
Computing and Informatics, Vol. 22, 2013, 1001–1032, V 2013-Jan-21

DISTRIBUTED AGENT-BASED ONLINE AUCTION
SYSTEM

Costin Bădică, Sorin Ilie, Alex Muscar

University of Craiova
Software Engineering Department
Bvd. Decebal, 107, Craiova, Romania
e-mail: {cbadica,silie,amuscar}@software.ucv.ro

Amelia Bădică

University of Craiova
Statistics and Business Information Systems Department
Str. A.I.Cuza, 13, Craiova, Romania
e-mail: ameliabd@yahoo.com

Liviu Sandu, Raluca Sbora

University of Craiova
Software Engineering Department, Bvd. Decebal, 107
Craiova, Romania
e-mail: ssanduliviu@yahoo.com, ralus08@yahoo.com

Maria Ganzha, Marcin Paprzycki

Polish Academy of Sciences
Systems Research Institute, ul. Newelska 6, 01-447
Warszawa, Poland
e-mail: Maria.Ganzha@ibspan.waw.pl, Marcin.Paprzyck@ibspan.waw.pl

1002 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

Abstract. This paper concerns the design and development of a distributed agent-
based online system for English auctions. The proposed system is composed of two
parts: an Agent-based Auction Server and a Web-based Graphical User Interface.

The first part of our work brought about the advantages introduced by the multi-
agent systems technology to the high-level of abstraction, modularity and perfor-
mance of the server architecture and its implementation. On the server side, bids
submitted by auction participants are handled by a hierarchical organization of
agents that can be efficiently distributed on a computer network. This approach
avoids the bottlenecks of bid processing that might occur during periods of heavy
bidding, like for example snipping. We present experimental results that show a
significant improvement of the server throughput compared with the architecture
where a single auction manager agent is used for coordinating the participants for
each active auction that is registered with the server.

The second part of our work involved analysis of external functionalities, imple-
mentation and usability of a prototype online auction system that incorporates the
Agent-based Auction Server. Our solution is outlined in terms of information flow
management and its relation to the functionalities of the system. The main outcome
of this part of the work is a clean specification of the information exchanges between
the agent and non-agent software components of the system. Special attention is
also given to the interoperability, understood here as successful integration of the
different data communication protocols and software technologies that we employed
for the implementation of the system.

Keywords: distributed system, multi-agent middleware, online auction

1 INTRODUCTION

The vision of e-commerce automation proposes the development of global e-com-
merce environments populated by software agents, thus enabling the dynamic de-
velopment of trading relationships between business partners. In particular, increas-
ing the level of automation of negotiations is needed, to allow the engagement of
stakeholders, either individuals or business organizations, into nontrivial dynamic
business relationships.

As it was argued in [8], auctions provide a general solution to the problem of
discrete resource allocation among selfish agents in a multi-agent system. There are
many types of auctions including single-good, multi-unit, combinatorial auctions,
and double auctions. Auctions represent a special class of negotiations with many
applications in conducting e-business transactions [32]. In particular auctions are
useful for trading in the following specific areas: spectrum licenses, electricity mar-
kets, emission rights, airports takeoff and landing slots, exploitation rights of natural
resources (e.g. oil-drilling), selling of collectibles, antiques, luxury and second-hand
products, government procurement contracts, foreign exchange, a.o. [7].

As online auctions spread with the advent of the web, many types of online

Distributed Agent-Based Online Auction System 1003

applications for auctions were proposed including: auction directories, auction tops,
meta-auctions, and auction servers [2]. Recently, the research focus was set on the
development of more process-generic, flexible and reusable auction solutions, with
an increased potential for applicability both to the B2C and B2B sectors. In this
context, application of agent-based systems was proposed as a new approach that
takes the idea of an auction service from the human-driven web to the software
agents’ world [13].

In this paper we consider specific example of English auctions. In this case,
the seller (or the auctioneer that represents the seller) announces an initial price
for the good (assuming an e-commerce application setting) and auction participants
bid increasing amounts of money during a predefined time frame, usually by some
minimum increment set by the seller. At the end of the bidding process, the agent
with the highest bid is declared the winner of the English auction. Note that, we
consider here the deadline-driven model of the English auction, rather than the time
of inactivity model.

Our current work in this area is focused on the analysis, design and implemen-
tation of an open, flexible infrastructure for agent-based automated negotiations.
The two objectives of this paper are:

(i) To underline the advantages of using multi-agent systems and state-of-the-art
agent frameworks and middleware [25] when developing a realistic auction server.
Here, the focus is on employing clean software engineering principles (abstraction
and modularity), as well as on evaluating and improving the performance and
scalability of the implementation. Initial discussion of software engineering prin-
ciples that underline this work, as well as preliminary performance assessment
were presented in [2]. The scalability and performance aspects were further
expanded by realization of a cluster-based implementation that was outlined
and initially evaluated in [11]. Here, we combine and further extend the results
presented in these two conference papers.

(ii) To develop a tool that can be used for online auctions in B2C systems. This goal
is addressed by focusing on the details of incorporating the Agent-based Auction
Server into a Web-based application for online auctions.

The proposed agent-based solution for the auction server combines the best fea-
tures of: (i) generic software framework for automated negotiations [3]; (ii) market
architecture for auction development [6]; (iii) rule-based declarative representation
of auction mechanisms [1, 4]; (iv) special computing nodes available in active net-
works and realized by means of proxy agents [9]; (v) agent-based service-oriented
architecture [2]. Consequently, it provides certain features including: openness,
generality, and scalability. For example, with this approach an auction is seen as
a separate service, rather than being entirely incorporated into an e-shop infras-
tructure. This can be seen as a gain in openness, as the service is now open for
rental and configuration by the e-shop that would like to sell its products through
an auction, for example for clearing its shelves during the “sales” time. Generality

1004 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

comes form the fact that the e-shop can now choose the most appropriate auction
server depending on factors like performance, reliability or trustworthiness of the
service. Finally, scalability comes from our new approach that combines the use of
Proxy agents with two level balanced tree structures for handling participants’ bids.

The second part of our work was focused on the analysis of the external func-
tionalities, implementation and usability of a prototype online auction system that
incorporates the Agent-based Auction Server. We present the details of our solution
in terms of the information flow management and its relation to the functionalities
of a system for online auctions.

In summary, our work brings several contributions to the research on agent-based
e-commerce.

When an auction (in particular an English auction) is modeled as a multi-agent
system, the agents’ interaction through message exchanges is required for the bid-
ding and price update activities. In our previous approach [2], the central agent
for auction management was responsible with handling all the communication with,
and between, the auction participants. So, if a large number of participants joined
the auction, this agent became highly stressed. Second, although the approach in-
troduced in [2] was described as distributed, understood as possibility for agents to
be arbitrarily located on networked computers, it was still biased towards central-
ization, because the central agent was a system bottleneck, and thus hindered the
scalability.

In this paper we propose a solution aiming to improve the architecture of our
Agent-based Auction Server by relaxing the central agent from part of the stress
caused by its heavy load of message handling. Based on the idea that was initially
proposed by [9], for improving the performance of on-line auction systems using
special computing nodes available in active networks, we enhanced our system with
the introduction of third party agents called proxies. Each Proxy agent will handle
a part of the communication with the auction participants.

So, while in our prior approach the Auction Manager would receive all the bids
from the Participants, with this new approach the Participants are split into disjoint
groups, and each group is managed by a single Proxy agent. The Participants com-
municate heavily with their proxies, while proxies pass on to the Auction Manager
agent only the relevant bids, while the other bids are filtered out and processed
locally, thus reducing the amount of messages handled by the Auction Manager.

Note that the communication between two agents is faster when the agents
are located on the same machine, rather than when they are located on separate
machines. When our auction server is distributed on several computers, some agents
will have to exchange messages over the network, thus increasing the communication
time, as well as the overall server response time. So, with our solution we also aimed
to improve the communication time between agents, when the server is distributed
on several computers, by keeping, whenever possible, Proxy agents on the same
machine with their “participant agents”.

Finally, our work contributes also to research concerning usability of agent-
based e-commerce solutions. While very attractive, the complete automation of

Distributed Agent-Based Online Auction System 1005

e-commerce processes is probably impossible to achieve, and therefore the human
user involvement, through an appropriate online system, will be always necessary.
Therefore, we found it important to experiment with the integration of the proposed
Agent-based Auction Server into a usable online auction system that allows the direct
human user involvement in auctions, via a Web-based GUIs.

Furthermore, we provide a clean specification of the information exchanges be-
tween the agent and non-agent software components of the system, which is particu-
larly interesting from the software engineering point of view. In this context, special
attention is also given to the heterogeneity of the different data communication pro-
tocols (for example: HTTP, FIPA, parameter passing via method invocation, a.o.)
and software technologies (Web technologies vs software agent technologies) that we
utilized for implementing the system.

The paper is structured as follows. We start in Section 2 with a brief overview
of related works in the field. In Section 3 we present the architecture of our Agent-
based Auction Server covering agent types, interaction protocols and mechanisms
for efficient bid processing. Next (in Section 4), we propose the design of a Web
system for online auctions that incorporates the auction server. Here, the discussion
is focused on three aspects: (i) system architecture, (ii) design details of the Web
layer as well as of the interfacing of the agent and non-agent software, and (iii)
interaction protocols. In Section 5 we present results of experiments carried out with
the auction server, including recorded values of latency and throughput parameters.
Here we also discuss the usability of the online auction system. In the last Section 6,
we present our conclusions and we point to future works.

2 RELATED WORKS

The interest in development of online software systems for online negotiations, with
a special focus on online auctions, increased significantly during the last 15 years.
Traditionally, auctions were utilized for trading support in economic markets in
offline as well as in online environments. Recently auctions started to be applied
in market environments for trading resources for utility computing, including grids
and clouds [14].

One of the first and most influential works in the area of auction servers for
online applications is the Michigan Internet AuctionBot introduced in [22]. This is
a versatile and robust server for online auctions supporting both agent-oriented and
human-oriented auction execution. The Michigan Internet AuctionBot introduced
the principles of software design for supporting flexible auction mechanisms, includ-
ing: separation of the user interface from the core auction engine, the capability
of running concurrently multiple auctions, as well as the abstraction of the auction
process. Most of these principles are currently employed by state-of-the-art auction
servers including our own.

In [17], the authors proposed an Internet-based negotiation server for e-com-
merce applications. Although this work does not explicitly address auction mecha-

1006 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

nisms (rather, the focus is on bargaining) and the use of software agent technologies,
it is interesting for our approach for at least the following reasons: (i) the system is
conceptualized as a replicable service that can be multiply instantiated by comple-
menting standard Web server software, i.e. quite similarly to our proposal; (ii) the
system incorporates methods of event-based rule processing and constraint satisfac-
tion for checking negotiation proposals and implementation of negotiation strategies
which, although they are not the focus of this paper, they were also employed in
our previous work ([1, 2]).

The authors of [16] propose an agent-based modeling of the New York Stock
Exchange specialist system. Although this work clearly differentiates from our own
work, as the focus is not on the development of an online system incorporating an
auction server, but rather on the agent-based modeling of the complex interactions
occurring in the New York Stock Exchange specialist system, there are also simi-
larities. First, their modeling addresses a non-trivial class of auctions – continuous
double auctions and, second, the modeling could be further expanded to cover the
development of an e-service system as part of the New York Stock Exchange.

The e-Game tool that supports the design and implementation of electronic mar-
ket simulation games inspired by the real life problems, was proposed by the authors
of paper [15]. These simulations can also incorporate various types of auctions, and
they were used for teaching purposes. The e-Game tool provides both Web and
agent interfaces, similarly to our system. Nevertheless, differently from our work,
the aspects related to software engineering principles, performance and scalability
were not addressed.

In [19], the authors present the principles of constructing online auction sys-
tems that were employed for building the Research Auction Server for performing
both simulated and real auctions. However, many details are lacking from their de-
scription, especially those related to the interaction protocols. Therefore we could
not compare our approach with [19] because of the missing information. Moreover,
although the “agent” metaphor is used we noticed that the development of the
Research Auction Server did not actually use software agent technologies.

A generic online auction server was discussed in [23]. The server supports a
flexible bidding language based on the OR/XOR formulae. Although, apparently
there are many similarities with our own work, the details of the design and imple-
mentation of the system are actually lacking; only a listing of available technologies
is provided. In particular, the interaction protocols and the details of the interfacing
of agent and non-agent software are not described.

A configurable auction server was also proposed by the authors of [20]. This
server targets resource allocation in the grid and therefore its design addresses the
heterogeneity of the grid environment by allowing the dynamic configuration of the
auction mechanism to meet the application requirements.

The authors of [26, 27] propose an agent-based infrastructure for autonomous
services for management of the contracting of Cloud resources that covers also ne-
gotiation. Their system generates a service-level agreement – SLA representing the
result of the resource negotiation and booking with available providers. The use

Distributed Agent-Based Online Auction System 1007

of SLA has the advantage that it can be re-negotiated and monitored – a feature,
which is missing from our approach. Moreover, while our work is more suitable for
auctions, papers [26, 27] are focused on other negotiation mechanisms, like Contract-
Net for example [28]. Thus, they are closer to our proposed negotiation framework
introduced separately in [29].

3 DISTRIBUTED AGENT-BASED AUCTION SERVER

There are many definitions of the agent concept [30]. For the purpose of this work, by
software agent (agent in what follows) we understand a software entity that: (i) has
its own thread of control and can decide autonomously if and when to perform a given
action; (ii) communicates with other agents by asynchronous message passing; (iii)
can be referenced using its name, also known as agent identifier; (iv) can be located
on an arbitrary machine in a computer network, providing that a certain runtime
environment is locally available. This runtime is usually known as agent platform
(see [25] for a recent overview of agent programming languages and platforms). In
our current work, we use the Java Agent DEvelopment Framework – JADE [10]
agent platform.

In this section we outline the architecture of our Agent-based Auction Server,
highlighting agent types and relationships between them and users. Furthermore,
we describe agent interactions: (i) inside the auction server and (ii) with external
agent and non-agent software.

3.1 Agent Types and Their Functions

Let us now summarize the types of agents included in our auction server, focusing
on their functionalities. The initial architecture and the agent interaction protocols
of the server were introduced in [2]. In [11] we proposed an improved architecture
that enables the deployment of the server on a computer cluster.

The auction server was designed to support the innovative concept of generic
agent-based auction service. It is represented by a collection of cooperating agents
that interact inside the server, as well as with its external environment, using agent
interaction protocols. The software infrastructure of the server contains the types
of agents depicted in the class diagram in Fig. 1. The auction server is actually
composed of three main parts or layers: core, resource manager, and interface.

3.1.1 Interface Layer

The Personal Agent, Participant, and Initiator Participant agents compose the layer
that realizes the interface of the server with its external environment.

The Personal Agent is residing on the server side and it connects the user with
the auction server. For each user registered with the server there is exactly one
Personal Agent created on the server. This agent gets input from the user, through
an external user interface¿ This can be achieved directly, i.e. the Personal Agent can

1008 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

Fig. 1. Relationships between users, agent types and auctions on the auction server.

incorporate a user interface, or via a binding software that connects the Personal
Agent with an external Web-based GUI. There is a one-to-one mapping between the
user name and the identifier of the corresponding Personal Agent.

Whenever a human user connects to the server, usually using an external pro-
gram (for example a GUI or a Web browser), a new Personal Agent is eventually
created and assigned to the user (if no such agent is already active on the server).
We setup our server to be used in a Web environment using the servlet technology
on the server side (see Section 4 for details). In this case, it is the responsibility of
the servlet to talk to the Personal Agent, when the user logged into the system, via
an appropriate binding software.

The Personal Agent allows the user to perform the following operations:

• To create a new auction.

• To subscribe to an existing auction.

• To submit bids to one of his or her subscribed auctions, via his or her Participant
agent.

• To receive notifications about status updates of his or her subscribed auctions.

• To receive accepts and rejects for his or her submitted bids.

Personal Agents can be enhanced with complex behaviors (like for example be-
haviors specific to Belief-Desire-Intention (BDI) architecture and agent-programming
languages [35]) that would allow their truly autonomous operation for better serving

Distributed Agent-Based Online Auction System 1009

the interests and goals of the human user. However, this path of investigation is
outside the scope of this paper and it was left as future work.

Participant agent represents a Personal Agent that serves a user (usually with
the buyer or seller role, although an auctioneer role can also be used, for example,
in double auctions), registered and engaged into a particular auction. For each user
registered to participate in an auction there is an associated Participant agent on
the server. The Participant agents associated to a given user directly report to, and
eventually get orders from, his or her Personal Agent.

Initiator Participant is a special Participant agent that represents the user,
with the role to create and initiate the auction. For example, in an English auction
the Initiator Participant represents the user that has the role of a seller, while
the remaining Participants represent users that have the role of buyers. Usually,
when a user initiates an auction he or she can specify also a condition that triggers
the start of the auction (if this condition is missing then it is assumed to be true
by default, which means that the auction will start immediately after creation).
Example of starting conditions are: predefined starting time or registration of a
minimum number of participants (this second condition is particularly useful for
setting up experimental scenarios, see Section 5).

3.1.2 Core Layer

The core of the server is represented by Auction Service, Auction Manager, Auction
Directory, and Proxy agents. This layer is responsible for the auctions’ management
and for the coordination of the auction participants by implementing the rules that
govern the auction.

The Auction Service is the agent that manages all the active auctions registered
with the server. This agent is the entry point of the auction service and it is respon-
sible with creation of new auctions, as well as with registering of new participants
to an active auction.

Auction Manager manages a single active auction on the server (also, known
as auction instance in [2]). The Auction Manager coordinates the participants
registered to that active auction. There is a separate Auction Manager agent for
each active auction in the system. It implements a specific type of auction – English
auction in this case, but in principle an Auction Manager can be configured to
support an arbitrary auction type. The management of active auctions includes the
activities that usually occur in an auction, i.e.: auction creation, bidding, agreement
formation and auction termination. The Auction Manager is created by the Auction
Service when a user wants to sell a product through an English auction. The Auction
Manager has the following responsibilities:

• To request the creation and destroy of Proxy agents.

• To request the creation of Participant agents and to assign them to the right
Proxy agent.

• To notify all the Proxy agents when the value of the highest bid was updated.

1010 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

• To accept or reject the bids from Participant agents that are forwarded by Proxy
agents.

• To manage the parameters of the auction, including: auction name, starting
price, product name, starting and ending dates, as well as the status of the
auction (for example, the currently highest bid).

• To trigger the auction termination when the time has expired by informing all
the Proxy agents that the auction has finished.

• To record the winner and the final price of the auction.

Auction Directory agent manages the registry of active auctions, as well as the
identifiers of their associated Auction Manager agents. Potential auction partici-
pants can search through this registry to find an active auction that meets their
requirements.

Each Proxy agent handles the bids received from a subset of Participant agents.
The Participant agents are split into disjoint groups, and each group is managed
by a single Proxy agent. Proxy and Participant agents are linked into a balanced
two-level hierarchical structure rooted at the Auction Manager such that the total
number of Proxy agents is at most equal to the number of Participant agents that
are linked to each Proxy agent. Using this balancing criterion we can reduce the
time for processing incoming bids. During bidding, Participant agents communicate
heavily with their Proxy agents, while Proxy agents pass on to the Auction Manager
agent only the relevant bids and the other bids are filtered out and processed locally,
thus reducing the amount of messages handled by the Auction Manager that results
in enhancing the server response time. Note that, this is particularly important in
the assumed model of an English auction (deadline-driven), where a large number
of bids can materialize near the auction-deadline (due to the snipping).

Proxy agents form an intermediate layer between the Auction Manager and the
Participant agents. Their main responsibility is to take over a part of the load that is
necessary for bid processing that was initially the sole responsibility of the Auction
Manager [2]. Each Proxy agent records a local currently highest bid (that can
be different from the currently highest bid of the auction recorded by the Auction
Manager) and updates it regularly based on the notifications received from the
Auction Manager and bids received from Participant agents. The responsibilities of
the Proxy agent are:

• To filter out the bids received from the Participant agents passing up to the
Auction Manager only those bids that meet the improvement rule, i.e. are
higher than the local currently highest bid known by the Proxy.

• To notify Participant agents about the acceptance or rejection of their bid.

• To receive notifications about the update of the currently highest bid from the
Auction Manager.

• To notify Participant agents after receiving such an update from the Auction
Manager ; the local currently highest bid of the Proxy is also updated.

Distributed Agent-Based Online Auction System 1011

Let us suppose that, on average, a Proxy agent is managing k Participant agents
and that the total number of Proxy agents is p. This means that the total number
of participants is n = p × k. According to our coordination model of an English
auction, whenever a new bid is accepted by the Auction Manager, all the participants
must be notified accordingly, and this process obviously will require a time O(n).
However, with the new Proxy-based hierarchical approach the time will be O(p+k).

This value can be optimized to O(
√
n) for n Participant agents if we set the

constraint that the number of participants managed by each Proxy agent will never
outnumber the total number of Proxy agents connected to the Auction Manager,
while the number of Proxy agents is increased whenever this is really necessary to
manage all the registered Participant agents. Basically this means that p ∼ k from
which we can derive the O(

√
n) average time needed to process a bid.

Proxy and Participant agents are linked into a balanced two-level hierarchical
structure rooted at the Auction Manager such that the maximum number of Par-
ticipant agents that are linked to each Proxy agent is at most equal to the total
number of Proxy agents. The dynamic creation and destruction of Proxy agents
will take into account the preservation of this balancing requirement.

Fig. 2. Relationships between Participant, Proxy, and Auction Manager agents involved
in an auction on the auction server.

An example showing the details of the relationship between the Auction Man-
ager, the Proxy agents, and the Participant agents is presented in Fig. 2. This figure
shows 5 Participant agents p1, ..., p5 registered to the same auction. Let us assume
that the participants registered to the auction in this order. When participant p5
registered, only 2 Proxy agents x1 and x2 were present onto the server. According
to the balancing criterion, the registration of the new Participant agent p5 triggered
the creation of a new Proxy agent x3, as well as the link of p5 to x3. The new p5
Participant agent cannot be assigned to one of the existing Proxy agents because
that would mean that at least one of them would have 3 Participant agents, while
the number of Proxy agents is 2. So a new Proxy agent x3 must be created.

1012 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

Requests for creating and destroying Proxies are issued by the Auction Manager.
A Proxy agent is created when a new Participant is created and n > p2 where n
is the total number of Participants including the newly created one, and p is the
number of Proxies.

When a Participant quits an auction, if n ≤ (p − 1)2 then the Proxy with the
smallest number of participants is deleted, where n is the total number of partic-
ipants (after the removal of the current Participant from the server) and p is the
current number of Proxies. The Participant agents that were linked to the Proxy
that will be deleted will be evenly reallocated to the remaining Proxy agents with
the smallest number of Participants.

Finally, there is an issue concerning what happens with the Proxy agents when
the auction terminates. An English auction is running for a certain time duration,
which is set when the auction is created. Optionally, this duration can be extended
by the Auction Manager with a short period – timeout, in order to avoid problems
created by “late bidding”, by allowing all interested bidders to submit their bids.
This is a solution used by auction servers to increase their ”fairness” [5].

The timing of the auction is controlled by the Auction Manager agent. When
this agent detects and declares the auction terminated, it will inform the Proxy
agents about the auction termination and the auction result. Consequently, Proxy
agents will reject forthcoming bids submitted by non-acceptably late bidders. More-
over, Proxy agents will notify accordingly their Participant agents, while Participant
agents notify in turn their Personal Agent. Finally, Participant agents self-destroy.
This process can optionally trigger up in the tree the self-destroy of Proxy agents,
to maintain the tree balanced. Note that the process for managing the creation and
destruction of Participant and Proxy agents can be improved using the technique
of managing resource pools – in this particular case we would have agents pools on
each computer of the network [36].

3.1.3 Resource Layer

The agents Computer Manager and Resource Manager constitute the part of the
server that is responsible for the management of the computational resources, which
run the server software.

When the server is installed on a computer network, the Computer Manager
agents are responsible for the basic management (i.e. creation / destruction) of
agents on each available machine. There is one Computer Manager agent for each
computer that is part of the auction server infrastructure. This agent keeps track
of all the Participant and Proxy agents that were created and are active on that
computer. A Computer Manager agent gets requests from the Resource Manager
agent that contain the agent name and the agent type and then creates the agent
on that computer accordingly.

Resource Manager contains a registry of all the agents of type Computer Man-
ager from the system. More exactly, when the Auction Manager decides to create
a new Participant or Proxy agent, it will ask the Resource Manager to perform this

Distributed Agent-Based Online Auction System 1013

operation. Currently, the Resource Manager agent keeps track of the number of
agents already created on each available machine. On the basis of this information,
it decides where should the new required agent be created and orders the creation
accordingly to the corresponding Computer Manager agent. However, in a more
general setting we can expand the functionality of the Computer Manager agents to
monitor the resources and the network load of each single computer of the server.
Then, the Resource Manager would be able to query Computer Manager agents be-
fore deciding on what computer to order the creation of new agents. This extension
was left as future work.

3.2 Agent Interactions

Let us know summarize the protocols for interacting with the core of the auction
server. Basically, they follow the same rules as the initial proposal of [3] that we
also considered in [2]. According to these protocols, a user represented by his or
her Personal Agent can create auctions, subscribe to active auctions, submit bids,
receive replies about bid acceptance or rejection, receive notifications about the
update of an auction status, and receive notifications about auction termination
and auction winner.

Note that the interaction protocols presented and discussed in this section are
focused on what is happening “inside” the auction server. However, the management
of the link between a user and his or her Personal Agent is realized “outside” the
auction server – see Section 4.

Fig. 3. Agent interactions for initiating an auction.

A new auction is created when a Personal Agent sends to the Auction Service
a createAuction request (see Fig. 3). Then the Auction Service creates an Auction

1014 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

Manager that represents the new auction. The Auction Manager orders creation
of a new Initiator Participant agent linked to the Personal Agent of the user seller,
as well as of a new Proxy for this participant, to the Resource Manager. The
Auction Service then confirms to the Personal Agent the creation of the Initiator
Participant agent. The auction description is also added to the Auction Directory.
The Initiator Participant and Auction Manager agents will further interact during
the auction process.

Fig. 4. Searching for and joining an auction.

A Personal Agent can query the Auction Directory about active auctions (see
Fig. 4). The Personal Agent then chooses an auction and contacts the Auction
Manager of that auction which should create a Participant for it.

The Auction Manager decides to create a new Participant agent and, optionally,
a new Proxy agent. Their creation is handled by the Resource Manager agent, while
the actual creation is performed by the Computer Management agent. The Auction
Manager requests the Resource Manager agent to choose an appropriate computer
where these agents will be created. The Resource Manager determines this computer
and instructs the corresponding Computer Manager agent, to perform the creation
action. When a computer reached the maximum acceptable load another computer
should be used. If all computers are fully loaded then the computer with the smallest
number of proxies or participants (in that order) is chosen; however, it is expected
that the performance of the server will degrade in such situations. All Participant
agents are created on the same computer as their Proxy agent.

The message exchanges that are needed for creating Participant and Proxy

Distributed Agent-Based Online Auction System 1015

Fig. 5. Interaction protocol for automated creation of Proxy and Participant agents.

agents are shown in Fig. 5.
Each Participant agent sends his or her bids to their designated Proxy according

to the protocol shown in Fig. 6. This bid is then compared by the Proxy to the
currently best bid. Higher bids are reported to the Auction Manager while lower
bids are rejected with a refuseBid message. Then the Auction Manager saves the
highest bid (bestBid state variable) and refuses submitted bids that are lower than
the bestBid. The refusal message is then returned by the Proxy agent back to each
originating Participant that did not submit the current bestBid. If a bid higher
than bestBid is received then the Auction Manager responds to the Proxy with
a bidAccepted message, which is propagated to the originating Participant. If the
bestBid value has changed then the Auction Manager informs all the Proxy agents.
Then each Proxy will propagate the value of the new bestBid to its Participant
agents. This forwarding is represented in Fig. 6 as a multicast message that is
displayed as a little circle at the end of the message arrow.

4 INTEGRATION INTO AN ONLINE AUCTION SYSTEM

In this section we outline the design of an online auction system that incorporates the
Agent-based Auction Server. The system design is composed of three parts: system
architecture, interaction protocols, and design details of the system components.

4.1 System Architecture

The auction server was implemented using the JADE agent platform [10]. For
experimenting with the usability of this auction server we have developed an online
system equipped with a Web-based GUI that allows human users to create, search
for and participate in English auctions. Therefore, the architecture will contain a
special subsystem dedicated to the interface of JADE agent middleware with the
Web-server.

The architecture of the application follows the classical separation between the

1016 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

Fig. 6. The bid submission protocol.

client side, comprising the human user equipped with a Web browser, and the server
side comprising a Web server that interacts with the auction server. Therefore we
designed and developed a software for binding the Web server part that is non-agent
software with the auction server that consists solely of JADE-based agent software.

The system has a multi-layer architecture composed of the following layers, as
it is shown in Fig. 7:

• User layer. This layer represents the client part of the system that consists of
a Web browser combined with HTML content including JavaScript code that is
downloaded from the Web server.

• Web layer. This layer supports the user interaction functionalities. It consists
of a Web server enhanced with a set of Java servlets that implement the user
functionalities of the online application.

• Binding layer. This layer is represented by the software that enables the in-
terfacing of the non-agent Web server software with the Agent-based Auction
Server. This software is encapsulated into a special servlet called Agent servlet
that is able to communicate with the JADE platform.

Distributed Agent-Based Online Auction System 1017

Fig. 7. System architecture.

• Agent layer. This layer represents the Agent-based Auction Server that was built
on top of JADE platform.

4.2 Design Details

4.2.1 User and Web Layers

The Web layer is responsible for management of users and their accounts, while the
auction server (i.e. the Agent layer) is responsible for auction management. With
this separation of functionalities, the Web layer will support the interaction of the
application with the human user, via a Web-based GUI that is based on HTML,
Asynchronous JavaScript, and XML (i.e. Ajax [31]).

As we did not create a functionality for user authentication in the Agent-based
Auction Server, we had to provide a solution for this problem at the level of the
Web layer. So, in our prototype system, the Web layer is responsible for user
authentication (login and logout functionalities) and management of user accounts.
The addition of this functionality requires the Web layer to maintain a separate
database for the management of user account information.

At the User layer, the servlets must provide HTML responses with informa-

1018 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

tion extracted from the Agent layer using software from the Binding layer. This
operation can be time consuming and thus it can slow down the load time of the
Web page. This issue was addressed by inserting JavaScript code into the HTML
responses. This code allows the Web page to update itself quickly and efficiently us-
ing asynchronous requests. The JavaScript code issues automatic or user generated
HTTP requests to the Agent servlet which was configured to reply with the XML
responses. Note that the Agent servlet is the only servlet of the Web layer that can
communicate with the agents on the Agent layer (via the Binding layer).

4.2.2 Binding Layer

The Binding layer communicates with the Agent layer using a specialized software.
This software benefits from the JADE facilities for interfacing agent and non-agent
software materialized as the JadeGateway class ([18]). The interface is achieved
using agents (also known as Gateway agents) that are created locally by the Agent
servlet. One Gateway agent is created for each user logged into the system. These
local agents are created in a local container that is connected to the agent platform
that hosts the auction server. This container is created and started together with
the Web layer.

Fig. 8. User login.

Whenever a new user logins into the system, the Agent servlet automatically
creates a local Gateway agent with the role of relaying messages from the Web
layer to the agents on the auction server. Then the Agent servlet locally creates
and passes a serializable object (called “blackboard object,” in [18]) to the Gateway
agent assigned to the current user. The Gateway agent then sends the message
using the JADE messaging functionality to an agent located on the auction server,
according to one of the interaction protocols presented in subsection 4.3. This type

Distributed Agent-Based Online Auction System 1019

of interaction is marked with the �object2agent� stereotype in Fig. 8, Fig. 9,
Fig. 10, Fig. 11, and Fig. 12. Conversely, whenever an agent of the auction server
must send information to the Web layer it will use the JADE messaging to send
this information to the corresponding Gateway agent located in the Agent servlet.
Then the Gateway agent will invoke a method to update the “blackboard object”
and thus achieving the correct transfer of the information to the Agent servlet. This
type of interaction is marked with the �agent2object� stereotype in Fig. 10 and
Fig. 11.

Fig. 9. Initiation of an auction.

Note that, whenever the JavaScript code of the Web page asynchronously re-
quests an information update from the Agent servlet the servlet will respond with
a message containing the relevant data extracted from the “blackboard” object and
represented in the XML format. This type of interaction is represented with the
�XML response� stereotype in Fig. 10 and Fig. 11.

4.3 Interaction Protocols

In this section we formally describe the interactions that happen between the soft-
ware components of our auction system, “outside” the auction server, as opposed
to the agent interaction protocols described in Section 3 that are focused on the
“inside” of the auction server. Please note that although some of these interactions
are related to the same activity – for example the bidding activity has a part inside
the server, as well as a part outside the server, they are presented separately (in
Section 3 and Section 4) for at least two reasons: i) their common part is minimal
(it is reduced to the Personal Agent) and they can be well-understood separately;
ii) the auction server is a separate subsystem that can be integrated in other types
of applications, for example using a Web-service interface.

The user login operation is detailed in Fig. 8. The first part (interactions

1020 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

Fig. 10. Searching and joining an auction.

numbered from 1 to 7) achieves the authentication function. If the authentication
is successful (i.e. the interactions proceed according to the branch consisting of
messages 6 and 7) the Agent-based Auction Server is notified accordingly, via the
interaction consisting of messages 8 and 9. Message 8 is a notification sent to the
AgentServlet that the user logins into the system. Consequently, the link between
the user name and the identifier of his or her Personal Agent is retrieved. Eventually,
the Personal Agent of the user must be created and started (message 9), either if
the user logins into the system for the first time or if his or her Personal Agent was
offline.

The operation of initiating an auction is detailed in Fig. 9. The first 3 interac-
tions activate the user menu for setting the auction data. The next 3 interactions
support the function of creating a new auction. The actual creation is achieved after
interaction 6. Note that we assume that when a new auction is created the user is
already logged in and its Personal Agent is active.

The operation of searching and registering at an active auction is detailed in Fig.
10. The first 3 interactions activate the user menu for setting the search criteria for
the desired auction. The next 6 interactions (numbered from 4 to 9) support the
function of searching auctions available in the auction directory. This is achieved
with the help of the Auction Directory agent, residing on the auction server. Then
the user chooses the desired auction (this is achieved by interaction 10). Note that
after this action the name of the corresponding Auction Manager agent becomes
known. Finally, the last 3 interactions (numbered from 11 to 13) allow the user to
join the desired auction.

Distributed Agent-Based Online Auction System 1021

Fig. 11. Participating in an auction.

The operation of bidding in an auction is detailed in Fig. 11. The first 3 in-
teractions activate the user menu for setting the bid data. The next 3 interactions
(numbered from 4 to 6) support the function of submitting the bid to the auction
server. Note that we assume that at this point the user knows the identifier of the
auction where he or she wishes to submit the bid (parameter auction). Interaction
7 is happening whenever the Personal Agent is notified by the Agent Layer that at
at least one of the auctions where the user is registered has updated its status. The
last 2 interactions (8 and 9) allow the user to visualize the quotes of the auctions
where he or she is subscribed. In particular, for an English auction, the user can
check if a given bid was accepted or not, by the auction server. The updates are
periodically triggered by a timer incorporated into the JavaScript code that runs in
the user’s browser.

The user logout operation is detailed in Fig. 12. Similarly to the login operation,
the auction server is notified that the user is leaving the system. However, note that
in this case the notification is sent directly to the Personal Agent that represents
the user.

Finally, it is important to observe that there is an interesting relationship (not
shown in Fig. 8 and Fig. 12) between the Auction Service and the Personal Agent
that represents a specific human user on the auction server. This is the result of
the fact that the Personal Agent has a very important role, by controlling the user
participation in auctions, even when the user is disconnected from the online system.
This fact has two important consequences:

1022 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

• During the login operation the system must check if the user already has an
active Personal Agent at the auction server, and if not it must create one.
We assume that this operation is achieved by the Auction Service agent. So,
the Auction Service agent has the responsibility of creating and setting up of
a new Personal Agent according to user requirements. An example of such
requirements could be: what to buy, the maximum price and the acceptable
auction duration. Note that such requirements will become goals of the Personal
Agent.

• During the logout operation the system must inform the Personal Agent that
the user has left the system. However, the Personal Agent can behave more or
less autonomously (according to the user requirements) in representing the user
preferences and interests. So, the Personal Agent can autonomously decide to
go offline in situations when, for example, there are no more active auctions in
which the user is participating or, more generally, when a certain user goal was
either achieved or is considered not achievable given the current state-of-affairs.
Alternatively the Personal Agent can decide to continue its execution on the
server.

Nevertheless, we set the requirement that the Personal Agent must always notify
the Auction Service that it will go offline before doing so, such that if the user logins
again onto the system then the Auction Service will be able to create and setup a
new Personal Agent accordingly. The Personal Agent will autonomously decide
to go offline whenever there is nothing left to do for the user. In particular this
could happen when the user logouts and he/she is not currently involved in any
auctions, as well as if there are no active goals of the Personal Agent agenda to be
pursued. This can happen for example either when all the auctions where the user
was involved are finished or when the user just logged in for the first time, did not
create any auctions and did not set any requirements for the Personal Agent but it
just decided to leave the system, i.e. to logout.

Fig. 12. User logout.

Distributed Agent-Based Online Auction System 1023

5 EXPERIMENTS AND USABILITY

5.1 Experiments with the Distributed Agent-Based Auction Service

We experimentally evaluated the current architecture by comparing it with our
initially proposal from [2], where no Proxies were used. Then we conducted ini-
tial scalability experiments by running our system on 2 and 3 computers. For the
experiments we used a network of dual core processors at 2.5 GHz and 1GB of
RAM memory. These workstations were interconnected using a high-speed Myrinet
interconnection network at 2Gb/s. According to [33], “Myrinet is a [...] high-
performance, packet-communication and switching technology that is widely used
to interconnect clusters of workstations”. As multi-agent middleware platform we
have used JADE 4.0 [34].

In this experiment the participants are allowed to bid automatically, so they
were equipped with a bidding strategy to tell them if, when, and how (much) to
bid. The bidding follows a snipping scenario, i.e. as soon as a participant receives
a notification that he was outbid by another participant, he immediately submits a
higher bid by adding a predefined increment to the value of the currently highest
bid. During the snipping scenario the auction server is heavily loaded with bid
processing activities.

The starting price of the auction was set to 0. The auction duration was set
to 1.5 minutes in all the experiments. The increment value for the participants’
strategy was set to 10. The agents were allowed to bid up to a very high reserve
price (100000). The auction terminates when its allocated time expires. In our
cases, to assure that we actually study the performance of the server, as the reserve
prices were set to very high values, the auctions end before any of the agents reaches
their reserve price.

Note that whenever a Participant Agent bids according to this strategy, it must
receive an answer confirming if the bid was successful (or that it was rejected).
This is very important, as we are in a distributed environment with multiple agents
bidding concurrently, and it might happen that even if an agent is choosing a high
enough value to bid, it might be outbid by another agent that submits its bid
almost simultaneously. The following performance measures were recorded in our
experiments:

• Latency = the average time it takes the system to answer a bid.

• Throughput = the number of bids handled per unit of time; this value is cal-
culated by dividing the total number of answered bids by the duration of the
auction.

The setup of the experiment assumes running a script that starts the JADE
multi-agent platform and automatically creates the Auction Service and Auction
Directory agents. Then the Personal Agents are created for each user that partici-
pates in the auction.

1024 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

The Personal Agent that initiates the auction was configured to set the condi-
tion for starting the bidding when a specific number of participants has joined the
auction. This condition is configured into the Auction Manager that governs the
auction. When a certain given number of participants is reached, this Auction Man-
ager will enable the starting of the bidding process. Basically, with this approach
we were only looking for a simple method to setup our experiment consisting of
many agents bidding aggressively in an auction, while keeping the consistency with
the design philosophy of the auction server.

We ran our experiments using an increasing number of Personal Agents and we
calculated the performance measures by running the framework on one, two and
three computers. In order to also compare with our prior approach we also ran a
version of the program without proxies, forcing the Auction Manager to handle all
bids. In each test we ran only one auction. The case when multiple auctions are
run in parallel was left as future work.

The results of our experiments are shown in Fig. 13 and Fig. 14, as well as in
Table 1 and Table 2.

Table 1. LATENCY [MS]

Agents No Proxy 1 Comp. 2 Comp. 3 Comp.

500 5087.53 2172.14 148.55 104.39

1000 20038.9 8114.66 266.85 217.01

1500 39752.5 8781.39 426.50 277.88

2000 66852.3 11691.2 575.06 452.73

Fig. 13. Latency [ms].

Note that when we ran our system with 2000 bidding agents without proxies
only 1273 agents actually got to bid at least once during the allocated time of 1.5
minutes.

Distributed Agent-Based Online Auction System 1025

Table 2. THROUGHPUT [NO. OF BIDS/MS]

Agents No Proxy 1 Comp. 2 Comp. 3 Comp.

500 0.141 1.115 1.527 1.801

1000 0.065 0.949 1.714 1.744

1500 0.035 0.851 1.43 1.86

2000 0.025 0.779 1.502 1.672

Fig. 14. Throughput [no. of bids/ms].

5.2 Usability of the Online Auction System

We now consider a sample use case involving four users U1, U2, U3, U4 participating
in auctions with the help of our system. On this use case we highlight the usability
aspects of the system, as well as some of the details regarding the information ex-
changed by the various components. In particular, we are interested in checking the
information flow that is triggered into the system by user initiated actions. Please
note that in this description we will make references to the diagrams introduced in
Section 4.

Fig. 15. Login GUI.

The users log-in into the system at the User Layer using the Login GUI in the

1026 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

Web browser shown in Fig. 15. This operation, shown as message 1 in Fig. 8, is
needed to communicate the username and password to the Web Layer. The login
request reaches the Login Servlet (message 2 in Fig. 8 – an Http Request message).
The user credentials are then verified and an HTML page is returned to the user
presenting one of the following two possible outcomes:

• If the credentials are incorrect then an HTML page reports an error to the user’s
browser (message 5 in Fig. 8).

• Otherwise the HTML page contains JavaScript code for interacting with the
AgentServlet (message 7 on in Fig. 8). After the interaction with the servlet
(message 8 on in Fig. 8), a Personal Agent is created for each user.

In our sample use case, four PersonalAgents (PA1, PA2, PA3, PA4) will be
created in the Agent Layer.

Fig. 16. Create Auction GUI.

We assume that user U1 creates two auctions labeled A1 and A2 (their details
are shown in Table 3). For each auction, participant (initiators in this case) IPart1,
IPart2 agents, as well as AuctionManager1 and AuctionManager2 agents are cre-
ated. Interaction 1 in Fig. 9 represents the initial request sent by U1 for creating
an auction. Interaction 2 in Fig. 9 represents the HTTP Request message sent to
the AddAuction Servlet. This servlet responds with an HTML file containing also
JavaScript code for creating the form Create Auction GUI shown in Fig. 16. The
form enables the user to input the product descriptions as shown in Table 3 (message
4 in Fig. 9). These are then passed to the AgentServlet using message 5 in Fig. 9.
Finally, AgentServlet requests PA1 agent (using message 6 in Fig. 9) to create the
auction in the Agent Layer.

We now assume that users U2, U3 and U4 are searching for a desktop computer
which is provided by auction A1, while user U3 is also looking for a TV which is
provided by auction A2. Searching for a GUI starts when a user issues a request
that triggers messages 1 and 2 in Fig. 10. The SearchServlet responds with an
HTML form that represents the Join Auction GUI (see Fig. 17). Then the use
communicates his or her search parameters to the system (message 4 in Fig. 10).

Distributed Agent-Based Online Auction System 1027

Table 3. Auction details

auction A1 A2

product name Desktop TV

description I3, 4GB RAM, 500 GB HDD LCD, 81cm

starting price 1500 RON 800 EUR

increment 10 RON 5 RON

auction duration 3 h 5 h

The search parameters are passed to the Auction Directory using messages 5, 6 in
Fig. 10. The Auction Directory replies by triggering the sequence of messages 7, 8
and 9. The result contains the description of a list of auctions as an XML file (more
precisely message 8 in Fig. 10). The user can choose the auctions they want to join
by triggering interactions 10, 11 and 12. Whenever a user joins an auction, a new
Participant agent is created to represent the user bidding in that auction (this is
achieved via message 13 in Fig. 10). In our scenario Part2, Part3, and Part4 agents
are created to represent users U2, U3 and U4 acting in auction A1, as well as Part5
agent is created to represent user U3 acting in auction A2.

Fig. 17. Search and Join Auction GUI.

In what follows we shall focus only on what happens in auction A1. Let us assume
that user U2 bids 1510 RON and his bid is accepted. Message 5 in Fig. 11 contains
the bid information that user U2 sends to the AgentServlet : the bid value 1510 RON
and the participant id Part2. The bid value is input by the user via the GUI shown
in Fig. 18. The AgentServlet determines the identifier of the PersonalAgent attached
to user U2, i.e. PA2 and then forwards the bid information to PA2 (message 6 in
Fig. 11). Whenever a PersonalAgent receives a notification about the update of the
currently highest bid, it notifies the AgentServlet (message 7 in Fig. 11). The GUIs
of all the users participating in auction A1 (i.e. U2, as well as U3 and U4 via their
PA3 and PA4 agents) are automatically updated about the currently highest bid by

1028 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

the JavaScript code that periodically retrieves from the AgentServlet the updated
information encoded an XML message (message 9 in Fig. 11). In this example the
XML message contains the information shown on Table 4.

Fig. 18. Participating in an Auction GUI.

Table 4. Currently highest bid update.

DTD Content
<!DOCTYPE Auctions [

<!ELEMENT Auction (Participant,

BestPrice, Bidder)*>

<!ELEMENT Participant (#PCDATA)>

<!ELEMENT BestPrice (#PCDATA)>

<!ELEMENT Bidder (#PCDATA)>

]>

<Auctions>

<Auction>

<Participant>Part2</Participant>

<BestPrice>1510</BestPrice>

<Bidder>U2</Bidder>

/Auction>

</Auctions>

In what follows let us assume that user U2 logouts. However, his or her Person-
alAgent, i.e. PA2 is kept alive on the Agent-based Auction Server and continuously
receives updates as auction A1 is proceeding. Now, assuming that U3 and U4 both
bid 1520 RON, with U3 being slightly faster than U4, the bid of U3 is accepted, while
the bid of U4 is refused. Now, as U4 is not happy that his or her bid was rejected,
U4 will submit a new higher bid of 1530 RON. At this point U3 resigns the auction.
Let us now assume that U2 logs in again. It will be automatically informed by PA2

agent that the currently nighest bid is 1530 RON and it was submitted by U4, as
shown in Fig. 19.

Fig. 19. New updated highest bid.

Now, let us assume that U2 decides to place a new bid of 1540 RON, but mean-
while the auction time expired. The bid submitted by U2 will be ignored by the

Distributed Agent-Based Online Auction System 1029

server. The server notifies all the users, including U2, about the outcome of auction
A1. Assuming that auction A2 is also finalized without any winner (more exactly,
no bids were submitted in this auction), U2 will receive the notification shown in
Fig. 20.

Fig. 20. Final notification.

6 CONCLUSIONS

In this paper we described in details an improved agent-based architecture for an
English auction server. The initial experimental results show that our hierarchical
scheme of structuring the server using Proxy agents and a simple balancing scheme
is effective and has good scalability, when the server is distributed on multiple
machines. As future work we plan to: (i) strengthen the results by performing
more experiments on larger networks; in particular we will target experiments on
high-performance computer clusters; (ii) extend the architecture to other types of
auctions.

This paper also introduced our design and implementation of an online auction
system that incorporates the Agent-based Auction Server. The system provides a
Web-based GUI for the Agent-based Auction Server. We outlined the main func-
tionalities of the system, as well as their design and implementation, in terms of
system architecture, design details and interaction protocols. The main outcome of
our work is a clean specification of the Web-based and agent-based software layers
of our system, as well as of their software interfaces. As future work we plan to: (i)
expand our design by providing a Web services interface to our Agent-based Auction
Server ; (ii) investigate the relation between the human user and his or her Personal
Agent, in particular on how human requirements in the area of auctioning and e-
commerce can be mapped onto elements of the Personal Agent architecture, like for
example those related to the BDI model.

REFERENCES

[1] Bădică, C.—Ganzha, M.—Paprzycki, M.: Implementing Rule-Based Auto-
mated Price Negotiation in an Agent System. Journal of Universal Computer Science,
Vol. 13, 2007, No. 2, pp. 244–266.

1030 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

[2] Dobriceanu, A.—Biscu, L.—Bădică, A.—Bădică, C.: The design and imple-
mentation of an agent-based auction service. International Journal of Agent-Oriented
Software Engineering, Vol. 3, Inderscience, 2009, No. 2/3, pp. 116–134.

[3] Bartolini, C.—Preist, C.—Jennings, N. R.: The design and implementation
of an agent-based auction service. Lecture Notes in Computer Science, Vol. 3390,
Springer, 2005, pp. 213–235.

[4] Bădică, C.—Giurca, A.—Wagner, G.: Using Rules and R2ML for Modeling
Negotiation Mechanisms in E-commerce Agent Systems. Lecture Notes in Computer
Science, Vol. 4473, Springer, 2007, pp. 84–99.

[5] Stubblebine, S.—Syverson, P.: Fair On-line Auctions Without Special Trusted
Parties, In: Lecture Notes in Computer Science, Vol. 1648 Springer, 1999, pp. 230–
240.

[6] Rolli, D.—Luckner, S.—Gimpel, H.—Weinhardt, C.: A descriptive auction
language. Electronic Markets, Vol. 16, 2006, No. 1, pp. 51–62.

[7] Ockenfels, A.—Reiley, D.—Sadrieh, A.: Online Auctions. In: Hendershott,
T. (Ed.): Economics and Information Systems. Emerald Group Publishing, 2006,
pp. 571–628.

[8] Shoham, Y.—Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. MIT Press, 2009.

[9] Hillston, J.—Kloul, L.: Performance investigation of an on-line auction system.
Concurrency and Computation: Practice and Experience, Vol. 13, 2001, No. 1, pp. 23–
41.

[10] Bellifemine, F. L.—Caire, G.—Greenwood, D.: Developing Multi-Agent Sys-
tems with JADE. John Wiley & Sons, 2007.

[11] Sandu, L.—Sbora, R.—Ilie, S.—Bădică, C.: Scalable distributed agent-based
English auction server. In: Proceedings of the 15th International Conference on Sys-
tem Theory, Control, and Computing (ICSTCC’2011), IEEE, 2011, pp. 1–6.

[12] Ilie, S.—Bădică, C.—Bădică, A.—Sandu, L.—Sbora, R.—Ganzha, M.—
Paprzycki, M.: Information flow in a distributed agent-based online auction system.
In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and
Semantics (WIMS’12), ACM, 2012, pp. 42.

[13] Benyoucef, M.—Rinderle, S.: Modeling e-negotiation processes for a service
oriented architecture. Group Decision and Negotiation, Vol. 15, Springer, 2006, No. 5,
pp. 449–467.

[14] Broberg, J.—Venugopal, S.—Buyya. R.: Market-oriented Grids and Utility
Computing: The State-of-the-art and Future Directions. Journal of Grid Computing,
Vol. 6, Springer, 2008, No. 3, pp. 255–276.

[15] Fasli, M.—Michalakopoulos, M.: e-game: A platform for developing auction-
based market simulations. Decision Support Systems, Vol. 44, Elsevier, 2008, No. 2,
pp. 469–481.

[16] Griggs, K.—Wild. R.: Intelligent support for sophisticated e-commerce services:
An agent-based auction framework modeled after the new york stock exchange spe-
cialist system. e-Service Journal, Vol. 2, Indiana University Press, 2003, No. 2, pp. 87–
104.

Distributed Agent-Based Online Auction System 1031

[17] Su, Y. W. S.—Huang, C.—Hammer, J.—Huang, Y.—Li, H.—Wang, L.—
Liu, Y.—Pluempitiwiriyawej, C.—Lee, M.—Lam. H.:An Internet-based nego-
tiation server for e-commerce. The VLDB Journal, Vol. 10, 2001, No. 1, pp. 72–90.

[18] Kelemen, V.: Jade tutorial: Simple example for using the JadeGateway class. Avail-
able on: http://jade.cselt.it/doc/tutorials/JadeGateway.pdf, 2006.

[19] Trevathan, J.—Read, W.—Balingit. R.: Online auction software fundamen-
tals. International Proceedings of Computer Science and Information Technology,
Vol. 2, 2009, pp. 254–259.

[20] Vilajosana, X.—Krishnaswamy, R.—Marquès. J. M.: Design of a config-
urable auction server for resource allocation in grid. In: Proceedings of International
Conference on Complex, Intelligent and Software Intensive Systems, CISIS’09, 2009,
pp.396–401.

[21] Wasielewska, K.—Gawinecki, M.—Paprzycki, M.—Ganzha, M.—
Kobzdej. P.: Optimizing blackboard implementation of agent-conducted auctions.
IADIS International Journal on WWW/Internet, Vol. 6, 2008, No. 1, pp. 50–60.

[22] Wurman, P. R.—Wellman, M. P.—Walsh, W. E.: The michigan internet
auctionbot: A configurable auction server for human and software agents. In: Second
International Conference on Autonomous Agents, Agents-98, 1998, pp. 301–308, 1998.

[23] Yao, D. Q.—Qiao, H.—Qiao. H.: A generic internet trading framework for on-
line auctions. In: A. Becker (Ed.): Electronic Commerce: Concepts, Methodologies,
Tools, and Applications, IGI Global, 2008, pp. 163–177.

[24] Muscar, A.—Bădică, C.: Exploring the Design Space of a Declarative Framework
for Automated Negotiation: Initial Considerations. IFIP Advances in Information
and Communication Technology, Vol. 381, Springer, 2012, pp. 264–273.

[25] Bădică, C.—Budimac, Z.—Burkhard, H. -D.—Ivanović, M.: Software agents:
Languages, tools, platforms. Computer Science and Information Systems, Vol. 8,
2011, No. 2, p. 255–298.

[26] Venticinque, S.—Aversa, R.—Di Martino, B.—Petcu, D.: Agent based
cloud provisioning and management: Design and prototypal implementation. In:
Proceedings of the 1st International Conference on Cloud Computing and Services
Science: CLOSER’2011, 2011, pp. 184–191.

[27] Amato, A.—Liccardo, L.—Rak, M.—Venticinque, S.: SLA negotiation and
brokering for sky computing. In: Proceedings of the 2nd International Conference on
Cloud Computing and Services Science: CLOSER’2012, 2012, pp. 611-620.

[28] Smith, R. G.: The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers, Vol. 29, 1980, No. 12,
pp. 1104–1113.

[29] Scafeş, M.—Bădică, C.—Pavlin, G.—Kamermans, M.: Design and Implemen-
tation of a Service Negotiation Framework for Collaborative Disaster Management
Applications. In: Proceedings of the 2nd International Conference on Intelligent Net-
working and Collaborative Systems, INCoS 2010, pp. 519–524.

[30] Wooldridge, M.: An Introduction to MultiAgent Systems - Second Edition. John
Wiley & Sons, 2009.

1032 C. Bădică, S. Ilie, A. Muscar, A. Bădică, L. Sandu, R. Sbora, M. Ganzha, M. Paprzycki

[31] Zakas, N. C.—McPeak, J.—Fawcett, J.: Professional Ajax, 2nd Edition. Wrox,
2007.

[32] Fasli, M.: Agent Technology for E-Commerce. John Wiley & Sons, 2007.

[33] Myrinet Overview, http://www.myricom.com/scs/myrinet/overview/. Accessed in
November 2012.

[34] JADE: Java Agent Development Framework. http://jade.cselt.it. Accessed in
November 2012.

[35] Bordini, R. H.—Hübner, J. F.—Wooldridge, M.: Programming Multi-Agent
Systems in AgentSpeak using Jason, John Wiley & Sons, 2007.

[36] Lu, J.—Gokhale, S. S.: Performance analysis of a Web server with dynamic thread
pool architecture, In: Proceedings of the 22nd International Conference on Software
Engineering and Knowledge Engineering: SEKE’2010, 2010, pp. 99–105.

Costin B�adic�a works in the Department of Software Engineering. . . .

Sorin Ilie works in the Department of Software Engineering. . . .

