
Agent-Client Interaction in a Web-based

E-Commerce System

Minor Gordon1, Marcin Paprzycki1, and Violetta Galant2

1 Computer Science Department, Oklahoma State University, Tulsa, OK 74106, USA
{minorg,marcin}@a.cs.okstate.edu

2 Department of Intelligent Systems, Wroclaw University of Economics, 53-345
Wroclaw, Poland

galant@manager.ae.wroc.pl

Abstract. In order for agent technology to fulfill its promise, it must
be integrated with other existing technologies. In this paper we address
one of the problems occurring in a real-world agent integration project—
interaction between agents and non-agents. The proposed solution is de-
signed to provide non-agents (clients in particular) access to the agent
services, without restricting the agents.

1 Introduction

The promise of agent technology remains unfulfilled. While there exist many
scenarios in which agents play a key role, few of them have reached beyond the
early stages of development. One of the main reasons for this discrepancy is that
agent system researchers and developers have created self-contained worlds for
agents to inhabit. Agent environments have been incapable of interacting with
each other, as well as with other existing tools and technologies. It is our belief
that, in order to help agents take-off, we must start implementing agent-based
systems that collaborate with currently available technologies. Here we follow the
lead of Nwana and Ndumu who, in their highly critical paper [16], suggest that
the best path for agent technology lies in implementing realistic agent systems.
This approach means, however, that at first agent systems may not live up
to their original promises. To integrate agents with existing technologies often
means that we cannot take full advantage of agents’ potential capabilities.

As our contribution, we have proposed a working model for one of the clas-
sic agent scenarios – a personalized travel support system [1]. Though there
have been many agent-related projects in this domain, most of them have ei-
ther been very limited in scope [15, 17], or have never left the planning stages.
The framework for our travel support system is based on the e-commerce model
of management and delivery spheres, linked via a communication channel [9].
This link, as well as the functionality within both spheres, is realized by agents
as, aside from their other strengths, agents are an excellent way to decompose
complex systems into task-oriented modules [14]. In the content management
sphere, the travel-related information is indexed into hierarchical federations ac-
cording to its ontology and geographical extension. In the content delivery sphere



2 M. Gordon, M. Paprzycki, V. Galant

the personal agent collaborates with other agents (e.g. travel expert agent, ad-
vertising agent, data integration agent etc.) to deliver to the user personalized
information and targeted advertising. It is the personal agent that communicates
directly with the user.

In addition to the problems anticipated in [15, 16], there is one which is only
encountered in the implementation phase—the problem of agents interacting
with non-agents. For an agent-based e-commerce system, agents must be able
to communicate with its users. Currently, the majority of interaction between
e-commerce systems and humans is realized through web browsers. However, in
a travel support system, we must deal with a vide variety of Internet-enabled
clients, and these clients must be able to connect to the agents. The aim of this
note is to propose a solution to the agent-client communication problem, granting
access to all types of clients while retaining the advantages of the agent paradigm.

2 Agent Communication

One of the implicit assumptions that agent researchers and developers make
is the inevitability of this technology becoming ubiquitous to the point that
agents will be able to freely move between servers, desktops and personal devices.
However, in computational practice the situation is far from reaching this stage.
One of the primary technological obstacles is that most of agent platforms require
the host device to run a platform-specific virtual agency to receive incoming
agents. Unfortunately, at this time agencies are not widely deployed, preventing
agents from traveling freely between systems.

Since agents are restricted in their ability to travel to Internet-enabled de-
vices, we must look into the possibilities of these devices communicating with
agents. While the Foundation for Intelligent Physical Agents (FIPA) standards
for agent communication allow agents from disparate platforms to communicate
with each other in a platform-neutral language (ACL [4]), these protocols and
formats are limited to inter-agent communication. Therefore, software that tries
to communicate with an agent has to either (1) use FIPA-compliant Message
Transport Protocols (MTPs [5]) and the Agent Communication Language [4] –
assuming these are supported by the agent platform they try to communicate
with, or (2) connect with an agent via a platform-dependent method such as
IIOP. Neither of these options is particularly attractive. The MTPs of (1) are
based on standard protocols such as HTTP [6] and WAP [8], but are employed
in an atypical fashion, i.e. the basic call-response mechanisms (GET, POST) are
the same as in standard HTTP or WAP, but additional headers and specially-
formatted body content are required by the FIPA MTP standards. This means
that an HTTP request submitted by a web browser would not be understood
by a FIPA-compliant agent supporting the HTTP MTP (the necessary exten-
sions mandated by the FIPA would not be present). In order to speak with an
agent over HTTP or WAP, either both communicators must be FIPA-supporting
agents, or one must be an agent and the other must pretend it is an agent by
speaking the HTTP “dialect” understood by the FIPA agent. Option (2) requires



Agent-Client Interaction in a Web-based E-Commerce System 3

the deployment of platform-specific libraries in order to connect to the agents,
which is equally restricting. Aside from the numerous interoperability issues
across clients, this option requires an addition of multiple libraries to communi-
cator, considerably increasing the size of deployment packages. Non-agents, then,
may communicate with an agent, but they must do so on the agent’s terms.

We observe a number of client-agent systems that cater to agents by forcing
users to download proprietary applets or applications supporting communica-
tion. Obviously, this approach is very impractical, and in the case of thin clients
such as cell phones, is technically unfeasible. In order to design an interface be-
tween clients and agents that will circumvent the above-described restrictions,
we start by considering the range of clients our system will serve and their re-
spective limitations.

3 Clients

The client base includes WAP-conversant phones and PDAs as well as standard
PC-based web browsers, and even non-human entities such as external agents.
Obviously, any e-commerce system should offer a proprietary application and/or
applet client for taking full advantage of the system, but this cannot be manda-
tory. Because of the unpredictability of client capabilities, we can only require
a minimum subset of these in order to successfully interface with our system.
Clients must be able to display some flavor of markup (HTML, XHTML, WML,
etc.) and connect to our services, either through an external gateway (as do
WAP devices) or directly over the Internet, using standard protocols such as
HTTP (in its standard form).

In order to allow all clients equal access to the services we must also place
a number of restrictions on the nature of this access. For instance, we cannot
assume clients can process XML (in any fashion), access resources on the user’s
system, modify the parameters of the communicating protocol, execute Java
bytecode or even store cookies. These restrictions preclude atypical communi-
cations methods like the the FIPA MTPs described above. Any communication
mechanism that might be suspicious to a firewall must also be rejected. These
restrictions disallow any writes to the client, including downloaded Java applets
and applications as well as state persistence. We have to consider the client
read− only, and adapt the implementation accordingly. It should be noted that
from the client’s perspective the architecture of the server is largely irrelevant,
as long as it provides services/responds to requests in a format and protocol the
client understands.

4 Agents as Services

One of the better possible solutions to the above-described problems is to treat
agents as services, exposing a service interface like any other software module.
This approach is embodied by Hewlett-Packard’s Bluestone middleware system –
the Total-e-Server [11] in particular. The Total-e-Server implements a Universal



4 M. Gordon, M. Paprzycki, V. Galant

Listening Framework [12] for communicating (bidirectionally) with clients, which
include the full range of WAP, HTTP and XML-consuming browsers as well as
Java Messaging Service (JMS) nodes, FTP clients, e-mail messages via SMTP
etc. Client requests for services, arriving in various formats, are received and
translated by an appropriate listener (HTTP, WAP, etc.) and forwarded to the
load-balanced Universal Business Server (UBS), which negotiates services with
the various modules attached to it (including agents); thus the UBS can act as
a “front” for the non-conformant service modules such as agents. The response
from the selected service module or modules is transformed into a generic format,
forwarded back to the listening framework, and delivered to or picked up by
the client. Note that the core of the system (the ULF, the UBS and the Load
Balancing Broker) remains firmly rooted in powerful, centralized servers, while
retaining some of the scalability of modularized services [3].

This approach is very stable, because it does not rely on agents (or any
other particular component type) for services. However, this stability comes at a
price, because it reduces the components attached to the service broker to mere
request handlers. This limits much of the usefulness of agents as it ties them too
closely into the architecture; the mobility, autonomy and wide distribution of
agents – three of their defining characteristics [14, 16] – are all inhibited by this
configuration.

5 Client-Agent Communication – Proposed Solution

Our approach was developed for the implementation of our travel system, and
hile certain components resemble the Bluestone architecture (as depicted in [3]),
we arrived at this configuration from an entirely different direction. The result
is summarized in 1.

��������� �����	�


���
���


�
����

����

���������

	
�
�


��
����

����

��������

�

��
�
��
�


���������

��
�������

����
���

�������

�
�
��
�
�



�


�
�
�
��
�

�����
��������


��
��
�����
��������

����
��������

Fig. 1. Proposed solution to the client-agent communication problem.



Agent-Client Interaction in a Web-based E-Commerce System 5

We start from the ideal of clients connecting directly (one-to-one) to agents.
In our system, this connection is instantiated with the personal agent, which is
the focal point for all interaction with the client and, by proxy, the user ma-
nipulating the client [1]. Given that an actual implementation of a client-agent
bi-directional link is currently impossible (see above), we proceed to emulate it.
This is accomplished by inserting a limited number of intermediaries between
client and agent. These intermediaries pass requests and responses between the
clients and the agents in the system, transforming the communications to appro-
priate formats as necessary. As indicated in 1, we utilize two intermediaries for
performing these functions. This is the minimum; in order for our system to be
as extensible as Bluestone or comparable middleware, we would have to insert
more intermediaries into the chain. However, the more intermediaries we include,
the more we tie the agents to them. As opposed to the strongly-connected core of
Bluestone, we are pursuing a loosely-connected conglomeration of components,
allowing the agents in the system to be distributed, mobile and autonomous. In
this way we conform to the long-term vision of agent research, which would have
us remove all intermediaries and send a representative agent to directly interact
with the client, using the agents on the server as support (for retrieving and
integrating data, inserting advertising, etc.). If/when new agent platforms are
deployed or integrated widely enough to allow our agents onto the client’s side,
our system will be ready for this shift.

Let us now discuss in more detail the components of the proposed solution.

5.1 Listening Framework

As with the Bluestone system, an extensible listening framework is required to
communicate with various client types, with one listener per protocol (eg. HTTP,
WAP). These listeners transform incoming requests from a protocol-specific for-
mat into one that the travel support system can understand, then forward these
request-messages to a message broker. Upon receipt of these messages, an agent
in the system prepares a response (see [1] for details), wraps it in the same com-
mon message format and sends it back to the message broker. Here the response
message is picked up by the listening framework, unwrapped, transformed into
the protocol-specific format, and delivered.

In the current implementation, only the HTTP listener is active. Requests
may come in the form of HTTP GET and POST transactions. These can be
handled by CGI programs or server-side scripting languages such as ASP or
PHP. This frees us from ties to a specific server platform, such as J2EE (the
basis for the Bluestone system [3]) for hosting our listening framework. Any web
server with CGI or scripting capabilities will suffice.

Currently, the protocol listeners are not required to maintain the client state –
usually done via cookies, which reference session variables on the server – though
this may be desirable in an alternate form: enough information can be garnered
from the request itself (e.g. the client’s IP) to retrieve the client’s responses. If
future listeners are implemented as statefull, they may still use session variables
to store the client’s login name, time of last contact with the system, number of



6 M. Gordon, M. Paprzycki, V. Galant

pending requests and other states. In this case a state table will be employed,
in lieu of the state-maintaining mechanisms of the server environment.

At this point we encounter the problem of delivering messages to disconnected
clients. This inncludes WAP devices as well a standard web browsers, which,
without added components (such as applet or Java applications – which we
tried to avoid in the first place) cannot listen for callbacks. This is a common
problem when dealing with client devices on the Internet. To date there are two
possible solutions:

Synchronous request. The client blocks while waiting for a request to be
fulfilled by the system. This solution is far from optimal. Client requests may be
issued preemptively, in order to present information to the user almost imme-
diately. Blocking the client prevents the user from interacting with it, exploring
other options or making more requests.

Interval polling. Clients poll for responses whenever they are ready. A check

responses request is sent to the appropriate listener, which will then retrieve any
prepared responses waiting in the message broker – a mailbox system. More
capable clients can spawn threads to poll at set intervals. Thinner clients may
be forced to block on intervals to poll; however, the wait would not be long
because the listener will either find a prepared response or report that none
are ready (no processing involved). Admittedly, this solution is relatively costly
on the server side – many clients accessing the listening framework repeatedly
– but, given the assumed inability of our system to utilize callback, we deem
it necessary. It should also be noted that, in a Bluestone-like framework, our
two-intermediary architecture would probably scale poorly, because it lacks the
necessary load-balancing components (e.g. Load Balancing Broker [3]). However,
as we shall see, our model takes a different approach to scalability.

5.2 Message Broker

Messages – both requests by the client and responses by the agents – are handled
by a message broker, which stores them in a common format. For implementa-
tion of this functionality we have selected the SOAP standard [18]. This selection
is based on our earlier experiments. Our initial implementation employed JMS
(Java Messaging Service) as the message broker. While JMS’s queues and topics
were extremely attractive from the perspective of centralization, stability, ease
of creating messages and other factors, there was one major drawback – in order
to communicate with the JMS server, both the listeners and any agent receiv-
ing messages had to include the JMS support classes. This proved to be unac-
ceptable. Outside the J2EE environment (servlet containers, application servers,
etc.), using J2EE components requires a great deal of extra work, and includes
much functionality we do not need. Additionally, by using JMS we would tie
ourselves to this environment, a circumstance we definitely wished to avoid. For
similar reasons we decided to avoid the FIPA ACL, which is a very narrow stan-
dard, intended for use by agents, inside of the agent platforms. Its application
would require unacceptable (and in some cases, unfeasible) workarounds in order
for clients to use it.



Agent-Client Interaction in a Web-based E-Commerce System 7

SOAP, on the other hand, is platform- and application- neutral. While SOAP
messages can be routed by a messaging server or other broker, the headers of
the messages allow them to be interpreted and/or routed by the components of
the system, without the intervention of a broker program. The primary reason
for selecting SOAP as a common message format, however, is that it can be
serialized as XML, which means it can be stored as text. Our ”message broker”
is actually a database, with tables created for each client to send messages to
and poll responses from in the way described above.

Here, once again, we encounter our self-imposed restrictions on the assumed
client capabilities; they may not be able to read and write SOAP messages.
Thus we must allow the client to make a request in format/protocol native
to it, and have the listener translate the request into a SOAP message, for
storage and subsequent consumption by the agents. Likewise, the responding
agent will output the requested data in a format the client will understand
(HTML, WML), and wrap it in the body element of a SOAP message. Though
SOAP was primarily intended to encapsulate Remote Procedure Calls (RPC)
in a platform-neutral format (as opposed to binary protocols such as CORBA,
COM/DCOM and Java RMI), SOAP message bodies can also be used to enclose
arbitrary literals.

When the client polls for a response, the listener will pick up the SOAP
message left by the responding agent(s), unwrap it (processing any headers) and
send the body contents to the client. We have two options here: the contents
can be encoded directly in the client’s “native” format by the responding agent,
as described above; or the contents could be output by the agent into schema-
conformant XML, then XSLT’d into a format the client can understand by the
listener. For simplicity’s sake we have chosen the first option for the initial im-
plementation, though the latter may prove to be more extensible, and allow
the listeners in the framework to be highly specialized to a wide variety of pro-
tocols/formats, beyond HTTP/HTML and WAP/WML. These might include
SMTP and SMS, proprietary socket-based protocols, and even the binary object
protocols, thus letting the agents be ignorant of any client formats.

There are many added benefits to the message-broker-as-database setup. By
storing SOAP messages in a client table, we retain a complete record of exchanges
between the client/user and the travel support system. These messages will later
be mined by another agent, for use in refining the user’s profile, in order to offer
more personalized content [1]. On the other hand, one of the few drawbacks to
storing SOAP message in a database is that another agent is required to watch
and clean up the database, because the SOAP messages in the client tables are
never ”consumed” (removed) from them. In polling the store, both the listener
and the personal agent check for messages newer than the last time they polled,
ignoring all previous messages.

5.3 Proposed Solution as an Example of Web Services

By deploying the two-intermediary architecture presented above, the complete
travel system can be offered as a web service, and described by the Web Services



8 M. Gordon, M. Paprzycki, V. Galant

Description Language (WSDL). A listener in the framework, instead of inter-
preting HTTP or another protocol, receives SOAP messages in the standard
encoding style for RPCs, and passes these messages into the client’s table – with
little or no translation required. These SOAP RPC messages are quite similar
to the messages generated by the HTTP or other listeners: the calls for agent
services are not directly mapped to any particular agent in the system, but are
interpreted based upon other parameters in the SOAP header.

One of the most powerful of SOAP header parameters is the actor attribute.
Any entity (called a SOAP node) which processes a SOAP message may act in the
role denoted by the actor attribute (a URI) [10]. This means that the headers of
SOAP messages can be specifically directed to nodes (processing entities) playing
certain roles. In our model, one of the headers of an outgoing/response message
from an agent could be intended for the listener, instructing the listener to
perform some translation or add some data (such as pickup time) to the contents
of the response message, before it is delivered to the polling client. In the opposite
direction, a listener receiving a client request could add headers intended for
specific agents in the system, to help them to process the request. Although the
personal agent will be the end point for all incoming client messages, other agents
may fulfill their roles without interfering with the personal agent’s functions
(e.g. read-only operations). For example, a logging agent might collect certain
headers for debugging or statistical purposes. The advertising agent, which serves
relevant advertising to the personal agent from its own database of advertisers,
might process the message preemptively and locate relevant ads, so that when
the personal agent requests them, they will already be prepared.

5.4 Scalability

In our implementation we attempt to take full advantage of the decentralized
nature of software agents. In order to communicate with clients, the agents
require the listening framework and message broker intermediaries. However,
this does not tie the agents to a specific server or cluster of servers. As long as
a message database is immediately accessible to both the agents and a listener
framework, the system is expected to be scalable. Because the message database
does not require any global tables (referenced by all parties), it does not need
to be unified. Different databases and attached listening frameworks, physically
distributed to high use areas (e.g. Los Angeles, New York), would localize the
client-server interaction. The personal agent is required to be mobile and follow
the user across the country, or even change locations within a large city. Upon
notification of the move (initial re-contact), the personal agents condenses all
of the messages in the client’s table and moves them to the database locale
closest to the client’s new location. The remaining agents in the content delivery
subsystem would not have to transfer, because the majority of them are merely
slaves to the personal agent, and need know nothing of the user to satisfy the
personal agent’s demands.



Agent-Client Interaction in a Web-based E-Commerce System 9

6 Concluding remarks

In this note we have presented a solution to the agent-client communication prob-
lem arising in the Internet-based travel support system. The proposed solution is
based on inserting two intermediaries, the listening framework and the message
broker and is expected to be scalable. Thus far we have completed the initial
stage of implementation, laying out the groundwork for meaningful client-server
interaction. In doing so we crossed a number of very interesting bridges:

– The agent platform we chose for the initial implementation of the travel sup-
port system was Grasshopper. The main reason for this choice was the exten-
sive documentation which accompanied the platform, the commercial foun-
dations of the company producing it (versus many of the academic projects,
which are often spuriously developed). However, in order to take the next
step to integrating agents, we will require a platform which more closely con-
forms to the FIPA standards. This platform remains to be chosen, though
JADE [13] and FIPA-OS [2] are prime candidates.

– For our listening framework we tried several approaches. Our first listener
was implemented as a simple servlet running a, J2EE-based, Tomcat con-
tainer. However, considering such factors as size, speed, scalability and access
to system resources as essential to the listener framework implementation,
our focus shifts to the Apache web server and its associated modules, such
as PHP, for basic CGI.

– In selecting a relational database for the message broker component, we sur-
veyed a number of packages, with particular focus on those freely available.
Eventually, we selected Postgresql, because it is known to scale well with
many simultaneous queries, is actively developed with a large community,
and has a number of contributed extensions which are attractive to us (the
GIS types in particular). One of Postgresql’s more intriguing features is asyn-
chronous notification of database-connected entities. Though these entities
must maintain a constant connection to the database, and poll it for noti-
fications, this is much less expensive than periodically executing SELECT
queries for new messages, as is customary in such a situation. Unfortunately,
as of this writing these features are still in development, and are not fully
supported by the Postgresql JDBC driver, which is what we are using to
connect the Java-based agents to the message database. For the time being,
we are forced to run SELECT polls from both listeners and agents.

In the next stage of implementation we will proceed in two directions. First,
we will integrate the client-agent interaction with the remaining components of
the system, to produce the first prototype. Second, we will experiment with this
same interaction in order to study its performance characteristics and establishs
its overhead and potential bottlenecks. We will report on our progress in future
notes.



10 M. Gordon, M. Paprzycki, V. Galant

References

1. Angryk, R., Galant, V., Paprzycki, M., Gordon, M: Travel Support System - an
Agent-Based Framework. Proceedings of the International Conference on Internet
Computing IC’2002, Las Vegas, NV, June, 2002, (to appear)

2. Buckle, P.: FIPA and FIPA-OS Overvie. Invited talk at the joint Holonic Man-
ufacturing Systems and FIPA Workshop, London, September, 2000, FIPA-OS,
http://fipa-os.sourceforge.net/. (2000)

3. Burg, B.: Agents in the World of Active Web-services,
http://www.hpl.hp.com/org/stl/maas/docs/HPL-2001-295.pdf. (2001)

4. Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Specifi-
cation, http://www.fipa.org/specs/fipa00061/. (2001)

5. Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Service
Specification, http://www.fipa.org/specs/fipa00067/. (2001)

6. Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol
for HTTP Specification, http://www.fipa.org/specs/fipa00084/. (2001)

7. Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol
for IIOP Specification, http://www.fipa.org/specs/fipa00075/. (2000)

8. Foundation for Intelligent Physical Agents. FIPA Agent Message Transport Protocol
for WAP Specification, http://www.fipa.org/specs/fipa00076/. (2000)

9. Galant, V., Jakubczyc, J., Paprzycki, M.: Infrastructure for E-Commerce, Proceed-
ings of the 10th Conference on Extraction of Knowledge from Databases, Karpacz,
Poland, May, 2002 (to appear)

10. Gudgin, M., Hadley, M., Moreau, J-J., Nielsen, H. F.: SOAP Version 1.2 Part 1:
Messaging Framework. W3C Working Draft 17, December, 2001

11. http://www.bluestone.com/downloads/pdf/06-21-01 Total-e-
Server white paper.pdf. (2001)

12. http://www.hpmiddleware.com/downloads/pdf/02-27-01 ULFWhitePaper.pdf.
(2001)

13. Java Agent DEvelopment Framework (JADE). Telecom Lab Italia,
http://jade.cselt.it/ and http://jade.cselt.it/papers.htm (2001)

14. Jennings, N. R.: An Agent-based Approach for Building Complex Software Sys-
tems. CACM, 44 (4), (2001) 35–41

15. Ndumu, D., Collins, J., Nwana, H.: Towards Desktop Personal Travel Agents. BT
Technological Journal, 16 (3), (1998) 69–78

16. Nwana, H., Ndumu, D.: A Perspective on Software Agents Research. The Knowl-
edge Engineering Review, 14 (2), (1999) 1–18

17. Suarez, J. N., O’Sullivan, D., Brouchoud, H., Cros P.: Personal Travel Market:
Real-Life Application of the FIPA Standards. Technical Report, BT, Project AC317
(1999)

18. World Wide Web Consortium, http://www.w3.org/2002/ws/. (2002)


