
Testing the Efficiency of JADE Agent Platform
Krzysztof Chmiela, Dominik Tomiaka, Maciej Gawineckia, Paweł Kaczmareka,

Michał Szymczaka and Marcin Paprzyckia*
aDepartment of Mathematics and Computer Science, Adam Mickiewicz University,

Poznań, Poland
*Computer Science Department, Oklahoma State University, USA
E-mail: d118993@atos.wmid.amu.edu.pl, marcin@cs.okstate.edu

Abstract

Agent oriented programming is often described
as the next breakthrough in development and
implementation of large-scale complex software
system. At the same time it is rather difficult to find
successful applications of agent technology, in
particular precisely when large-scale systems are
considered. The aim of this paper is to investigate if
one of the possible limits may be the scalability of
existing agent technology. We have picked JADE
agent platform as technology of choice and
investigated its efficiency in a number of test cases.
Results of our experiments are presented and
discussed.

1. Introduction

For a number of years now, researchers promise
that the agent technology is about to change the
ways we construct software [2, 3] as well as have a
much broader impact on the field of human-
computer interaction [4, 5]. Some of the principle
areas software agent technology is expected to
impact are [1, 2, 3, 4, 5]:

- development and maintenance of complex
systems,

- resource management,
- delivery of personalized content,
- e-commerce on a large and small scale.

Obviously, this list is far from exhaustive, however,
the breadth and depth of these areas supports the
claim that agent technology, if successful, can
become the next “extreme event,” leading to
breakthroughs in a number of fields. The agent
paradigm also promises to add a new dimension to
our interaction with computers. Here, the promise
of being able to deal with the information overload
resulting from the exponential growth of the
information available on the Internet, which has
been pledged in the influential work of P. Maes [5],
is particularly tempting.

Unfortunately, as it is easy to see, almost 10
years after publication of [5], promises furnished
there did not materialize (regardless of the rapidly
increasing number of conferences, workshops,
publications, etc). To the contrary, it is relatively

difficult to point to a successful large-scale
implementation of agent systems (as understood in
[1, 2, 5]). Moreover, what is particularly revealing,
agent systems described in [5] as successful
implementations of agents, for one reason or
another, have never spread beyond the MIT Media
Laboratory.

The starting point for this paper was an exchange
of messages in one of electronic discussion groups
devoted to a particular agent platform. One of the
participants described an e-commerce system under
development. In this system a personal agent was to
be devoted to (instantiated for) each user logged
into the system. The question was therefore asked if
it is possible to scale the platform to 500+ agents.
The response, from someone who clearly was a
practitioner of agent-system applications was that
“this is a wrong way of looking into the problem
and one should not expect realistically to scale an
agent application to this size.” This response is
fascinating as it seems to contradict one of the most
basic tenets of agent system development where it
is exactly that each user should be served by his/her
“own” personal agent [3, 5]. Is it thus really the
case that while agents are to be the breakthrough in
development of software for large complex
systems, it is also the case the using currently
existing technology one cannot implement large-
scale software systems?

This obviously is a question of scalability of
agent systems. There exist a number of papers that
discuss various aspects of this problem [6, 7, 8, 9,
10]. However, here we are not interested in an
almost philosophical discussion of what is agent
scalability found in most of these papers. We prefer
to follow a more pragmatic route, where “a good
agent system is an implemented agent system” (see
also [11]). In this way we follow and expand work
reported in [12, 13]. While there, focus was only on
messaging between agents, we, first, study different
scenarios involving messaging and also add tests of
efficiency of agent creation and migration.

A methodological remark is in order. Since there
exists no benchmarking suite to test performance of
agent systems (similar to these found in scientific

mailto:d118993@atos.wmid.amu.edu.pl

computing; in particular in computational linear
algebra), there is an open question as what to
measure and why. Scenarios proposed here are not
designed to necessarily become such benchmarks.
Rather, we were interested in getting a broad
understanding as to how our agent platform of
choice behaves when the number of messages and
agents is increasing as well as obtaining some
general assessment of efficiency of agent migration.

To obtain such an insight we have selected one of
the best currently existing agent platforms, JADE
version 3.1 [13, 14] and “stress-tested” in five
scenarios, that can be divided into two groups: two
of them are focused on message exchanging
capabilities (results reported in the next section) and
three of them concentrated primarily on agent
creation and/or migration performance (results
reported in Section 3).

2. Message exchange performance

In this section we present results of tests that
were aimed at testing the messaging capabilities of
JADE. These tests differ from, but follow in spirit
these reported in [12]. The main rationale behind
them is as that in agent-based systems functionality
is divided into agents (each agent is responsible for
a particular function of the system e.g. search agent,
query agent, database wrapper agent etc.) [3]. These
agents coordinate their actions and/or communicate
by exchanging messages. Assuming that a large
number of agents are to be used, a large number of
messages are to be expected. We therefore try to
find out what is the message-load efficiency of
JADE agent platform.

2.1 Spamming Test

The first test is very simple and is designated to
flood the system with Agent Communication
Language (ACL) messages [16]. Here spammer
agents send to user agents a large number of
messages. The general scheme of interaction
between three spammer agents and three user
agents is illustrated in Figure 1.

Figure 1. Spamming scheme

On each computer participating in the test a pair
consisting of a user agent and a spammer agent is
generated. At a given time all spammer agents starts
sending messages to all user agents (including these
existing on their own machines). For example, in
Figure 1, spammer agent from Computer 1 sends
messages to user agents residing on Computers 1, 2
and 3. Similarly spammer agent residing on
Computer 2 sends messages to user agents residing
on computers 1, 2 and 3 etc. In the JADE platform
all posted messages are put in a receiver message
queue [14, 15] and then it is processed by the
receiver (see Figure 2).

Figure 2. JADE message processing scheme

To measure the performance we utilize a starter
agent which initiates the spamming process and
measures time. During the execution each spammer
agent broadcasts a certain number of messages and
the total time of this broadcast is measured.
Separately the time of processing of all messages
flooding the system is also measured.

Our tests were performed on 8 Sun workstations
each with an UltraSparc III processor running at
300 MHz and 192 Mb RAM. All these machines
were Internet-connected through a Cisco switch
with full backplane 100 Mbits/s transmission rate.
We have used ACL messages with content
consisting of 300 ASCI characters. A total of 5000
messages were sent by each spamming agent to
each user agent.

Experimental results are summarized in Table 1
and Figure 3.

Agent pairs
Spamming
time [ms]

Receiving
time [ms]

2 40034 87053
3 24440 141778
4 25128 217501
5 25217 313625
6 28843 448181
7 35164 634847
8 40624 821341

 Table 1. Message sending and receiving times

Spamming direction

Computer 1

Spammer

User

Computer 2

Spammer

User

Computer 3

Spammer

User

0

5

10

15

20

25

2 3 4 5 6 7 8
agent "pairs"

tim
e

pe
r m

es
sa

ge
 [m

s]
Spamming
Receiving

Figure 3. Average message sending and receiving
times for 2-8 machines (and thus spammer-user
pairs); calculated by dividing total times by a
number of sent messages.

A number of observations can be made. (1) For

the (relatively small) number of computers used the
total “spamming time” practically does not depend
on the number of recipients. This is related to the
broadcast command used. It is only after the total
number of spamming agents becomes larger than 5
when the spamming time increases. (2) As the
number of agent pairs increases, the receiving time
starts to increase immediately. While we were not
able to confirm this, the message receiving time
seems to be increasing slightly faster than linearly.
This probably because in the case of receiving a
message, it is first put in a message queue and only
then processed by an agent (see Figure 2). (3) When
each of 8 spammers sends 5,000*8 = 40,000
messages; resulting in a total of 320,000 messages
flooding the system (with each message being more
than 0.3 Kbytes – message and its ACL wrapper –
totaling approximately 100 Mbytes of data), user
agents are capable to process them in no more than
14 minutes.

2.2 Processing messages with database
access

The second series of tests involved messaging
and database access. In this scenario it was assumed
that a number of user agents (taskSender in Figure
3) generate tasks to be executed (in this case these
tasks consist of inserting information into the
database). These tasks are stored in a list contained
in a list agent. User agents do not communicate
with the list agent directly, but they send their
requests to an intermediate agent (agent B).
Similarly, worker agents (SQLAgent in Figure 3)
obtain tasks from the list agent through an

intermediate agent A. Worker agents insert data into
a database (DB in Figure 3). All communication
between agents involves ACL messages. While this
scenario is not based in any particular application, it
allows us to observe message processing involved
in a relatively complicated flow pattern which is
depicted in Figure 3. It also involves a real-life
constraint of an access to a database.

Figure 3. Communication pattern for messaging
and database access test.

We have tested the following two situations:

• tasks originate from one tasksSender agent
while 1 to 4 SQLAgent agents are inserting
information into a database

• tasks originate from four tasksSender
agents while 1 to 4 SQLAgent agents are
inserting information into a database (DB)

Furthermore, each SQLAgent agent is located on a
different computer and each tasksSender agent is
located on a different computer as well. Agents A,
list and B are all located on the same computer.
TasksSender agents sent to agent B messages
consisting of a name of that agent and an SQL
statement describing what to insert into the
database; a total of approximately 40 ASCI
characters. The total number of messages sent was
1000, 10,000 and, attempted, 1,000,000. List agent
receives messages from agent B and appends them
into the end of the queue. When agent A requests
the next task, agent list removes the task from the
front of the queue and sends it to agent A. If there
are no tasks stored in the queue one will be send to
A when one is received from agent B. The queue is
implemented using the standard java class list and
wrapped in an agent (there is no practical way to
persist an “independent” list structure in an agent
system). Unemployed SQLAgent agents request
tasks from agent A and start to “work” as soon as
they receive a response from agent A. Agent A
requests and receives tasks from the list agent.

In our tests we have utilized a PostgreSQL
database running on a 2 processor Linux server
with 1GHz Intel P3 processors and 1GB of RAM.
We have also used the same 8 Sun computers as in
Section 2.1. Results of testing flow of 1000 and
10000 messages are presented in Table 2.

Number of
SQLAgent'(s)

Received by
SQLAgent'(s)
when
tasksSender
ends sending

All received by
all
SQLAgent'(s)

1000 messages; 1 tasksSender agent
1 40 1000
2 68 1000
4 95 1000

1000 messages each; 4 tasksSender agents
1 42 4000
2 69 4000
4 98 4000

10000 messages; 1 tasksSender agent
1 220 10000
2 370 10000
4 574 10000

10000 messages each; 4 tasksSender agents
1 215 40000
2 365 40000
4 558 40000

Table 2. Message flow through a number of
intermediate agents

It can be observed that the message flow through
the system is rather slow. In the best case, when
40,000 messages have been send, only 558 of them
have been processed. This means that at this stage
there are still about 39500 messages waiting to be
processed. Moreover, these messages are likely to
be waiting to be processed by one of the three
“central” agents of the system: A, list or B. Finally,
when the number of SQLAgent agents increases, the
total number of processed messages increases as
well. We will investigate this fact in the next series
of experiments.

As noted above we have also tried to push
1,000,000 messages through the system. We were
not able to do so. In the case of 1 SQLAgent agent,
agent B received its messages too fast and was not
able to put them into the list agent. It stopped
working after receiving about 150,000 messages
and returned an error “out of memory.” This caused
tasksSender agent to stop after sending about
200,000 messages, also with an “out of memory”
error. Finally, SQLAgent agent completed about
19,000 insertions and stopped because the queue
was empty. This would indicate that agent B was
able to send about 19,000 messages to the list agent.
In the case when two SQLAgent agents were used,
the same scenario repeated somewhat later. Agent B
stopped (out of memory) when after receiving
approximately 175,000 messages. The SQLAgent
agents inserted about 17,000 messages each (a total

of 34,000 messages processed) and the queue
became empty. Agent tasksSender stopped working
(out of memory) after sending about 230,000.
Finally, when four SQLAgent agents were used,
agent B died after receiving about 195,000
messages; SQLAgent agents were able to insert
approcimately 16000 messages each (total of
58,000) and taskSender agent died after sending
approximately 240,000 messages. These results
indicate that the system in the proposed setup, with
the bottleneck at the three “central agents” (A, list
and B) is capable to resist a flood of up to almost
200,000 messages. This total number of messages is
somewhat smaller than that reported in the
spamming scenario, however in that case the
distributed in nature data processing did not have a
clearly defined bottleneck.

Results reported thus far indicate that adding
SQLAgent agents into the system improves its
message processing capabilities. We have decided
to further test this hypothesis. We have therefore
increased the number of SQLAgent agents from 1 to
5. The results for processing 1,000 messages are
presented in Figure 4, while the results for 10,000
messages are presented in Figure 5.

Time of processing 1000 messages

50
55
60
65
70
75
80
85
90

1 2 3 4
Number of SQLAgents

se
co

nd
s

5

Figure 4. Processing times for increasing number
of SQLAgent agents and 1000 messages.

Time of processing 10000 messages

500

600

700

800

900

1 2 3 4
Number of SQLAgents

se
co

nd
s

5

Figure 5. Processing times for increasing number
of SQLAgent agents and 10000 messages

The results indicate a substantial performance
difference between one and two SQLAgent
processing tasks. The performance gain can be
observed up to four SQLAgent agents, but the
performance curve is clearly flattening. It can be
conjectured that in the current setup adding more
than five SQLAgent agents will not help. It is
worthy noting that processing 10 times as many
messages (10,000 vs. 1,000) requires 10 times as
much time and that this ratio remains constant
regardless of the number of SQLAgent agents used
(~900 vs. ~90 and 550 vs. ~55 seconds) . This
indicates that the processing time of a single task
(requesting it and completing it) remains constant
regardless of the total number of tasks to be
processed.

3. Agent creation and migration
performance

The second group of tests was designated to test
the ability of JADE to create and migrate a large
number of agents. This is in response to the
perceived potential of utilization of agents in
implementation of large software systems.
Additionally, it is often claimed that agent mobility
is one of the important factors that make agent
systems attractive.

3.1 Agent migration

The first experiment was focused on pure agent
migration and was mimicking a relay-race. A fixed
number of containers was placed on separate
computers. Each container constituted a “place”
where agent runners exchange batons. The “race”
starts in JADE’s “Main-Container” and leas agents
to the standard “Container-1” (on a different
computer). There agents pass the relay baton by
exchanging ACL messages. Second group of agents
proceeds to the “Container-2” (on the next
computer) and the process repeats. The total race
consists of 5 laps and ends in the “Main-Container.”
Two tests were performed. First, four runner teams
were running around an increasing number of
containers/computers. Second, an increasing
number of runner teams moved around four
homogeneous computers/containers.

For the homogeneous setup each container was
placed on the Sun workstation (as described above).
We have also used a PC with a Pentium 120 MHz
processor and 48 Mb of RAM to create a
heterogeneous configuration. In Figures 6 and 7 we
depict the total migration time for four agent groups
and increasing number of containers. Figures 8 and
9 present the results of increasing the number of

agent-teams while keeping the number of
containers constant.

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

2 3 4 5

number of containers

tim
e

(m
se

c)

6

Figure 6. Total migration time; heterogeneous
environment; increasing number of containers

0

20000

40000

60000

80000

100000

120000

2 3 4 5

number of containers

tim
e

(m
se

c)

6

Figure 7. Total migration time; homogeneous
environment; increasing number of containers

60000

70000

80000

90000

100000

110000

120000

130000

140000

1 2 3 4 5 6

number of agent-teams

tim
e

(m
se

c)

Figure 8. Total migration time; heterogeneous
environment; increasing number of agent-teams

30000

35000

40000

45000

50000

55000

60000

65000

1 2 3 4 5 6

number of agent-teams

tim
e

(m
ili

 s
ec

)

Figure 9. Total migration time; homogeneous
environment; increasing number of agent-teams

In all cases the results are practically linear. Some
jumps in the total time in the heterogeneous
environment can be attributed to the usage of a
substantially slower computer. To confirm the
linearity we have decided to test the performance
for a very large number of runner teams. The results
are summarized in Figure 10.

100000

200000

300000

400000

500000

600000

700000

20 40 60 80 100
number of agent-teams

tim
e

(m
se

c)

Figure 10. Total migration time; homogeneous
environment; large and increasing number of
agent-teams

The results are very similar to these in the case of

a small number of agents. As the number of agent
teams increases, time increases linearly. Note that
JADE did not collapse even when a total of four
hundreds agents were residing and migrating in four
containers on four computers with a relatively small
amount of available memory (196 Mbytes).

3.2 Shop performance - agent flooding

In this experiment we wanted to test the
performance of JADE when one of its nodes
(container) was flooded by a large number of agents
from other machines from the platform.

As an example we have used a scenario that can
occur when an e-shop is implemented using agents.
Here one container was a metaphor of a “store” and
held the MotherShop agent. This agent was a “store
manager” and its main task was to create (and later
remove) Seller agents for each Client which came
to the store and requested to be served. We had
created also MotherClient agents which produced
Client agents and send them to the store.

The complete scenario of the test is as follows.
MotherClient agents create Client agents that
migrate to the store. Here for each visiting Client
agent the MotherShop agent generates a Seller
agent. Then the Seller and the Client agents briefly
negotiate, via. ACL messages, about goods and
prices (in our case the “conversation” was: “do you
have beer?,” “yes,” “please give me one,” “here you
are,” “thank you”). When the “conversation” ends
Seller confirms transaction with the MotherShop

agent while the Client agent moves back to the
node/container in which it was created and reports
to its MotherClient. Here, MotherClient agents
generate a given number of Client agents and send
all of them to flood the shop and then just simply
wait for their return. This process is depicted in
Figure 11.

Figure 11. Agent shop experiment; ms –
MotherShop agent, s – Seller agent, mc –
MotherClient agent, c – Client agent.

In our experiments we study the system when (1)
we increase the number of MotherClient agents,
and (2) increase the number of Client agents
generated in each node/container. We have, again,
experimented on the same network of Sun
workstations. Each MotherClient agent was located
on a different machine (in a separate container),
while the shop was also located in a separate
container on a separate computer. We have also
experimented with generating larger number of
Client agents on a smaller number of host
computers and on a smaller number of containers
and the results differed only up to 10%. The
experimental results (in milliseconds) of system
processing 30, 40, 50 and 120 agents generated by
1, 2, …, 5 MotherClient agents (in the largest case
a total of 600 agents flooding the system) are
depicted in Figure 12.

0

20000

40000

60000

80000

100000

1 2 3 4
Number of MotherClient agents

Ti
m

e
(m

s)

5

Figure 12. Agent shop experiment; 30, 40, 50 and
120 agents generated by each MotherClient agent

As previously, the processing time is almost
linear. We have experimented also with large
number of agents in the system and we have found

that the processing time was still almost linear e.g.
for 520 Client agents the processing time was 75
seconds, while for 1020 Client agents 136 seconds.
However, we have also found that at approximately
1430 Client agents Java generated an “out of
memory” exception. To verify the connection of an
amount of RAM and numbers of agents we have
made a test on a weaker configuration which
consisted of PC’s with 4 times smaller amount of
available RAM. In this test the exception appeared
after generating approximately 370 agents; again an
almost linear relationship.

3.3 Agent creation and migration within two
containers and/or two computers

The results of experiments reported above
indicated that JADE is capable of handling a large
number of agents, however the question remains
open: how many agents can JADE handle? While
this question may sound a bit like a proverbial “how
many angels can dance on the head of a pin?” it
seems relatively important in the context of a
relationship between the number of agents and the
total available memory. We have therefore
implemented a very simple scenario to find an
answer:

Start of the process:

AgentA1, which resides in the Main-Container
Actions:

1. AgentA1 creates AgentB
2. AgentB moves to Container-1
3. AgentB registers at the Directory

Facilitator (DF)
4. AgentB sends a message to AgentA1

confirming arrival at Container-1
5. AgentB clones itself
6. AgentB clone repeats steps 3 and 4 above
7. AgentA1 counts only messages received

from “original” agents (not clones) but
replies to all of them

8. When AgentB and its clones receive the
response from AgentA1 they deregister and
terminate

9. AgentA1 creates as many AgentB agents as
their number in the previous step plus an
additional 50 agents

10. Steps 2 to 7 are repeated for every newly
created agent AgentB

This process involves a sizable migration

between containers as well as an increasing number
of agents that are created and exist at the same time
in the system. We have experimented with this
scenario on a number of machines: the Sun

workstation and the PC described above as well as
PC with an AMD Athlon processor running at 1.4
GHz, and a PC with AMD Duron processor running
at 800 MHz (both these PC’s had 256 Mbytes of
RAM). We have experimented two situations: (1)
when both the Main-Container and the Container-1
were located on the same computer and (2) when
they were located on separate computers. The main
observations can be summarized as follows:

1. With both containers on a slow PC – the
system died after creation of 151 agents,
during the migration.

2. With both containers on a Sun workstation –
system died after creation of 451 agents,
during the migration.

3. With both containers on the Athlon PC –
system died during creation and migration of
approximately 300 agents.

4. With both containers on different Sun
workstations – system died during creation
and migration of 501 agents.

5. With the Main-Container on the Athlon PC
and Container-1 on the Duron PC – system
died during creation and migration of 351
agents.

6. With the Main-Container on the slow PC and
Container-1 on the Sun workstation – system
lived with over 600 agents, and likely would
live longer, but the whole process lasted over
an hour and we decided to terminate it

The results are inconsistent. Obviously, when the
amount of available memory increases, the number
of agents that can be processed increases as well,
but then one could ask, why the Athlon PC with
256 Mbytes of memory was not able to handle more
agents than the Sun with 196 Mbytes of RAM (in
both cases we have used default setups for the
JVM)? We have tried to answer this question in
additional experiments and the results were rather
peculiar, indicating complicated interactions
between JVM and JADE, and prevented us from
being able to provide a definite answer here.

Even more surprising may seem to be that the PC
with 48 Mbytes of memory is able to exist in a
system that generates 600+ agents. An explanation
seems to be in the typical error generated here:
Error creating agent on destination container.
Abort transfer. An RMI error occurred [nested
Connection refused to host: 62.21.17.200; nested
exception is: java.net.ConnectException:
Connection refused: connect]. The error occurred
during agent transfer and involved the RMI port.
This means that when a slow PC is generating and
sending agents to the Sun workstation “slowly” the
Sun can accept them and the RMI port is not

overrun. At the same time in other cases, the
creation and migration of agents occurs much too
fast for the receiving container to be able to accept
them and the RMI port generates an exception.

5. Concluding remarks

The aim of our work was to follow and expand
the experimental research outlined in [12] (using
JADE 2.5). Here, we have used the most recent
JADE 3.1 and in addition to messaging performed
experiments related to agent creation and migration.
Our main goal was to establish if JADE can be used
to follow the research program put forward by
Nwana and Ndumu in [11] and be used while
developing implement large software systems.

Our tests indicate that JADE is quite an efficient
environment limited mostly by the standard
limitations of Java programming language, which is
interpreted and executed in a Virtual Machine:
processor speed, amount of available memory and
speed of network connection. The environment
itself does not introduce substantial overhead.
Executing JADE on a relatively antiquated
hardware (PC’s with Pentium II processors running
at 120 MHz with 48 Mbytes of RAM and
workstations with UltraSparc III processors running
at 300 MHz with 192 Mbytes of RAM) we were
able to run experiments with thousands of agents
effectively migrating among eight machines and
communicating by exchanging tens of thousands of
ACL messages. Furthermore, an increase in the
number of agents results typically in a linear
increase of processing time.

It has to be stressed that it does not really matter
here how realistic or unrealistic our experimental
scenarios were. Even if one would like to believe
that they are completely unrealistic, they still show
how efficient JADE is and that there is no excuse
for agent researchers, but to start designing and
implementing large software systems, consisting of
hundreds of agents and study their behavior. We
can do it already today and there is no reason to
stop with demonstrator systems consisting of only a
few agents. And we believe that this is very good
news for the future of agent research.

6. References
[1] J. Hendler, Is There an Intelligent Agent in

Your Future?, Nature, http://www.nature.com,
March 11th, 1999.

[2] M. L. Griss, My Agent Will Call Your Agent
… But Will It Respond?, Technical Report,
Hewlett Packard, 1999,
http://www.hpl.hp.com/techreports/1999/HPL-
1999-159.pdf.

[3] N. R. Jennings, An agent-based approach for
building complex software systems,
Communications of the ACM, 44 (4), 2001, 35-
41

[4] T. Berners-Lee, J. Hendler, O. Lassila, The
Semantic Web, Scientific American, May,
2001,
http://www.sciam.com/article.cfm?articleID=0
0048144-10D2-1C70-84A9809EC588EF21

[5] P. Maes, Agents that Reduce Work and
Information Overload, Communications of the
ACM, 37(7), 1994, 31-40

[6] R. Deters, “Scalability & Multi-Agent
Systems”, 2nd International Workshop
Infrastructure for Agents, MAS and Scalable
MAS. 5th Int. conference on Autonomous
Agents, May-June 2001.

[7] N. Wijngaards, M. van Steen, F. Brazier, “On
MAS Scalability”, Proc.2nd Int’l Workshop on
Infrastructure for Agents, MAS and Scalable
MAS. May 2001.

[8] P.J. Turner, N.R. Jennings, “Improving
Scalability of Multi-Agent Systems”, Proc.1st
Int’l Workshop Infrastructure for Scalable
Multi-Agent Systems. June 2000.

[9] O.F. Rana, K. Stout, “What is Scalability in
Multi-Agent Systems”, Autonomous Agents
2000, June 2000, ACM Press.

[10] L.C. Lee, H.S. Nwana, D.T. Ndumu, P. De
Wilde, “The stability, scalability and
performance of multi-agent Systems”, BT
Technology J., Vol. 16 No 3, July 1998, 94

[11] H. Nwana, D. Ndumu, A perspective on
software agents research, The Knowledge
Engineering Review, 14 (2), 1999, 1-18

[12] G. Vitaglione, F. Quarta, E. Cortese,
Scalability and Performance of JADE Message
Transport System, presented at AAMAS
Workshop on AgentCities, Bologna, 16th July,
2002,
http://sharon.cselt.it/projects/jade/papers/Final-
ScalPerfMessJADE.pdf

[13] S. Rahimi, J. Bjursell, D. Ali, M. Cobb,
M. Paprzycki, Preliminary Performance
Evaluation Geospatial Data Conflation System,
Proceedings of The IEEE International Agent
Technology (IEEE-IAT 2003), Halifax,
Canada, 2003, 550-553

[14] JADE: http://sharon.cselt.it/projects/jade/
[15] Giovanni Caire, JADE Tutorial: JADE

Programming for Beginners,
http://sharon.cselt.it/projects/jade/

[16] Agent Communication Language Specification,
http://www.fipa.org/repository/aclspecs.html

http://www.nature.com/
http://www.ecs.soton.ac.uk/~nrj/download-files/cacm01.pdf
http://www.ecs.soton.ac.uk/~nrj/download-files/cacm01.pdf
http://www.acm.org/pubs/cacm/
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://pattie.www.media.mit.edu/people/pattie/CACM-94/CACM-94.p1.html
http://pattie.www.media.mit.edu/people/pattie/CACM-94/CACM-94.p1.html
http://www.acm.org/pubs/cacm/
http://www.acm.org/pubs/cacm/
http://sharon.cselt.it/projects/jade/papers/Final-ScalPerfMessJADE.pdf
http://sharon.cselt.it/projects/jade/papers/Final-ScalPerfMessJADE.pdf
http://sharon.cselt.it/projects/jade/papers/Final-ScalPerfMessJADE.pdf
http://sharon.cselt.it/projects/jade/papers/Final-ScalPerfMessJADE.pdf
http://sharon.cselt.it/projects/jade/
http://sharon.cselt.it/projects/jade/

	Abstract
	Agent pairs

	Number of
	SQLAgent'(s)

