent
processing bottlenecks in the content management
subsystem; (5) evaluating if the proposed indexing
schema is robust enough to support the content delivery
functions; (6) study how does the proposed indexing
schema match with the personalization oriented functions
that the system is to support (in particular user behavior
data storing and mining [5]). Our experimental findings
(like the fact that the ebXML Registry/Repository may
not be capable of supporting our needs) indicate that the
above listed research questions will have to be
investigated both theoretically and practically. As
suggested in [11] it will be the experiments that will play
a crucial role in guiding the development of our system.
We will report on our progress in subsequent
publications.

References

[1] Abramowicz, W., Kalczyński, P., Węcel, K. (2002)
“Filtering the Web to Feed Data Warehouses.” Springer
Verlag Publishing, New York.

[2] Angryk, R., Galant, G, Gordon, M., Paprzycki M.
(2002) “Travel Support System – an Agent-Based
Framework,” Proceedings of the International
Conference on Internet Computing (IC’02), CSREA
Press, Las Vegas, pp. 719-725

[2a] Apache Lucene from http://jakarta.apache.org

[3] DAML Crawler (n.d.). Retrieved Feb 11, 2003 from
http://www.daml.org/crawler/

[4] V. Galant, J. Jakubczyc and M. Paprzycki.
“Infrastructure for E-Commerce.” In Nycz M., Owoc M.
L. (eds.), Proceedings of the 10th Conference on
Knowledge Extraction from Databases, Wrocław
University of Economics Press, 2002, 32-47.

[5] Galant V. and Paprzycki M. (2002) “Information
Personalization in an Internet Based Travel Support
System.” Proceedings of the BIS’2002 Conference,
Poznań, Poland, April, 2002, pp. 191-202

[6] Hendler, J. (2001) “Agents and semantic web,” IEEE
Intelligent Systems Journal, 16(2), pp. 30-37

[7] HTMLParser (n.d.). Retrieved Feb 11, 2003 from
http://htmlparser.sourceforge.net

[8] JADE (n.d.). Retrieved Feb 11, 2003 from
http://jade.cselt.it

[9] Menczer, F., Pant, G., and Srinivasan, P. “Topical
Web Crawlers: Evaluating Adaptive Algorithms,” ACM
Transaction on Internet Technology, 5(N), pp. 1-38

[9a]Martin Porter. Porter stemming algorithm.
http://www.tartarus.org/ ~martin/index.html.

[10] Ndumu, D., Collins, J., Nwana, H. (1998) “Towards
Desktop Personal Travel Agents,” BT Technological
Journal, 16 (3), pp. 69-78

[11] H. Nwana, D. Ndumu, A Perspective on Software
Agents Research, The Knowledge Engineering Review,
14 (2), 1999, 1-18

[12] Paprzycki M., Angryk R., Kołodziej K.,
Fiedorowicz I., Cobb M., Ali D. and Rahimi S. (2001)
“Development of a Travel Support System Based on
Intelligent Agent Technology,” in: S. Niwiński (ed.),
Proceedings of the PIONIER 2001 Conference,
Technical University of Poznań Press, Poznań, Poland,
pp. 243-255
[13] Paprzycki M., Kalczyński P. J., Fiedorowicz I.,
Abramowicz W. and Cobb M. (2001) “Personalized
Traveler Information System,” in: Kubiak B. F. and
Korowicki A. (eds.), Proceedings of the 5th International
Conference Human-Computer Interaction, Akwila Press,
Gdańsk, Poland, pp. 445-456

[14] Semantic Web (n.d.). Retrieved Feb 11, 2003 from
http://www.semanticweb.org

Intelligent Systems for Tourism", in IEEE Intelligent
Systems, November/December 2002, pp. 53-55

[16] Suarez J. N., O’Sullivan D., Brouchoud H., Cros P.
(1999) “Personal Travel Market: Real-Life Application
of the FIPA Standards.” Technical Report, BT, Project
AC317

[17] Wright, J., Williams, S., Paprzycki, M., Harrington,
P., Using ebXML Registry/Repository to Manage
Information in an Internet Travel Support System, in: W.
Abramowicz and G. Klein (eds.), Proceedings of the
BIS'2003 Conference, Poznań University of Economics
Press, Poznań, Poland, 2003, 81-89

[18] M. Paprzycki, A. Gilbert, M. Gordon, J. Wright,
“The World of Travel: a Comparative Analysis of
Classification Methods,” Annales UMCS Informatica,
A1, 2003, 259-270

[19] Stop Words List,
http://www.onjava.com/onjava/2003/01/15/examples/
EnglishStopWords.txt.

[20] A. Nauli, Using software agents to index
data for an e-travel system, Masters Thesis, Oklahoma
State University, 2003

[1] Author (year) Title of the book, Publisher.

[2] Author (year) Title of the paper, Title of the journal,
Publisher, pp. nn--mm.

http://www.daml.org/crawler/
http://htmlparser.sourceforge.net/
http://jade.cselt.it/
http://www.semanticweb.org/

10 Informatica 23 (1999) xxx–yyy Informatica

[3] Author (year) Title of the paper, Title of the proceedings, Publisher, Location, pp. nn--mm.

	Introduction
	Content management problem
	Agent-based travel support system
	History
	Sources of content indices
	Semantics

	Structure of index tokens
	The provider component
	The type component
	The location component

	Index acquisition
	The GIS agent
	Auxiliary agents

	Content gathering
	Interpreting sources
	Simple search agent

	Concluding remarks
	References

