DEVELOPING A JADE-BASED MULTI-AGENT
E-COMMERCE ENVIRONMENT

Amalia Pirvanescu
SoftExpert SRL
Sr.Vasile Conta, bl.U25, Craiova, Romania
amaliap@soft-expert.com

Costin Badica
University of Craiova, Software Engineering Department
Bvd.Decebal 107, Craiova, 200440, Romania
badica_costin@software.ucv.ro

Marcin Paprzycki
Oklahoma State University, Computer Science Department
Tulsa, OK, 74106, USA
SWPS, Computer Science
ul. Chodakowska 19/31, 03-815 Warszawa, Poland
mar cin@cs.okstate.edu

ABSTRACT

Agent technology is often claimed to be the silver bullet for the task of automating e-commerce business processes, to
bring efficiency and profitability to businesses and individual users. Despite the fact that research on software agents can
be traced at least as far back as the beginnings of the Internet, it is difficult to find successful large-scale agent-based
e-commerce applications to confirm this claim. Our paper addresses this issue by discussing the development of an
e-commerce system using a state-of-the-art agent platform — JADE. At this stage, focus of our work is on implementing
agents of different types/ roles engaged in activities usually encountered in areal e-commerce environment.

KEYWORDS

Multi-agent systems, e-commerce, automated negotiations.

1. INTRODUCTION

E-commerce involves complex processes with many facets, spanning areas that cover business modeling,
information technology and social and legal aspects [Laudon, 2004]. A recent survey [Kowalczyk, 2002]
pointed out to useful applications of intelligent and mobile agents in support of advanced e-commerce. In
summary, agent technology is expected to bring efficiency to businesses (and thus improve its profitability),
but also to benefit individual users (e.g. by assuring “price-optimality” of purchases). However, taking into
account the high diversity of e-commerce activities involving electronic payments, business document
processing (orders, bills, requests for quotes, etc.), advertising, negotiation, user mobility, delivery of goods,
etc., it is clear that a lot more work needs to be done to achieve the vision of a global distributed
e-commerce environment supported by intelligent software agents. This claim isfurther supported by the fact
that it is almost impossible to point out to an existing large-scale implementation of an e-commerce agent
system. While a number of possible reasons for this situation have been suggested (see, for instance,
[Paprzycki, 2003]), one of them has been recently dispelled. It was shown that modern agent environments
(e.g. JADE) can easily scale to 1500 agents and 200000 messages [Chmiel, 2004b]. Since these results have
been obtained on a set of 8 antiquated Sun workstations, it is easy to extrapolate the true scalability of JADE
on modern computers and thusit is possible to build and experiment with lar ge-scale agent systems.

Therefore, we have set up a goa of developing, implementing and experiment with a large scale
agent-based e-commerce system. Sincethisisalong-term undertaking, at this stage our focusison creating a
system with a multitude of agents that play variety of roles and interact with each-other (system skeleton).
Currently, we follow and combine our earlier work in two areas. First, we have implemented a set of
lightweight agents that are capable of adaptive behavior in context of price negotiations (by dynamically
loading appropriate software modules [Paprzycki, 2004]). Second, we have implemented a smplistic
skeleton for an e-commerce simulation [Chmiel, 2004a]. In the remaining parts of this paper we, first, present
the top level description of the system. We follow by a summary of the implementati on-specific information
aswdl as an exampleillustrating its work. We conclude with a summary of future research directions.

2. SYSTEM DESCRIPTION

In our work we aim at implementing a multi-agent e-commerce environment to help carrying out
experiments with real-world e-commerce scenarios. Note that sometimes we use the word environment rather
than system to point out the exploratory nature of our work; i.e. we are more interested in creating an
artificial agent world in which e-commerce agents perform variety of functions typically involved in
e-commerce, rather than developing a particular e-commerce system targeted to solve a specific business
problem that uses a limited number of application-specific agents. In other words, we are facing the
multi-agent challenge from the very beginning.

2.1. System Architecture

Our e-commerce model extends and builds on the e-commerce structures presented in [Galant, 2002],
[Chmidl, 2004a] and [Paprzycki, 2004]. Basically, our environment acts as a distributed marketplace that
hosts e-shops and allows e-clients to visit them and purchase products. Clients have the option to negotiate
with the shops, to bid for products and to choose the shop from which to make a purchase. Conversely, shops
may be approached “instantly” by multiple clients and consequently, through auction-type mechanisms, have
an option to choose the buyer. At this stage we assume that the price is the only factor determining the
purchase and, furthermore, only shops are allowed to advertise their products. Obvioudly, these are serious
restrictions and we plan to address them in the near future.

Shops and clients are created through a GUI interface that links users (buyers and sdlers) with their
Personal agents. Our environment supports dynamic agent creation and destruction and agent migration to
engage in negotiations. The top level conceptual architecture of the system illustrating proposed types of
agents and their interactions in a particular configuration is shown in Figure 1 (we have omitted Personal
agents assuming that their role is obvious, as they were responsible for creating Shop and Client agents and
thus initiating operation of the system). Let us now describe each agent appearing in that figure (as well as
Personal agents) and their respective functionalities.

Personal agents facilitate communication between the system and the “real-world” users (shoppers and
merchants). A shopper will employ its Personal agent to communicate to the system his sought after
product(s) and possibly buying palicies (currently only the policy of price minimization is available). The
Personal agent will then create a Client agent to act within the marketplace on his behalf. A merchant will
utilize her Personal agent to create a Shop agent, responsible for advertising and selling her products within
the marketplace. After being created both Shop and Client agents register with the CIC agent to be able to
operate within the marketplace. Returning agents will receive their existing IDs. In this way we provide
support for the future goal of agent behavior adaptability. Here, agents in the system are able to recognize
status of their counterparts and differentiate their behavior depending if thisisa“returning” or a“new” agent
that they interact with.

There is only one Client Information Center (CIC) agent in the system (in the future we may need to
address this potential bottleneck [Chmiel 2004b]). It is responsible for storing, managing and providing
information about all “participants.” To be able to participate in the marketplace al Shop and Client agents
must register with the CIC agent, which storesinformation in the Client Information Database (CICDB). The
CICDB combines the function of client registry, by storing information about and unique IDs for all users
and of yellow pages, by storing information about of all shops known in the marketplace. Thus Client agents

(new and returning) communicate with the CIC agent to find out which stores are available in the system at
any given time. In this way we are (i) following the general philosophy of agent system devel opment, where
each function is embodied in an agent and (ii) utilizing the publisher-subscriber mechanism based on
distributed object oriented systems. Furthermore, this approach provides us with a smple mechanism of
correctly handling the concurrent accesses to a shared repository without having to deal with typical
problems of mutual exclusion etc. Actually, al these problems are automatically handled by JADE’s agent
communication service.

Q
@)
)
w
Q
0

Figure 1. The conceptua architecture of our e-commerce environment (two-client; two-store version).

A Client agent is created for each customer that is using the system. Each Client agent creates an
appropriate number of “slave’ Negotiation agents with the “buyer role’ (Buyer agent hereafter). One Buyer
agent is created for each store, within the marketplace, selling sought goods.

On the supply side, asingle Shop agent is created for each merchant in the system and it isresponsiblefor
creating a slave Negotiation agent with the “seller role’ (Seller agent hereafter) for each product sold by the
merchant.

Finally, Database agents are responsible for performing all database operations (updates and queries). For
each database in the system we create one database agent (in the future we may need to address this possible
bottleneck [Chmiel 2004b]). In this way we decoupl e the actual database management activities from the rest
of the system (i.e. the database management system can be modified in any way without affecting the agent
side of the system and vice-versa). Currently, there are two databases in the system: a single CICDB
(operated by the CICDB agent) containing the information about clients, shops and product catalogues, and a
single Shop Database (ShopDB) operated by the ShopDB agent storing information about sales and available
supplies for each merchant registered within the system.

The central part of the system operation is comprised by price negotiations. Buyer agents negotiate price
with Seller agents. For this purpose Buyer agents migrate to the e-stores known by the CIC agent to carry
sought after commodity. In case of multiple Buyer agents attempting at purchasing the same item, they may
competein an auction. Results of price negotiations are send to the Client agent that decideswhereto attempt
at making a purchase. Note that the system is fully asynchronous and thus an attempt at making a purchase
does not have to result in a success as by the time the offer is made other Buyer agents may have already
purchased the last available item.

2.2. Usage scenario

A session with the system starts with the merchants and customers creating Shop and Client agentsviathe
GUI provided by their Personal agents. A Client agent obtains name of the product of interest and areserve
price. A Shop agent obtains a list of pairs (product, reserve price) and the negotiation protocol that isto be
used for interactions with incoming Buyer agents. Thereserve price of a Client agent isthe maximum priceit
agrees to pay for the product. The reserve price of a Shop agent is the minimum price at which it isto agree
to sl a specified product. In the future, Client and Shop agents will have access to a collection of strategies
to be used depending on the context of unfolding negotiations [Parakh, 2003].

The Shop agent creates Seller agents, one Seller agent for each product sold. Seller agents await incoming
Buyer agentsinterested in buying their products and upon their arrival engage in negotiations with them. Let
us now describe what happens in the marketplace after a customer has made a purchase request, until a
request is completed.

(1) Asspecified above, a Client agent registers with the CIC agent. It obtainsanew ID if it isanew
Client or recoversitsoriginal ID if it isareturning Client. The information that an agent with a
given ID is active in the marketplace is stored in the CICDB database (this step involves
interactions between the CIC agent and the CICDB agent).

(2) The Client agent queries the CIC agent to obtain the list of Shop agents selling the product it is
expected to purchase. For each Shop agent on this list it creates a Buyer agent to negotiate
conditions of purchase.

(3) Buyer agents migrate to Shop agent sites and query Shop agents about the negotiation protocol
used in a given e-store and which Seller agent they should negotiate with. Then, Buyer agents
dynamically load appropriate negotiation protocols (and, in the future, strategy modul es[Parakh,
2003]) and subscribe to the designated Seller agent, waiting for the negotiation process to start.

(4) The Seller agent checks periodically (currently in 1 minute intervals) for the set of Buyer agents
that subscribed to bid for its product. If this set isnonempty, it starts an auction. At the end of an
auction a Seller agent informs the Shop agent about the winner. Shop agents are recording the
auctions winners and inform the corresponding Client agents that a purchase is possible. The
decision to buy and where to buy from is made by the Client agent, depending on the winning
offers made by the Shop agents.

(5) TheClient agent obtains results of auctions from the Shop agents, finds the best negotiated price
and makes an attempt at purchasing the product by informing the corresponding Shop agent
about the decision to buy. When the confirmation is received, it informs the customer about the
result of its request: success of failure of purchase, the shop where the purchase was made from
and the negotiated price. Note that there are various strategies that could be employed by a
Client agent in order to decide where to buy from, and there is an associated risk also. For
example, it may decide for the best offer, the safest offer or the most trusted offer, etc. Currently,
we are using a simple strategy of choosing the best negotiated price.

3. IMPLEMENTATION AND EXPERIMENT

3.1. System I mplementation

The current implementation of the proposed environment has been made within the JADE 3.1 agent platform
([JADE]). The main reason for this sdlection was the fact that JADE is one of the best modern agent
environments. JADE is open-source, it is FIPA compliant and runs on a variety of operating systems
including Windows and Linux. Furthermore, in [Chmidl, 2004b] we have observed its very good scalability.

JADE architecture matches well with our requirements. Negotiations between Seller and Buyer agents
take place in JADE containers. There is one Main container that hosts the CIC agent. Users (customers and
merchants) can create as many containers they need to hold their Client and Shop agents (e.g. one container
for each e-store). Buyer agents created by the Client agents are using JADE mobile agent technology to
migrate to the Shop agent containers to engage in negotiations.

Figure 2 presents mapping of our conceptual architecture (Figure 1) onto JADE. In particular thisdiagram
shows two machines running Personal, Shop, Client, Buyer and Seller agents, highlighting also the JADE
containersinvolved (Main and Container-1), the sought product (p;) and the advertised products (p1, p2, ps).
Single-arrow continuous lines denote agent creation. For example Personal agent P, creates Client agents C;
and C,. Single-arrow dotted lines denote agent migration. For example Buyer agent B;; migrates from the
Main container to the Container-1. Double-arrow continuous lines denote negotiations. For example Seller
agent S;; negotiates with Buyer agents By; and By;.

Main container

Container-1
container

Figure 2. Mapping the conceptual architecture of the system into JADE

The current implementation is based on several Java classes organized into the following categories:

- Agent classes, used for describing the agent types. In this category we have utilized: class ClientAgent
that implements Client agents, class ShopAgent that implements Shop agents, class CIC that implements CIC
agents, class NegoAgent that i mplements negotiating Buyer and Seller agents, classes ClCDatabaseAgent and
ShopDatabaseAgent that implement Client Information Database and Shop Database agents and class
Personal Agent that implements Personal agents. An agent is implemented in JADE by extending the
provided Agent base class and overriding the default implementation of the methods that are automatically
invoked by the platform during the agent lifecycle, including setup() and takedown(). In our implementation
all agent classes extend the Agent base class except the Personal Agent class that extends the GuiAgent class
(provided by JADE).

- Agent activity classes, also called behaviors, used for describing the activities performed by agentsin
the system. A behavior is an abstraction that represents an atomic activity performed by an agent. In our
implementation we have used local classes for defining behaviors that describe the agent responses to FIPA
messages, like INFORM and SUBSCRIBE. There are also two global classes for defining auction initiators
and auction participants. class Auctionlnitiator and class AuctionParticipant. Note that in the current
implementation our agents are negotiating only using FIPA defined English and Dutch auction schemas, but
the approach can be easily extended to other automated negotiation models. A behavior isimplemented in
JADE by extending the provided Behaviour abstract base class. The class Behaviour is the root of a class
hierarchy abstracting various agent behavior types. We have found useful to use the class CyclicBehaviour as
the base class for the class AuctionParticipant and the class FSVIBehaviour as the base class for the class

Auctionlnitiator. As concerning the definition of the responses to FIPA messages, we have extended the class
CyclicBehaviour.

- Reasoning classes, used for the implementation of the various reasoning models employed by the
negotiation agents; see [Paprzycki, 2004] for more details on the model of negotiation agents. Our
implementation supports agents that dynamically load their negotiation protocols and reasoning modules.
The implementation combines the Factory design pattern [Cooper, 2000] and dynamical loading of Java
classes [Paprzycki, 2004] (for similar ideas see also [Jarraya, 2004]).

- Ontology classes, necessary for implementing the agent communication semantics using concepts and
relations. The current implementation uses an extremely simple ontology that defines a single concept for
describing Client and Shop preferences including prices, product names and negotiation protocols.

- Other classes, including the class Personal AgentGUI for the implementation of the graphical user
interface of Personal agents.

In our system, agent communication is implemented using FIPA ACL messages [FIPA, 1999]. We have
used the following messages. SUBSCRIBE, REQUEST, INFORM, FAILURE, CFP, PROPOSE, ACCEPT-
PROPOSAL, REJECT-PROPOSAL, REFUSE.

SUBSCRIBE messages are used by the Shop and Client agents to register with the CIC agent and for the
Buyer agents to register (to participate in auctions) with the Seller agent. REQUEST messages are used by
Client agents to query the CIC agent about what shops are selling a specific product and for Client agentsto
ask the Shop agent for a final confirmation of a transaction. INFORM messages are used as responses to
SUBSCRIBE or REQUEST messages. For example, after subscribing to the CIC agent, a Client agent will
get an INFORM message that containsits ID, or after requesting the names of the shops that sell a specific
product, a Client agent will receive alist of the Shop agent IDs in an INFORM message. Buyer agents are
using FAILURE messages to inform the master Client agents about the unsuccessful result of an auction.
Finally, CFP, PROPOSE, ACCEPT-PROPOSAL, REJECT-PROPOSAL and REFUSE messages are being
used by negoatiating agents.

3.2. Running the System

Here, we introduce a ssimple experiment to illustrate main features of our implementation. In order to run the
experiment we set-up JADE platform on two computers. compl and comp2. On computer compl the Main
container is initialized. On computer comp2 a second container Container-1 that is linked with the Main
container on compl was started. On both computers we have set-up MySQL database. Both the CIC and the
CICDB agents are created by default within the Main container on compl, while the ShopDB and the
ShopDB agent are created in Container-1 on comp2.

For the experiment we have chosen a simple scenario with two merchants and two customers. In order to
enable price competition, we assume that both customers are seeking the same product — goodl. The first
merchant advertises two products. goodl and good2, while the second merchant advertises two products:
good1 and good3. Thus merchants compete in selling goodl. The diagram shown in Figure 2 illustrates this
scenario.

Customers and merchants used Personal agents to create Client and Shop agents. In this experiment
merchants used Personal agentsrunning in Container-1 container to create two Shop agents (Figure 3, upper
left pand) and customers used Personal agents running in Main container to create two Client agents (Figure
3, upper right pandl).

The process of starting Shop agents involved their registration with the CIC agent. Furthermore, for each
product offered a Seller agent was created (in Container-1). Therefore, four Seller agents were created.

Similarly, the process of starting Client agents involvestheir registration with the CIC agent, followed by
the “search” of Shop agents that sell sought products and creation of a Buyer agent for every Shop agent
found. Therefore, in our experiment, four Buyer agents were created (two Client agents send two Buyer
agents each to two e-stores).

At this stage, Buyer agents move to Container-1 and register with appropriate Shop agents. Asaresult of
message exchanges (Figure 3, bottom pand) negotiation protocal is identified and negotiation modules
loaded by Buyer agents. In the next step, Buyer agents subscribe with Seller agents that sdll product good1.
Sller agents react to a timer that periodically triggers start of auctions with subscribed Buyer agents (an
English auction in this experiment). Thus we have two auctions for Seller agents selling product good1.

When negotiations end, Shop agents inform Client agents about the result of negotiations. The Client

agent collects all results and decides where from to buy the product goodl, informing the Shop agent
accordingly.

£ PersonalAgent m=1E3 £ PersonalAgent m=1E3
Enter agent preferences: Enter agent preferences:
Agent Hame: Shop1 Agent Hame: Client1
{2 client [® Shop 1@ Client {2 Shop
Product Price: Protocol: Product Price: Protocol:
fipa-auction-english ‘ - | |3SU ‘ fipa-an
Product Hame: Shop Products: Product Hame: Shop Products:
good1,20;30002,300 oo
Go! ol
Selle
Fe B B BN 0 BN BN B EE

mshop1
o
" supperipERaaat]
5 SUB: ER\EE 21345 (1
3
a
= SUBBCRIBE: 21448 [54
& ELIBﬁ RIBE: 21444 (b
7
5 INAORM 21451 {) -
5 REQUEST: 21462 ¢ b
40
1
i \NHDRM 21455 3 >

SUBECRIBE: 21466 ()
13
4
o SUBSCRIBE: E‘1459\) |

suBbCRIBE2148¢|)
15
17
i
4 INAORM:214682 3 »

REQUEST:21463 (3
20
21

SUBECRIBE 21485 (
22
ingoRmzrasst | 3
22
24
25
SUBSCRIBE£1460 ()

2 —f—
s CFP.21430) :l

Figure 3. Screen captures showing our system in action

Figure 3 (bottom panel) presents message exchanges captured in the experiment with the help of a JADE
provided sniffer agent. This figure shows: i) Shop and Client agents subscribing to the CIC agent; ii) Client
agents asking the CIC agent where to find out a specific product; iii) Buyer agents subscribing to Seller
agents for negotiation; iv) the start of anegotiation when a Seller agent issues a call-for-proposal request toa
Buyer agent.

4. CONCLUDING REMARKS

In this paper we have presented basic features of an e-commerce modeling agent system that we are in the
process of developing. At this stage its capabilities are limited, but we have already considered a number of

future research directions that we plan to pursue.
(1) Currently priceisthe only factor determining purchase. Other factors, such asthe speed of delivery,
trust, history of involvement with a given merchant should be also taken into account. Overall, we

plan to combine the framework for multi-section contract formation discussed in [Karp, 2003] with
the software framework for automated negotiation presented in [Bartolini, 2002] and results on
negotiation framework targeted to multiple buyers and sdllers reported in [Srivastava, 2003].

(2) Currently only shops can advertise available commodities. We plan to extend thisto the scenarioin
which also clients will be able to advertise their “needs.”

(3) We will complete implementation of negotiation protocols. Currently we have implemented Dutch
and English auctions. We will add the remaining, FIPA defined auction protocolsaswell as simpler
strategies such as. fixed pricing, fixed pricing with a discount for volume purchases, special prices
for returning customers etc.

(4) Currently we have been running our experiments on two computers, where all seller datais located
in a single database. In the near future we will experiment with alarger number of computers and
adjust them so that each store has a separate database. More generally, we plan to experiment with a
large number of computers, Cilents, Shops, commodities and negotiation protocols. Theaim of these
experimentsis to establish scalability of the systems as well aslocate its performance bottlenecks.

(5) Our system works on the basis of an extremely simplistic ontology that has to be refined. In the
process we plan to add, among others, features representing: delivery options (and prices), trust /
reliability and other concepts useful in carrying out e-commerce processes.

(6) Currently, the negotiation strategy module is only a placeholder (agents increase or reduce their
offers — depending on the auction — by a fixed amount). A set of somewhat more realistic options
will beintroduced shortly.

REFERENCES

Cooper, J. W., 2000. Java Design Patterns. A Tutorial. Addison-Wesley, USA

Laudon, K.C., Traver, C.G., 2004. E-Commerce. Business, Technology, Society (2nd ed.). Pearson Addison-Wesley,
Boston, USA

Srivastava, V., Mohapattra, P.K.J, 2003. PLAMUN: a platform for multi-user negotiation. Electronic Commerce
Research and Applications, Vol.2, No.3, pp. 339-349

Gaant, V. et a, 2002. Infrastructure for E-Commerce. Proceedings of the 10th Conference on Knowledge Extraction
from Databases, Wroctaw University of Economics Press, pp. 32-47

Paprzycki, M. et al., 2004. Implementing Agents Capable of Dynamic Negotiations, in: D. Petcu et. a. (eds)
Proceedings of SYNASC04: Symbolic and Numeric Algorithms for Scientific Computing, Mirton Press, Timisoara,
Romania, pp. 369-380

Chmiel, K. et a, 2004a. Agent Technology in Modelling E-Commerce Processes, Sample Implementation, in:
C. Danilowicz (ed.), Multimedia and Network Information Systems, Volume 2, Wroctaw University of Technology
Press, pp. 13-22

Chmiel, K. et al, 2004b. Testing the Efficiency of JADE Agent Platform, Proceedings of the 3" Inter national Symposium
on Parallel and Distributed Computing, Cork, Ireland, IEEE Computer Society Press, Los Alamitos, CA, pp. 49-57

JADE. Java Agent Development Framework. Seehtt p: //jade.csel t.it

FIPA, 1999. The foundation for intelligent physical agents. Seeht t p: / / www. fi pa. org

Karp, H. A., 2003. Rules of Engagement for Automated Negotiation. Technical Report HPL-2003-152. Intelligent
Enterprise Technologies Laboratory, HP Laboratories Palo Alto, USA

Bartolini, C. et a, 2002. Architecting for Reuse: A Software Framework for Automated Negotiation. Proceedings of the
3rd Int. Workshop on Agent-Oriented Software Engineering, Bologna, Italy, LNCS 2585, Springer Verlag, pp. 88-100

Kowalczyk, R. et a, 2002. Integrating Mobile and Intelligent Agents in Advanced E-commerce: A Survey. Agent
Technologies, Infrastructures, Tools, and Applications for E-Services, Proceedings NODe 2002 Agent-Related
Workshops, Erfurt, Germany, LNAI 2592, pp. 295-313

Jarraya, T., 2004. Using Generic Interaction Protocol s to Devel op Multi-Agent Systems. Proceedings of the I nternational
Conference on Advances in Intelligent Systems: Theory and Applications, Kirchberg, Luxemburg

Paprzycki, M., Abraham, A., 2003. Agent Systems Today; Methodological Considerations, in: Proceedings of 2003
International Conference on Management of e-Commerce and e-Government, Jangxi Science and Technol ogy Press,
Nanchang, China, pp. 416-421

Parakh, G., 2003. Agents Capable of Dynamic Negotiations, in: M. Paprzycki (ed.), Electronic Commerce; Research and
Devel opment, ACTEN Press, Wejherowo, Poland, pp. 113-120

