
UML Models of Agents in a Multi-Agent E-Commerce System

Costin Bădică
Software Engineering

Department
University of Craiova

Bvd.Decebal 107, Craiova,
200440, Romania

c badica@hotmail.com

Maria Ganzha
Department of Informatics

Giżycko Private Higher
Educational Institute
ul. Daszyńskiego 9,

11-500 Gizycko, Poland
ganzha@pwsz.net

Marcin Paprzycki
Computer Science, OSU
Tulsa, OK, 74106, USA

and
Computer Science, SWPS
03-815 Warsaw, Poland
marcin@cs.okstate.edu

Abstract

Recently a new model agent-based e-commerce system
was proposed, in which rule-based mechanism representa-
tion was combined with lightweight modular mobile agent
design. Furthermore, need for agent mobility as the opti-
mal solution to satisfy user needs was discussed. The aim
of this paper is to introduce UML formalizations of most
important agents that appear in the model system as well as
presentation of its complete action diagram.

1 Introduction

Recent advances in developing agent environments
that support agent mobility (e.g. [4]) combined with ad-
vances in general methodology of price negotiations ([9])
resulted in renewed interest in applying software agents
in e-commerce. Surprisingly, such interest does not seem
to result in actual agent systems being implementedusing
agent environments (we are aware of agent-methodology-
based systems implemented in C++, but this is not what
we are interested in). Developing such a model system
is a goal of our research and we have already designed
and implemented a multi-agent e-commerce system in
which autonomous agents are engaged in matchmaking,
negotiations and contracting on behalf of their users:
humans or businesses [6] (see also references to our earlier
work collected there). In this way we proceed beyond
what is typically discussed in the agent-literature: the “act”
of price negotiation itself; and consider a more complete
e-commerce scenario consisting of: requesting purchase,
matchmaking, negotiating price and completing purchase.
Interestingly, the stage between completion of price nego-
tiations and the actual purchase, while involving a number
of possibilities, is practically forgotten in the literature.

Our original model system followed proposal outlined in
[8] to implement agents capable of negotiation adaptation
via dynamically loadable modules. Negotiating agents
consisted of three main components: (i)communication
module – responsible for messages exchanged between
agents, ii)protocol module – responsible for enforcing the
(FIPA) protocol that governed negotiations, and (iii)strat-
egy module – responsible for producing protocol-compliant
actions necessary to achieve agent goals. Recently we have
decided to re-design our system and utilize a more general
and flexible agent negotiation framework introduced in
[2, 3]. Its authors analyzed the FIPA-standardized auction
protocols and have shown that they do not provide enough
structure for the development of portable agent-based
e-commerce systems. They also outlined a negotiations
framework, consisting of multiplebuyers and ahost where
the negotiations take place. Within the host, the infras-
tructure for negotiations was provided through a number
of sub-agents:Gatekeeper, Proposal Validator, Protocol
Enforcer, Information Updater, Negotiation Terminator
and Agreement Maker that interact with each-other by
direct messaging and via a blackboard. The central point
of their framework consisted of (a) a generic negotiation
protocol, (b) a negotiation template – a structure that
defined all negotiation parameters and thus its mechanisms,
and (c) a taxonomy of JESS [5] rules used for enforcing
these specific negotiation mechanisms. Obviously, these
two approaches can be easily combined. The framework
introduced in [2, 3] assumes implicitly thatBuyer agents
are mobile and carry with them thegeneric negotiation
protocol thus making them rather heavy. Obviously, our ap-
proach based on pluggable modules can be employed here
to achieve lightweight mobility. Separately, theGatekeeper
sub-agent does not participate in actual price negotiations
as it only allows buyers into the negotiation space and
provides them with the negotiation protocol and template.
After careful analysis we have decided to remove it from

the “negotiation infrastructure” and place in the system as
a full-fledged agent. In this way we were able to add to it a
number of additional managerial functions. However, this
change does not modify the price negotiation framework
itself, which was the most important contribution of [2, 3].

When combining the two approaches we had to confront
the question: is there any reason for agents to be mobile? In
[1] we have responded to it in the context of our proposed
model system. We have argued thatagent mobility is the
most optimal solution for the e-commerce model considered
there. Then we have discussed why it can be expected that
in the future e-stores will provide an infrastructure robust
enough for mobile agents to frequent them and negotiate
prices. We have followed by arguments why the proposed
solution, based on dynamically loadable modules, helps
reduce auction-server resource utilization and whyBuyer
agents should not be assembled before they reach their des-
tination. Finally we have discussed why there is no simple
solution to the problem of finding the optimal offer when
multiple agents negotiate prices within multiple e-storesand
thus why our solution is as optimal as any other. Our ar-
guments were supported through an analysis of UML dia-
grams of two agents directly involved in agent mobility, the
mobileBuyer agent and the receiving itGatekeeper agent.

The aim of this paper is to present UML-based specifi-
cations (statecharts) of agents existing in our system as well
as a complete system action diagram.

2 Agents in the System

Client

Buyer

Seller

Shop

Warehouse

CIC

Gatekeeper

Buyer

Figure 1. Agent interactions and mobility

Proposed model system represents a distributed mar-
ketplace that hosts e-stores and allows e-clients to visit
them to purchase products. Stores are approached by
multiple customers and, through various price negotiation
mechanisms, select the buyer (e.g. winner of negotiations).
Figure 1 introduces agents existing in our system and

specifies which agents are in direct contact. Furthermore,
migration of theBuyer agent from the “buyer system” to
the “seller system” is denoted by a dashed arrow. Let us
now describe each type of agents appearing in Figure 1.
Here, we omit detailed description of an auxiliaryCIC
agent, which combines the function of white pages, by
storing information (addresses and identifiers) about all
Gatekeeper, Shop andClient agents existing in the system
(since only agents known to theCIC are able to utilize its
services we have to registerShop agents), and of yellow
pages, by storing information about all available products
(more information about its role and implementation can
be found in [6] and papers referenced there).

2.1 Shop agent

The Shop agent acts as the representative of a “user-
seller.” In our current implementation a predefined number
of such agents are created during system initialization (and
registered with theCIC agent) and persist in the system.
The UML diagram representing theShop agent is presented
in Figure 2. After being created, eachShop agent creates
and initializes itsGatekeeper andWarehouse agents, as well
asSeller agents (one for each product sold). Initialization
of theWarehouse agent involves passing information about
products available for sale, (see Figure 3), while initializa-
tion of theGatekeeper andSeller agents involves providing
them with initial negotiation protocol and template. Finally,
the Gatekeeper agent and the list of available products are
registered with theCIC agent.

After initialization, the Shop agent exists in complex
state where it supervises negotiations and product flow. As
a direct supervisor of price negotiations, theShop agent
awaits finish of any of them. As a result of negotiation
completion, one ofSeller agents sends a message contain-
ing negotiation details. In case of successful negotiations
such a message includes, the final price and the ID of the
winning Buyer. (Information about completed negotiations
is stored in a database for further analysis.) In response, the
Shop agent sends a message to theWarehouse agent and
asks it to reserve a given quantity of a particular product
(for a specific amount of time). There are now three
possible courses of action.Purchase: when the winning
Buyer confirms interest in purchase theShop agent asks
theWarehouse agent to check the status of the reservation.
If it did not expire then theShop informs theBuyer that
transaction will take place. This event starts the final stage
(box “Sale finalization”) which includes, among others,
payment and delivery.Shop-rejection: if the reservation
has expired, theShop agent sends a rejection message to the
Buyer agent.Buyer-rejection: if the Client agent decides
to not to pursue purchase at a given e-store, theBuyer
agent sends a rejection message to theShop agent, which

msg(end of negotiations)

Waiting for the finish of negotiations

do / send(CIC,Gatekeeper)

Creation of a Gatekeeper Creation of a Warehouse

do / send(Gatekeeper,Template(S_ID))

Changing the template of negotiations

[new Template]

do / Analysis of situation

MCDM

do / add to knowledge base

Registration results

do / Kill all agents

Completing the work

terminated by User

new order

do / send(Warehouse,add product(p))

Waiting for User−order

Maintenance of Sellers

do / send(Gatekeeper,killed S_ID)

Cancelling

do / send(Gatekeeper,S_ID)

Connecting

[no more product(p)]

[new product(p)]

exit / send(CIC,delete(p,S_ID))
do / Kill (S_ID)

Withdraw product

exit / send(CIC,p)
do / create(Seller(S_ID,p,c,q,Template(S_ID)))
entry / send(Warehouse,add(p,q))

Creation of a Seller

Finishing negotiations

[deal][reservation expired]

/ get(B_ID,p,c,q)

entry / send(Buyer,Refuse)

Refusing

reject

entry / send(Warehouse,reject)

Cancelling sale

confirm

entry / send(Warehouse,confirm)

Sale

done(Nr_Res)

entry / send(Buyer, Nr_res)

Waiting for Buyer response

do / send(Warehouse,p, q)

Creation of reservation

[no more products]

User notification

entry / add to knowledge base

Sale finalization

Figure 2. Statechart of the Shop agent

in turn asks theWarehouse agent to cancel the reservation.
Completing of either branch concludes an instance of price
negotiation monitoring.

Separately, theShop acts as the “shop manager” and pe-
riodically performs multicriterial analysis (theMCDM box)
of stored information about, among others, completed ne-
gotiations, resulting transactions, and quantities of available
products. TheMCDM module starts during initialization of
theShop agent. TheMCDM analysis may result in changes
in the negotiation template (e.g. minimal price, type of price
negotiation mechanism, etc.). For instance, when only a few
items are left they may be deeply-discounted, or put on sale
through an auction. In this case a new template is gener-
ated and send to theGatekeeper agent that switches it in an
appropriate moment (see [1] figures 2, 3, 4).

2.2 Warehouse Agent

The Shop agent interacts directly with theWarehouse
agent presented in Figure 3. After being initialized the
Warehouse agent is supplied (by theShop agent) with
information about available products and their quantities.
Subsequently theWarehouse agententers a complex state
consisting of two threads: (1) it awaits notifications from
theShop agent and (2) manages time triggered events. The
Shop agent notifies theWarehouse agent about: (i) regis-
tration of new products made available for sale, (ii) product
reservations, (iii) purchase confirmations, and (iv) purchase
terminations. Furthermore, it requests checking status of
reservations. Timer within theWarehouse agent results
in periodical checking of existing reservations. Expired

reservation are canceled and the total number of available
items is appropriately increased, while theShop agent is in-
formed about a new amount of available product. Finally, if
some product is sold-off, theWarehouse agent informs the
Shop agent, which may terminate the correspondingSeller
agent. If theSeller agent is terminated, then both theCIC
and theGatekeeper agents are informed by theShop agent.

2.3 Gatekeeper agent

Gatekeeper agents are created byShop agents and are
responsible for: (1) admittingBuyer agents to the negoti-
ations (some agents may not be admitted, for instance if
they are known to represent a fraudulent and/or disruptive
Client); (2) in a specific moment releasingBuyer agents to
an appropriateSeller agent so that they can participate in
price negotiations (howSellers are released depends on the
negotiation mechanism, e.g. fixed price mechanisms allow
immediate release, while in the case of auctionsBuyer
agents are gathered for some time and released in groups),
and (3) acting on behalf of itsShop agent, theGatekeeper
manages the process of negotiation mechanism change, i.e.
providesSeller agents with modified negotiation templates
and oversees the template exchange with regards to the
waiting and incomingBuyer agents. Due to the lack of
space, detailed description of this agent can be found in [1].

2.4 Seller agent

Finally, the last agent working within the “supply
infrastructure” is theSeller agent represented in Figure

/ create

[t<t_check]

/ set timer

do / t++
Counting

new sell

exit / sendToSA(Nr_Res,q−qRes)
do / Reserve(p,qRes,t_Res)
entry / get(p,qRes)

Creation of new reservation

confirm

do / check(Nr_Res)
entry / get(Nr_Res)

Confirmation

[deal]

exit / send(SA,deal)
entry / complete reservation

Completing confirmation

[t_res over]do / send(SA,Refuse)

Refusing

do / Insert p,q into DB
entry / get(p,q)

Adding product
add product

Waiting

/ reset timer

[t=t_check]

Checking of reservation

[time_check] / move(1st)/ move(Nr_res)

[time_check&¬ last] / next

[else][t_res over]

exit / send(ShopAgent, new quantity)
do / q+q_res
entry / send(SA,Nr_res,refuse)

Removing reservation

do / check(t_res)

Checking

Figure 3. Statechart of the Warehouse agent

Waiting for start of negotiations

do / send all participants(start)

Starting negotiations

get registration list

exit / send all participants(end)

Negotiations

[there is a winner]

do / send(ShopAgent,B_ID,Price,Qauntity)

ShopAgent Notification

/ send(ShopAgent,no winner)

killed by ShopAgent

Figure 4. Statechart of the Seller agent

4. Its apparent simplicity is a result of the “Negotiations”
box encompassing thecomplete negotiation framework
proposed in [2, 3]. Observe that not all negotiations have
to end in finding a winner. Separately, all data about
negotiations are sent to theShop agent that collects them
for further analysis (the “MCDM” box in Figure 2). For
instance, a sequence of negotiation failures may result in
changes in the negotiation template.

2.5 Client agent

As soon as initialized, theClient agent (see Figure 5)
enters a complex state consisting of two threads. In one
of them it listens for orders from the customer and, after
receiving them it starts the purchasing process by: (1)
querying theCIC agent which stores sell the requested
product, and (2) dispatchingBuyer agents to these e-stores
(identified by theirGatekeeper agents). In the second
thread, it supervises the purchasing process, where de-

cisions are made on the basis of information received
from Buyer agents. For each purchase order,Client agent
accumulates messages fromBuyer agents (each report is
also stored in a database for further information extraction).
When the wait-time is over (or when allBuyer agents have
reported), theClient agent enters another complex state.
In one of its threads it continues listening for messages
from Buyer agents (obviously, if all have reported then
there will be none). In the second thread it goes through a
multicriterial decision procedure (the “MCDM” box) that
lead to separate execution paths: (1) attempt to complete
a selected purchase, (2) cancel existing reservations and
request thatBuyer agents re-engage in price negotiations,
or (3) declare the purchase impossible, for specified condi-
tions, and notify the customer. When attempt at completing
a purchase is successful, theClient agent requests that all
Buyer agents, responsible for purchasing a given product,
self-destruct. When the attempt was unsuccessful then
control is returned to theMCDM module. As a result, the
Client agent may pick another offer (including these that
arrived in the meantime) and attempt to make a purchase
(return to (1) above). It may also decide to switch to path
(2) and informs allBuyer agents that have reported thus
far to cancel reservations and return to price negotiations.
Then it resets timer specifying when to start the next
MCDM analysis. Observe that it is possible that the first
MCDM analysis was undertaken before allBuyer agents
completed their “first round” of price negotiations. Some
could have contacted theClient after it already requested
that agents return to price negotiations. In this way, some
agents make second attempt at negotiating prices, while
some agents have just finished the first. As this procedure
continues in an asynchronous fashionBuyer agents make
different number of attempts at price negotiations. This
process continues until purchase is made or abandoned.

/ create

Waiting for order

[one more address]

do / send Buyer(address)
entry / create Buyer(B_ID)

Dispatch Byers

User terminated interuption

do / Kill all Buyers

Finalisation of work

new order(p)

entry / ask(CIC,p)

Gathering information

/ get(list addresses)

[continue]

Purchase product p

[time over]

[rejection of purchase]

[continue]

[reservation expired]

[Yes, to buy]

Gathering data
[No, not to buy]

do / notify(all Buyers(p),continue)

Notification of Buyers

[deal]

Waiting for Buyer(B_ID) response

do / send(B_ID,refuse)

Cancelling of purchase(B_ID,p)

do / send(B_ID,confirm)

Confirming purchase(B_ID,p)

do / kill all Buyers (p)

Cleaning
do / User notification

User notification

MCMD

[time is over OR all msgs] / start timer

new msg

do / update base of knowledge

Registration msg

Waiting for Buyers msg

strategy request / send(Buyer, strategy)

Waiting for strategy request

Figure 5. Statechart of the Client agent

2.6 Buyer agent

Finally, Buyer agents are the only mobile agents in
the system. They are dispatched to all stores that carry
product desired by the customer and communicate with
the Gatekeeper agent to obtain entry to negotiations (if
entry is not granted they inform theirClient agents and are
killed). When entry is granted theBuyer obtains, from the
Gatekeeper, the negotiation protocol and template. Then it
requests and obtains an appropriate strategy module from
the Client agent (see Figure 5). When all three modules
are installed, theBuyer informs theGatekeeper that it is
ready and when prompted proceeds to negotiate with an
appropriateSeller (see Figure 4). Upon completion of
negotiations,Buyer informs theClient about their result
and, if necessary (when an attempt at completing purchase
is made), acts as an intermediary betweenClient andShop
agents. In the case when purchase was not attempted or
was not successful,Buyer agent awaits the decision of
the Client and if requested proceeds back to participate in
price negotiations (after updating negotiation template and
strategy modules). This process continues until theBuyer
agent is “killed” by theClient agent. Due to the lack of
space, detailed description of this agent can be found in [1].

In summary, in Figures 6 and 7, we present the complete
flow of actions in the system.

3 Concluding Remarks

In this paper we have discussed a multi-agent e-
commerce system that combines rule-based and mobile
agent technologies for implementing flexible automated
negotiations. We have focused on formal, UML-based
descriptions of agents in the system as well as its complete
action diagram. System described here is currently being

re-implemented on the basis of these UML formalizations
(the previous version of the system, while fully functional
[6], did not involve the negotiation framework introduced in
[2, 3]). We will report on our progress in subsequent papers.

References

[1] Bădică, C., Ganzha, M., Paprzycki, M.: Mobile Agents in
a Multi-Agent E-Commerce System, submitted for publica-
tion.

[2] Bartolini, C., Preist, C., Jennings, N.R.: Architecting for
Reuse: A Software Framework for Automated Negotiation.
In: Proceedings of AOSE’2002: International Workshop
on Agent-Oriented Software Engineering, Bologna, Italy,
LNCS 2585, Springer Verlag (2002) 88–100.

[3] Bartolini, C., Preist, C., Jennings, N.R.: A Software Frame-
work for Automated Negotiation. In: Proceedings of SEL-
MAS’2004, LNCS 3390, Springer Verlag (2005) 213–235.

[4] JADE: Java Agent Development Framework:
http://jade.cselt.it.

[5] JESS: Java Expert System Shell:
http://herzberg.ca.sandia.gov/jess/.

[6] Maria Ganzha, Marcin Paprzycki, Amalia Pı̂rvănescu,
Costin Bădică, Ajith Abraham (2005) JADE-based Multi-
agent E-commerce Environment: Initial Implementation,
Analele Universităţii din Timişoara, Seria Matematic˘a–
Informatică(to appear)

[7] Tamma, V., Wooldridge, M., Dickinson, I: An Ontology
Based Approach to Automated Negotiation. In:Proceedings
AMEC’02: Agent Mediated Electronic Commerce, LNAI
2531, Springer-Verlag (2002) 219–237.

[8] Tu, M.T., Griffel, F., Merz, M., Lamersdorf, W.: A Plug-
in Architecture Providing Dynamic Negotiation Capabilities
for Mobile Agents. In:Proceedings MA’98: Mobile Agents,
Stuttgart, Germany, (1998) 222–236.

[9] Wurman, P, Wellman, M., Walsh W.: A Parameterization of
the Auction Design Space. In:Games and Economic Behav-
ior, 35, Vol. 1/2 (2001), 271–303.

BuyerGatekeeper Environment

CIC
response

Client

Waiting for an
order

Requesting
addresses

Creation and
departure of
Buyers

List of addresses
<<signal sending>>

Gatekeeper: I am here

Waiting for
a Buyer

<<signal receipt>>
New Buyer

Checking
the Buyer

<<signal sending>>
CA: Rejection

Shop

<<signal sending>>
Gatekeeper: New Seller

Waiting for an
order

Creation
Seller<<signal sending>>

Gatekeeper: Change
template

MCDM

Listenning to

<<signal sending>>
Buyer:rejection

[1−st]

List of registered Buyers

<<signal sending>>
Start of
negotiations

Getting the
registration list
Seller

Start Timer

Cheking
conditions [(number of Buyers=0)V(Seller is busy)]

Buffering
registration list

Registration
Buyer

Providing Buyer
with strategy

Preregistration
Buyer

Template

Protocol

<<signal sending>>

CA: I need a strategy

<<signal sending>>
Gatekeeper: I am ready

Nego detail

Figure 6. Activity diagram – actions during preparations to negotiations

ClientShop BuyerWarehouse

Reservation
checking

Updating Shop’s
Knowledge Base

Product
reservation

Canceling
reservation

Updating Client’s
Knowledge Base

Making
decision

User notification

Notification Buyer
about Nr_res

Reservation

Killing Buyers

Sale completion

<<signal sending>>
Gatekeeper:continue

<<signal sending>>
Buyer:reservation
expired

<<signal sending>>
CA:Reservation expired

<<signal sending>>

SA: reservation expired

<<signal sending>>
Check reservation

<<signal sending>>
CA:I am winner

<<signal sending>>
SA:Rejection

<<signal sending>>
SA:Confirm

<<signal sending>>
Buyer: Rejection

<<signal sending>>
Confirm

<<signal sending>>
Continue

Figure 7. Activity diagram – actions after negotiations are complete

