
Agents Capable of Dynamic Negotiations

Garima Parakh, Sandhya Rani, Marcin Paprzycki, Ajith Abraham and Johnson Thomas
Computer Science Department

Oklahoma State University
Tulsa, OK, 74106, USA

gparakh@hotmail.com, ps_rani@yahoo.com, {marcin,jthomas,aa}@cs.okstate.edu

Abstract. Support for negotiation is one of the more important research issues when developing
agent systems utilized in e-commerce. While, depending on the type of the transaction, different
negotiation procedures need to be utilized, only very few proposed frameworks are generic and
flexible enough to handle multiple scenarios. This note presents negotiating agents, which can change
their negotiation strategy depending on circumstances. This goal is achieved through dynamic loading
of reasoning models and their rule-based selection. We also sketch some details of the initial
implementation of such a system.

1. Introduction
The advent of Internet and the rapid development of e-commerce, gave a boost to the agent technology

research. While there exist many definitions of agents [GATY], for the purpose of this note we will define them as:
encapsulated computer programs, situated in an environment, and capable of flexible, autonomous actions focused
on meeting their design objectives [WLD]. Application of such agents is often considered in e-commerce. The
number of e-commerce WWW-sites was recently estimated at more than 150000 [GAR] with revenue projections up
to $1.5 trillion in 2004 [AND, FOR]. In the context of e-commerce, automated trading using agents are expected to
reduce transaction costs, with even better results possible if agents incorporate appropriate "intelligent" trading
capabilities. In other words, when agents can reason and negotiate, provide counter-offers and critiques regarding
their proposals autonomously and dynamically during the negotiation process.

Most currently existing automated trading systems are not robust enough to become the needed foundation of
the next generation of e-commerce. For example, the Kasbah Trading System [MAES] supports buying and selling
but does not include auctions; SILKROAD [STB], FENAs [KOW1] and Inter-Market [KOW2] exist as
“frameworks” but lack an implementation. This note is a follow up to [PPN] where we proposed a system in which
agents can operate according to different business models including auctions, reverse auctions, trading, e-sales etc.
This was to be made possible by incorporating a meta-level rule-based support for agents. In addition, each agent
was to consist of three independent modules: protocol, strategy and communication, designed as plug-in components
loaded remotely on-demand. Here, we will first, outline the rationale and the design of the proposed system and
follow with the description of the implementation of the demonstrator system.

2. Negotiations

Negotiation is a method for coordination and conflict resolution. Conflict can be in the form of resolving goal
disparities in planning, resolving constraints in resource allocation, and resolving task inconsistencies in determining
organizational structure. Overall, research on agent-mediated negotiation can be divided into approaches with their
foundation in game theory or in artificial intelligence.

Game-theoretic approaches are based on optimization algorithms (e.g. [ZLT], [AUC]). Their main drawback
is that they assume unrealistic properties of the game, e.g. agents that have unbounded knowledge and rationality as
well as unlimited computation power and indefinite negotiation time. This makes such approaches impossible to
implement. Nevertheless, an extensive research carried out in this field helped develop other theories, e.g. techniques
for agents participating in auctions e.g. Dutch, English, Vickery, etc.

Artificial Intelligence based approaches support trading heuristics for different market mechanisms (e.g.
[MAES], [JEN1]). AI techniques focus on the negotiation process and utilize techniques such as decision trees, Q-
learning and evolutionary algorithms.

When considering the practical aspects of designing multi-agent negotiations, the negotiation protocol,
negotiation objects and the reasoning models [JEN2] need to be taken into account.

1. Negotiation protocol consists of a set of rules that govern the interaction among agents. Some examples of the
rules are: permissible types of participants – negotiators, third parties; negotiation states – accepting bids,

negotiation closed; valid actions of the participant in particular states etc.

2. Negotiation objects are issues over which agreement must be reached.

3. Reasoning model is the apparatus that participants employ within the negotiation protocol in order to achieve
their negotiation objectives, e.g. argumentation, persuasion or heuristics-based. Obviously, the reasoning
model depends on both the protocol and the negotiation object [JEN1].
Our architecture is based on managing these three areas: protocol, strategy and negotiation object and we

propose an approach to achieving this goal.

3. Conceptual model of the system
It is often suggested that agent mobility is a source of an important advantage of agent systems. Mobile agents

support users that are off-line (while continuously working for them). Since transactions carried through mobile
devices involve high cost of sending and receiving data, mobile agents can autonomously carry out negotiations and
thus reduce cost. However, there is no free lunch. Mobile agents can either be loaded with all the necessary
reasoning power or be lightweight. Our approach attempts at designing agents that will remain relatively lightweight,
while being able to be well equipped with reasoning powers. To this effect we utilize the concept of dynamically
loaded modules. This allows us also make the proposed system more accommodating, by providing agents with a
flexibility of selecting negotiating approaches. In our system agents (buyers and sellers) will be composed of a
“static core” and plug-in modules that can be remotely loaded when the need arises.

An example, somewhat similar to our proposal, is the Inter-market system [KOW2]. It comprises of mobile
agents and intelligent decision-making agents offered as add-on components to the commercial e-marketplace
platform Inter-Shop. In the Inter-market, there are two types of agents. Stationary agents run automated processes
interacting with other agents or with users. They are a part of the Inter-Market system and their built-in functions
cannot be extended or modified by its users. They are parameterized to perform trading tasks according to the users
instructions. Mobile agents on the other hand, are used as means of communication when exchanging information
between mobile devices and the Inter-Market system.

4. Design of the system

As mentioned above, an agent in our system is composed of a static core and plug-in components (for more
details see [PPN]). To keep the agent lightweight it will carry only a part of a table, similar to Table 1 below,
containing information about potential sellers (or buyers), resulting from past transactions and/or additional
information sources. Only information about “sites” most often negotiated with will be carried, while the remaining
part of the table will be kept on the user’s machine. In case of dealing with an unknown site or when user’s machine
is off-line a default strategy will be used (since this will involve only sites that are visited rarely, it should not be
detrimental to the performance of the system).

SELLER PRODUCT PROTOCOL STRATEGY SUCCESS RATE
Seller 1 Used Cars Offer-Counter Offer Tit-For-Tat 0
Seller 2 Used Cars Offer-Counter Offer Tit-For-Tat 60
Seller 3 Used Appliances Argumentation Persuade/Critique 90
Seller 4 Used Appliances Auction Heuristics 70
Seller 5 Travel package Offer-Counter offer Boulware + Time

dependent
40

Seller 6 Travel package Bidding
Seller 7 Air tickets Auction

Table 1: Sample matchmaking table for negotiation initialization

Each agent (buyer or seller) will consist of three basic modules (the sketch of the design of the agent is
depicted in Figure 1).

1. Communication module – responsible for communication between the agents; we assume that this is a static
module supporting the FIPA ACL language [FIPA]; (while it is possible that this module could be also
downloadable and support other communication mechanisms, such a scenario is outside the scope of this
note).

2. Protocol module – contains general rules of negotiation; when an agent initiates negotiation, on the basis of
negotiator table and/or meta-negotiations it finds out which negotiation protocol can be used and dynamically

loads the correct module (from the user's local machine or any agent server, e.g. the nearest one).

3. Strategy module – contains policies: set of goals, actions and action rules (triggers); selected strategy
depends on an earlier success rate (see Table 1 last column) and the negotiation protocol selected (for
example, a strategy used for argumentation cannot be used in case of an auction protocol). In the case, when
no information is available a default strategy module is used.

Figure 1. An agent, its static core, and its plug-in components

5. Initial implementation
The initial implementation of the proposed system has been attempted utilizing the JADE agent system

[JADE]. The main reason for this selection was the fact that JADE is one of the newest agent environments, it is
open-source software and it is FIPA compliant. Before we proceed we have to stress that our objective was to
implement dynamically loaded protocols and reasoning modules working with in mobile agents. Our intention was
not developing and implementing sophisticated AI algorithms, which will be required in the latter stages of this
project. Therefore we have implemented very simple logic that governs the bargaining process. We have assumed
that e-commerce agent system involves car buying and selling (but, for all practical purposes, this choice is
inconsequential for our implementation).

In our test-implementation we have started with a personal agent that is responsible for creating buyer and
seller agents (which are instances of negotiator agents). In Figure 2 we present the GUI interface to the personal
agent. To initiate the process the required fields have to be entered (e.g. the price and the protocol). When the Start
Negotiation menu item is clicked, the negotiation starts. Let us present it from the point of view of a seller agent. Let
us assume that a seller agent (e.g. Honda car dealer) is created. It then enters a marketplace (we will omit all details
related to the organization of the marketplace, or a Negotiation Server; environment where the negotiations take
place; as they are outside of the scope of this note) and tries to find prospective buyer agents by searching for all
agents of the Type=Buyer. Then, it determines which negotiation protocol is favored by the majority of buyer agents
(at this stage we assume that a given agent will negotiate alone; it is however possible that a number of agents can
work together as a team; here, the seller agent could clone itself for each encountered protocol). Once the preferred
protocol is determined, the seller agent loads the corresponding protocol module as well as an appropriate strategy
module and initiates the negotiation process (in the case of multiple protocols, each seller agent clone loads its
negotiation protocol and strategy protocol). Buyer agents respond and the negotiation process continues until a buyer
is found or no buyers are found (the case of multiple agents, the final result of negotiation would have to be further
meta-negotiated between the seller agent clones).

Figure 2. GUI interface of the personal agent

5.1. Negotiation protocols
We have restricted our attention to auctions and implemented two auction protocols that are defined by FIPA

for agent negotiations. In accordance with FIPA specifications we created a
myFipaEnglishAuctionInitiatorBehavior subclass and a myFipaDutchAuctionInitiatorBehaviour subclass of the
EnglishAuctionInitiator class and the DutchAuctionInitiator classes in the jade.proto package. Let us now look
briefly at the English auction and the Dutch auction protocols.

A. FIPA English Auction Interaction Protocol: the auctioneer seeks to find the market price of a good by
initially proposing a price below that of the supposed market value and then gradually raising the price. Each
time the price is announced, the auctioneer waits to see if any buyers will signal their willingness to pay the
proposed price. As soon as one buyer indicates that it will accept the price, the auctioneer issues a new call for
bids with an incremented price. The auction continues until no buyers are prepared to pay the proposed price,
at which point the auction ends. If the last price that was accepted by a buyer exceeds the auctioneer's
(privately known) reservation price, the good is sold to that buyer for the agreed price. If the last accepted
price is less than the reservation price, the good is not sold.

B. FIPA Dutch Auction Interaction Protocol: the auctioneer attempts to find the market price for a good by
starting bidding at a price much higher than the expected market value, then progressively reducing the price
until one of the buyers accepts the price. The rate of reduction of the price is up to the auctioneer and they
usually have a reserve price below which not to go. If the auction reduces the price to the reserve price with no
buyers, then the auction terminates.

5.2. Negotiation strategies

Since the aim of our work was to test-implement an agent system, not to deal with specific negotiation
mechanisms we have implemented two simple negotiation strategies. The Seller increments the price by 10 in, what
we named, the Heuristics Reasoning module and by 20 in, what we named, the Argumentation Reasoning module
(obviously, these names only indicate negotiation strategy that could be used here). Currently we load these two
modules randomly as a proof of concept.

6. Running the system

In order to demonstrate the dynamic loading of modules, we need to set-up JADE using multiple containers.
There is one Main container and the container attached to the Main container is called Container-1. The personal
agent resides in Main container and all other negotiating agents migrate to Container-1 after they receive the
preferences from the personal agent. The Container-1 may (but does not have to) exist on a remote machine and
represents the marketplace. The host name of our machine is inspiron. This set up can be seen from the screen shots
(Figure 3). Here we present a step-by-step account of running of our system:

1. Start JADE and create the personal agent and a sniffer agent (to monitor the transaction messages exchange;
see Figure 2 and 3)

2. Create a satellite container that acts as the marketplace
3. A screen with default values comes up. The default mode is buyer. Since this is an auction, create two or

three buyer agents and then create a seller agent
4. Create a buyer agent (e.g. Garima), give it a name and enter a reserved price $1000. Select the protocol e.g.

English Auction, Click on Submit button.
5. Create a second buyer agent (e.g. Sandhya), give it a name and enter a reserved price $1500. Select the

protocol e.g. English Auction and Submit.
6. Create a seller agent (e.g. Honda Dealer), give it a name and enter a reserved price $900. Change the

protocol to Dutch Auction and Submit. (although Dutch auction is selected, the seller will actually load
English Auction since the two buyers prefer the latter).

7. Initiate the sniffer agent for all agents created
8. Click on Negotiation Server → Start Negotiation. A call for proposal (containing the proposed selling price

of the car) will be sent by the Honda Dealer to the buyers Garima and Sandhya. Buyers will reply by a
REFUSE or PROPOSE message and negotiation will continue until a single buyer remains.

9. When the auction stops, we check the last negotiating message. Honda Dealer will choose the buyer:
Sandhya and the selling price will be $1500.

Figure 3. Screen captures of the developed system in action (left top: JADE environment with two containers,

right top: sniffer agent, remaining two: agent mobility and dynamic loading of reasoning modules)

7. Conclusions
In this note we presented an agent framework capable of dynamic negotiations depending on the

circumstances. In addition, we have discussed details of a JADE based implementation of an actual demonstrator
system. We have shown that the proposed framework, using rule based selection and dynamic loading of reasoning

modules is capable of facilitating dynamic negotiations scenario.
Obviously, the implemented system is highly simplified, as our goal was to perform an initial assessment of

the feasibility of our approach. In the future we plan to continue developing its capabilities in two main directions.
The first one is associated with agent technology itself. Here we have to test the technical limits of JADE as the
agent platform. To do this we have to, among others, increase the number of agents and computers; test the above-
mentioned possibility of utilizing agent cloning; test the assumption that sending modules over the network improves
performance of the system. The second is associated with the negotiation process itself. Here we have to take the
existing results and actually implement them in our agents and use such agents in actual e-commerce scenarios.

References

[AND] Andersen Consulting. http://www.andersen.com
[AUC] AuctionBot. http://auction.eecs.umich.edu
[BEAM] P. Beam, M. Segev et. al., On Negotiation and Deal Making in Electronic Markets
[JEN3] A. Beer, M. d'Inverno, P. Luck, P. Jennings (1999), Negotiation in Multi-Agent Systems
[BEN] D. Benameur, A. Chaib-draa, H. Kropf, Multi-item Auctions for Automatic Negotiation
[MAES] V. Chavez, P. Maes, Kasbah: An Agent Marketplace for Buying and Selling Goods
[FIPA] http://www.fipa.org
[FOR] Forrester. http://www.forrester.com
[GATY] V. Galant, J. Tyburcy (2001) Intelligent Software Agent (in Polish), in: A. Baborski (ed.), Knowledge Acquisition in
Databases, Wrocław University of Economics
[GAR] Gartner. http://www.gartner.com
[GUT] H. Guttman, P. Maes (1998), Agent-mediated Integrative Negotiation for Retail Electronic
[GRF2] F. Griffel, W. Lamersdorf, M. Merz, A plug-in architecture for providing dynamic negotiation capabilities for mobile
agents
[GRF3] F. Griffel, W. Lamersdorf, M. Merz, Interaction-Oriented Rule Management for mobile agent applications
[JADE] http://jade.cselt.it
[JEN2] P. Jennings, S. Parsons (1998), On Argumentation-Based Negotiation
[KOW1] R. Kowalczyk, On Fuzzy e-Negotiation Agents: Autonomous negotiation with incomplete and imprecise information
[KOW2] R. Kowalczyk, B. Franczyk, A. Speck, Inter-Market, towards intelligent mobile agent E-Market places
[KRS2] V. Kraus, et al. (1998), Reaching agreements through argumentation: a logical model
[LES] D. Lesser, Negotiation among computationally bounded self-interested agents
[STB] S. Michael, Design of Roles and Protocols for Electronic Negotiations, Electronic Commerce Research Journal, Special
Issue on Market Design, Vol.1
[PPN] G. Parakh, M. Paprzycki, C. E. Nistor, Dynamically Loaded Reasoning Models in Negotiating Agents, Proceedings of the
3rd European E-COMM-LINE 2002 Conference, Bucharest, Romania, 2002, 199-203
[PAR] M. Parunak, Characterizing Multi-Agent Negotiation
[KRS1] H. Sarit, V. Kraus, Negotiation and Cooperation is Multiagent environment
[JEN1] M. Sierra, G. Faratin, Jennings, Service Oriented Negotiation Model between Autonomous Agents
[GRF1] M. T. Tu, F. Griffel, W. Lamersdorf, Integration of Intelligent and Mobile Agents for E-commerce
[TAMBE] X. Qiu, F. Tambe, Flexible Negotiation in Teamwork
[WLD] M. Wooldridge (1997) “Agent-based software engineering” IEEE Proc. on Software Engineering, 144 (1) 26-37.
[ZLT] G. Zlotkin, J. S. Rosenschein, Cooperation and conflict resolution via negotiation among autonomous agents in non-
cooperative domains

	SELLER
	Table 1: Sample matchmaking table for negotiation initializa
	Figure 1. An agent, its static core, and its plug-in compone
	Figure 2. GUI interface of the personal agent
	Figure 3. Screen captures of the developed system in action

