
Using the ebXML Registry Repository to Manage Information in an
Internet Travel Support System

Jimmy Wright
Oklahoma State University

jimmyww@cs.okstate.edu

Minor Gordon
Oklahoma State University

minorg@cs.okstate.edu

Marcin Paprzycki
Oklahoma State University

marcin@cs.okstat.edu
Steve Williams Patrick Harrington
Oklahoma State University
skw@cs.okstate.edu

Northeastern State University
harringp@nsuok.edu

Abstract

An Internet-based travel support system requires

an efficient means of managing travel-related
information both inside and outside the confines of the
system, in order to present the most accurate and
relevant travel choices to the end user. In this note, we
describe a configuration for achieving this goal by
employing an ebXML Registry/Repository system for
cataloguing travel information from the Internet.

1. Introduction

 In the past decade the travel services market has
developed a hugely diverse presence on the Internet, in
terms of both resources offered (hotel rooms, rental
cars, dinner reservations, golf tee times, “general tourist
information,” etc.) and approaches to offering them
(e.g. aggregation, personalization, mobile delivery).
Unfortunately, as in other domains, the potential travel
services user must often deal with one of the crucial
problems inherent in information diversity: the lack of
an encompassing catalogue through which the content
of interest may be located. Internet search engines
usually provide only a non-categorized and mostly non-
intuitive means of locating and representing data, and
search results in the travel (as well as any other) domain
are likely to include more unrelated hits than relevant
travel choices. The recent addition of the Google and
Yahoo directories are representative early attempts to
organize the presentation of many types of data
including travel data, however, they provide no
organized booking interface for the data they offer. In
addition, the Google directory consists of a mixture of
travel resource types and geographical categories. On
the other hand, some of the major travel sites such as
Expedia, Travelzoo, etc. do apply a degree of
organization to a limited subset of travel data (typically
limited to airline, car, hotel reservation as well as cruise
and vacation package arrangements), based on content
stored in tailor-made databases within the system. Here,
the mass of information stored on independent Internet
sites is ignored. Thus, we believe that neither search
engines nor the large travel sites are currently capable
of providing a complete support to modern day traveler.

Ideally, a travel support system should act as a

filtering and organizing intermediary between travel
consumers and travel suppliers [15]. Its primary
function [1] is to find the travel information that is most
relevant to the customer and deliver it in a well-
organized and intuitive way [2]. In order to support this
(content delivery) role the system must explore the
Internet and other sources to dynamically construct and
manage a supply of travel content from known and
previously unknown providers [1, 3, 17].

In exploring the potential of such a travel support

system, we have followed a two-pronged approach.
First, since travel support is a paradigmatic example of
the application of agent technology [14, 16], we have
decided to utilize software agents for the framework of
our system [1, 6]. Second, as an information broker
between travel content suppliers and end users
(travelers) we must carefully consider the means by
which we will structure the information within the
system, in order to deliver the most relevant and
accurate travel choices to the consumer [2, 5, 17]. We
believe that one of the more promising approaches to
structuring information from diverse sources is to apply
index-based techniques similar to those described in
[13] (and references available there). This approach
allows us to effectively deal with data available from
multiple sources across the Internet in such a way that
pertinent information may be efficiently and accurately
selected and delivered to consumers.

In the following sections we focus on the issues

surrounding the design and implementation of our index
based content management system. First, we briefly
outline the most important features of the proposed
e-travel system. Following are the proposed structures
for manipulating and storing travel information. Finally,
we describe the main features of the ebXML Registry/
Repository, our chosen implementation technology. An
assessment of our initial experiences with ebXML R/R
concludes the paper.

P a g e 1 4 / 3 0 / 2 0 0 5

mailto:jimmyww@cs.okstate.edu
mailto:minorg@cs.okstate.edu
mailto:marcin@cs.okstat.edu
mailto:skw@cs.okstate.edu
mailto:harringp@nsuok.edu

2. E-travel System
The initial design of the travel support system was

presented in [1, 3, 4, 6]. On a high level of abstraction,
the functionality of the system is divided into two
coordinated subsystems, one responsible for content
management and the other for delivery of content to the
user (see also [15]). The most important function of the
content management subsystem is to organize travel-
related information in such a way to successfully
support the content delivery mechanisms. Existing
content delivery systems typically follow one of the two
possible approaches to content management:

1) management by aggregation: retrieving all
information that the system will possibly need
beforehand, and organizing it in a predefined (by
humans) format within databases for later access,

2) management by selection: maintaining a general
idea as to what content is available on the Internet,
indexing it, and retrieving it only as becomes
necessary to satisfy the user’s query.

Most online travel content gateways (e.g. Orbitz,
Travelersadvantage, etc.) employ the first method,
storing travel content locally and performing local
searches in response to user queries. When a selection is
made, (e.g. a particular hotel in Baltimore) primary
source systems on the Internet are contacted (e.g. those
run by travel providers such as hotel chains) for
verification of locally cached information. The main
advantage of this approach is the immediate availability
of local content; this is also a disadvantage, in that it
leads to problems of data coherency (e.g. the requested
hotel in Baltimore which is displayed as available is
actually sold-out, or a given discounted price is no
longer available). In addition, the amount of data and
continuous local processing necessary for aggregation
systems to work makes them extremely resource
intensive – this is also one of the reasons such systems
trade in only a limited subset of travel choices (in
addition to the fact that, at this stage of development of
e-commerce, only income generating services, e.g. car
rental reservations, bring income to e-travel agencies).

Search engines such as Google are hybrid systems,

aggregating only a limited amount of data (such as page
headers and few selected cached pages) necessary to
support the search function. This approach attempts at
striking a balance between the amount of content stored
locally, frequency of local information updates and the
precision of the search function. Rudimentary content
organization and differentiation available in browsers
combined with relative freshness of data, while
relatively satisfactory for typical searches (of content
that changes infrequently) is not enough to support

travel-oriented services (where the freshness of content
is paramount importance). In addition, the limitation of
content to a, somewhat random, subset of pages
representing a given site allows only a very rudimentary
content organization and differentiation; for the most
part this task is left to the user. A typical problem with
this hybrid approach becomes evident when the user
issues broad queries that result in an extremely large
number of hits that reveal no simple way for the user to
reduce them to desired content.

Our e-travel system fully embraces the second,

index-oriented approach, as it was exemplified in [4,
13, 17, 18]. We have designed our system to index
Internet content into a hierarchical local repository
using non-objective terms [12]. To support the content
delivery aspects of travel support the system
dynamically utilizes remote content by referencing it
from these local indices / pointers. Thus, the content
management subsystem focuses on the classification of
content instead of the content itself storing only enough
information in indices to satisfy accurate user queries –
like the “yellow pages”. This technique eliminates the
problems of data coherency (in aggregation systems),
and is expected to ensure that the system will not waste
resources on extraneous data. Furthermore, since only
indices are stored locally, the local processing required
to respond to user query can be substantially reduced.
The downside of the indexing approach is that content
must always be retrieved from a remote source. If a
content provider “goes down” or becomes unreachable,
the e-travel system is unable to retrieve the content
pointed to by an index and thus cannot fulfill the user’s
request. More generally, any slowdown in reaching the
content provider is reflected in the performance of the
system (and potentially counterweights the advantages
gained from local indexing). Nevertheless, in designing
the e-travel system we felt that the advantages of
accurate indexing and the avoidance of cache coherency
issues compensate the disadvantages of remotely stored
content.

2.1 Sources of Content Indices

Following the analysis presented in [1, 3], we
assume that the travel content originates from verified
and unverified sources on the Internet. Verified sources
are referred to as Verified Content Providers (VCPs),
which designation implies a degree of conformance to
expected standards of accuracy, format and availability
of supplied travel options. Content from VCPs can be
either fed directly to the system or gathered by search
agents, as described in [1, 4, 6]. In the first case, we
assume that incoming indices (pointers to available
information) are both in the required format and are
complete, and thus can be stored in the system without
further processing. In the second case, the acquired

P a g e 2 4 / 3 0 / 2 0 0 5

content indices may be incomplete and/or require
further processing. When dealing with unverified
sources the situation is similar to the latter case, with an
added component of necessary verification and de-
confliction of remote information (at this stage of
system design we will omit these last two issues and
assume that they have been successfully resolved).
Regardless of source, the acquired indices are stored in
the system for later access by the content delivery
functions of the system. In the case when incomplete
indices are acquired, an index completion subsystem is
invoked to furnish the missing information [6]. When
the user requests information, a relevant content pointer
is either found in the system and the process of content
extraction from the provider(s) is initiated (while
additional Internet search(es) may be conducted to
locate additional information), or a new index
acquisition is forced, in order discover relevant content
(from both VCPs and unverified sources).

2.2 Semantics

Ideally, the content management subsystem should
shield the rest of the e-travel system from the
mechanics of supply and retrieval of travel content.
Additionally, it should allow the content delivery
functions of the systems to operate on the assumption
that travel information is accurately classified. In
theory, this would require the content management
subsystem to semantically “understand” the information
it keeps track of [5, 17, 18]. Here we acknowledge that
currently available technology does not support this
assumption of semantic “understanding”. In the absence
of such technology, our system attempts the next best
substitute. We apply a predefined categorical overlay to
the travel information managed by the system, and
allow the entire system to tune the accuracy of this
overlay (e.g. with user, agent and supplier feedback, as
described in [6]), with the ostensible goal of simulating
real semantic classification. In addition, we pay close
attention to the efforts initiated by the Open Travel
Alliance that attempts at introducing a hierarchical
description of the “world of travel” and most important
processes taking place there [9].

2.3 Organization of Travel Content

Before travel resources can be categorized or
indexed, a framework for the aforementioned overlay
must first be defined. We have introduced the concept
of the site as a basis for this classification scheme. A
site is the real-world logical division upon which we
model our treatment of travel resources. It consists of
three basic components that we have observed to be
common to all Internet-based travel content. These
components are the provider, type, and location. Type
and location refer to the real-world physical aspects of a

travel resources; provider, on the other hand, is used to
describe the electronic interface to the resource. The
provider, type and location components of a logical site
form a tuple [6]. Finally, the ?notes? component is
added to the tuple to support of various administrative
functions necessary when dealing with data delivered
by the search agents (for more details see Section 3).
This tuple is the bridge between the logical site
classification and implementation-level storage. A
complete tuple has a form:

(<provider>, <type>, <location>, <?notes?>).
In selecting the three travel content defining

components of the tuple, we seek a certain balance
between verbosity, time and storage considerations.
When too much data is incorporated into the tuple, there
is an increased risk that it will change at the provider.
This is called a data incoherency. To reduce this risk,
the tuple contains only data that rarely changes. On the
other hand, placing too little data in the tuple could lead
to problems in categorizing the resource. Our objective
was to avoid the pitfall of data incoherency while
assuring that enough information was incorporated to
properly categorize and interact with the resources.

Let us now look into the provider, type and location

fields of the tuple in more detail.

2.3.1 The Travel provider component

The provider component describes the means of

accessing travel resources on the Internet. It is stored in
the form of a Uniform Resource Identifier (URI). This
URI describes the access method for the resource, the
location of the resource, and any marker data that may
be unique to this resource within the provider. In
addition to explicitly identifying the transport protocol,
the protocol section also (directly or indirectly)
identifies the access methods of the server. For
example, http:// and ota:// each have their respective
access methods (hypertext and Open Travel Alliance
protocols). Other possible protocols include edi:// and
soap://. The URI also contains the host name to
communicate with using this protocol.

2.3.2 The Travel type component

The type component of a tuple describes the position
of a travel resource in the taxonomic hierarchy of all
resources (e.g. Accomodations -> Hotels -> Chains).
The system will utilize this information to filter out
content that is not pertinent to a users needs. Thus, it is
the focal point for the proto-semantic division of travel
information described. For example: if the user is
interested in hotels, an agent will be able to retrieve
only hotel indices from the repository. Current version

P a g e 3 4 / 3 0 / 2 0 0 5

of our taxonomy for the type component is derived
from the modified Yahoo! directory of Travel and the
Open Travel Alliance [9] XML Schemas. The content
type is intended to define the relationships between
travel resources. Illustrations of these relationships will
be presented shortly.

2.3.3 The Travel location component

Geography and location are key factors for

determining the relevance of indexed travel resources to
a particular user’s travel plans. The location component
must be flexible enough to support the multiple ways it
may be utilized. Location information must be specific
enough to differentiate between different sites. It must
be hierarchical so that organizational relationships
between sites at different locations on different levels
(continent, country, state, city, et al.) can be surmised
(e.g. the destination is in a different country). Given
these criteria, our initial design of the location
component consists of: a taxonomic description based
on the ISO-3166 standard, which defines the continent,
country, state or province, and city; and latitude and
longitude for exact locations and proximity searches.

The type/location/provider tuple as described above
is the basis of the classification scheme utilized by all of
the functions of the travel support system, from the
retrieval of content from travel suppliers on the Internet
to the delivery of travel choices to the end user. It is
with these functions in mind that we proceed to
manifest the tuple on the implementation level, and, we
hope, provide an efficient means of communicating
travel content. Let us also observe that the proposed
schematic solves the, above indicated, problem of the
Google directory. In our approach we are able to
untangle the geospatial information from the travel
resource information by providing two separate but
complimentary “looks” at our data. In this way, we are
also making an initial step toward developing ontology
of travel. To this end, we turn to the ebXML Registry /
Repository.

3. Building a travel index using the

ebXML Registry / Repository

The ebXML Registry / Repository software, and the

standard which define its implementation utilize XML
to describe and enable information exchange between
interested parties [11]. In the travel support system, the
interested parties are the content management and
delivery subsystems of the travel support system [1].
The former subsystem uses the facilities of the
repository to classify and catalogue travel content from
suppliers on the Internet. The delivery subsystem, on
the other hand, looks to this catalogue as the ultimate

reference to available travel choices. When constructing
the registry (prior to the indexing of any content) the
basic layout of the catalogue has to be defined. This
layout is defined by a repository classification scheme
that mirrors the indexing tuple. The root of the scheme
is the Agentlab node. This node is a classification
scheme object that has three children: the Provider, the
Type, and the Location nodes. The bulk of the
information in each of these nodes comes directly from
the corresponding element of the tuple. For example,
the External URI field of the Provider node is
populated from the URI information of the tuple. The
indexing agent [6] (and possibly the data completion
subsystem) is (are) responsible for transforming the
string data components of the tuple into these registry
objects. When necessary, the indexing agent will
construct new nodes to represent travel resources. It is
also possible that nodes required for the construction of
a travel index are already present in the repository. For
example, if a new provider for a hotel that is already
indexed by the repository is discovered, a new provider
node must be created and associated with the existing
type and location objects of the hotel. The inverse is
also possible. For example, a single provider may house
content on behalf of several hotels. In this case,
associations between a single provider node and
multiple name and location nodes will be created.

In addition to the data required for content

identification and classification, the indexes require
information to facilitate certain administrative
functions. These administrative functions allow the
indexing agent to mark newly created (but not yet
validated) index items as inactive so that they are not
inadvertently utilized in user requests until they are
ready. The registry slot component may be used to
implement this capability (this functionality was
denoted by ?notes? in the tuple specification presented
above). This capability is also useful when dealing with
index completeness. Search agents may discover sites
that contain relevant content but not be able to acquire
all of the data required by the tuple. In this event, the
indexing agent will construct as complete index tuple as
possible, and mark it as incomplete (preventing its
inadvertent use). The completion of the index will be
carried by the data completion subsystem. While the
implementation details of this process are outside the
scope of this document, we do recognize that it is a
necessary component of the system and further details
have been presented in [6].

Having established the basic requirements for

constructing the appropriate classification nodes to
create an index, we will now focus on the details of
creating the classification scheme and its member
nodes. The SubmitOjbectsRequest method is used for
the creation of all new nodes. For the root node,

P a g e 4 4 / 3 0 / 2 0 0 5

(Agentlab) the ClassificationScheme member is used as
demonstrated in the following XML description:

<SubmitObjectsRequest (parameters) >

<LeafRegistryObjectsList>
<ClassificationScheme id=”<uuid>” (other parameters) >

</LeafRegistryObjectsList>
</SubmitObjectsRequest>

As is the case with all repository objects, a globally
unique identifier is required to create a node. The
format for the Unique ID is that of a DCE 128 bit
UUID [10]. If a Unique ID in the appropriate format is
not supplied by the caller, the registry will create one.
The Node representing the travel support system’s
classification scheme is called AgentLab. It appears as
AgentLab in the Classification viewer component of the
ebXML Registry Browser. As mentioned, the content
for a particular site is uniquely defined by three nodes
within the Classification Scheme. The provider node,
the type node, and the location node are of type
classification node. Nodes of each of these types are
themselves members of a classification. The Location
node is constructed from a scheme representing
geography. The Type node represents types of travel
content as described by our categorization scheme. A
Provider node contains a URI defining the access
method, and host address of the travel content. The
following diagram outlines the high level classification:

Once the basic structure has been defined, indexing

can begin. An index is created by inserting three leaf
nodes (as defined by the tuple and the diagram above)
into the registry and then defining associations between
them. In order to insert a node, it is necessary to locate
(via repository query or other means) the parent of the
node to be inserted, and reference it via the use of the
“ObjectRef” class of the repository. As shown below:

Nodes representing the site “Bellagio” have been added
to each of the three basic types. Also, notice that the
Type and Location schemes are themselves hierarchies.
In order to add the Bellagio “provider” to the provider
hierarchy, the Unique Identifier for Agentlab.Provider
had to be determined, and the addressed via the
ObjectRef method.

Utilizing an explicit UUID for the base nodes in the
hierarchies makes it possible to reference them without
searching or querying. While the UUID’s for the base
nodes are explicitly specified, it is sufficient to allow
the repository to generate a random UUID for the leaf
nodes. This is because the Value attribute of the node
object rather than the Unique Identifier is used to
correlate the three nodes representing a site. The
contents of the Value field are populated by obtaining a
UUID using the getuuid registry method and appending
to it the name of the site (i.e. “Bellagio”). By creating
the nodes in this manner, registry browsers may
construct queries that easily retrieve all of the nodes
associated with a site. The site provider object is
primarily a container for details about how to interact
with the content. The registry attribute used to represent
the server and access methods is the External URI. The
URI is constructed then an association between the
External URI and the provider node is created. There
may be one or more URI’s associated with a site, and a
URI may be associated with many sites.

An interesting aspect of the construction of the
Location “Site” nodes is the use of the registry “Slot”
object to contain the Latitude/Longitude of the site.
Future enhancements call for the slot to contain an
OpenGIS object for the site. In addition, in the future,
both the Name and Location Objects will have an
external Link that directly references the Provider Site
(reducing the necessity of retrieving additional objects

P a g e 5 4 / 3 0 / 2 0 0 5

when a site has been discovered). The XML that
constructs the Bellagio index follows:

<rs:SubmitObjectsRequest (parameters)
 <LeafRegistryObjectList>
 <ObjectRef id="urn:uuid:00000001-0000-0000-0000-000000000000"/>
 <ClassificationNode id="urn:uuid:ffffffff-ffff-ffff-ffff-fffffffffff1"
 status="" objectType="ClassificationNode"
 parent="urn:uuid:00000001-0000-0000-0000-000000000000"
 code="utcr:00000003/Bellagio">
 <Name> <LocalizedString charset="UTF-8" value="Bellagio"/></Name>
 <Description> <LocalizedString charset="UTF-8"
 value="Content Provider Bellagio Hotel"/></Description>
 </ClassificationNode>

 <ObjectRef id="urn:uuid:00000002-0001-0001-0000-000000000000"/>
 <ClassificationNode id="urn:uuid:ffffffff-ffff-ffff-ffff-fffffffffff2"
 status="" objectType="ClassificationNode"
 parent="urn:uuid:00000002-0001-0001-0000-000000000000"
 code="utcr:00000003/Bellagio">
 <Name> <LocalizedString charset="UTF-8" value="Bellagio"/></Name>
 <Description> <LocalizedString charset="UTF-8"
 value="Bellagio Luxury Hotel Las Vegas"/></Description>
 </ClassificationNode>

 <ObjectRef id="urn:uuid:00000003-0001-0001-0001-000000000001"/>
 <ClassificationNode id="urn:uuid:ffffffff-ffff-ffff-ffff-fffffffffff3"
 status="" objectType="ClassificationNode"
 parent="urn:uuid:00000003-0001-0001-0001-000000000001"
 code="utcr:00000003/Bellagio">
 <Name> <LocalizedString charset="UTF-8" value="Bellagio"/></Name>
 <Description> <LocalizedString charset="UTF-8"
 value="Location of the Bellagio Luxury Hotel"/></Description>
 <Slot name="Coordinate"> <ValueList>
 <Value>Lat=36,10,42</Value>
 <Value>Long=-115,10,24</Value>
 </ValueList> </Slot>
 </ClassificationNode>
 <ExternalLink id = "urn:uuid:ffffffff-ffff-ffff-ffff-fffffffffff4"
 externalURI="http://www.Bellagio.com">
 <Name>
 <LocalizedString value = "Provider for the Bellagio Luxury Resort"/>
 </Name>
 <Description>
 <LocalizedString value = "Provider for the Bellagio Hotel"/>
 </Description>
 </ExternalLink>
 <Association id = "urn:uuid:ffffffff-ffff-ffff-ffff-fffffffffff5"
 associationType = "ExternallyLinks"
 sourceObject = "urn:uuid:ffffffff-ffff-ffff-ffff-fffffffffff4"
 targetObject = "urn:uuid:ffffffff-ffff-ffff-ffff-fffffffffff1" />
 </LeafRegistryObjectList>
</rs:SubmitObjectsRequest>

Once the data is in the repository, there are many

ways of retrieving it. For example, the Adhoc Query
may be used to search all of the URI’s for a certain host
name. Below is an example where the browser client
was used to retrieve all of the nodes (of all three types)
whose path attribute within the registry contains the
string “Bellagio”.

This example demonstrates a simple mechanism for
obtaining all of the information pertaining to a specific
site. (its provider, type, and location.) Notice that the
adhoc query: “select * from classificationnode where
path like ‘%Bellagio%’;” did not return simple table
rows (it returned RegistryItems). This is because
“AdhocQuery” is a method of the respository (and not
every Adhoc query string works). Also note that the 3
nodes (Provider, Type, and Location) for the string
Bellagio were returned. If there had been more than one

provider (or Site) for the Bellagio content, the UUID
placed in the Value Attribute called the “uctr” Unique
Travel Content Reference could have been used to
Uniquely identify the desired Bellagio content provider
(site).

Another interesting feature of the ebXML registry
is the concept of Lifecycle. The addition of new objects
to the repository is a dynamic process. When content of
interest to the user has no index in the repository, an
agent is initiated to locate some. The lifecycle of the
index begins when the components of the tuple are
validated and inserted into the registry. This does not
mean that the provider is a VCP. A newly discovered
provider does not immediately enjoy VCP status within
the index. There is a progression of verification and
feedback designed to determine the trustworthiness and
reliability of the provider. The integrity of the
information presented to the consumer is critical to the
usability of the system and user satisfaction. Since the
Travel System relies on external sources to deliver the
content it cannot absolutely assure the availability of the
data, the accuracy of the data, or the integrity of the
provider of the data. As a site index progresses through
its lifecycle, the system must help ensure its accuracy
and integrity. The details of dealing with the
trustworthiness of particular provider (site) are outside
of the scope of this paper, but an approach similar to
that applied across many e-communities (e.g. slashdot)
can be applied here.

When dealing with travel content that expires it is

useful to be able to retire a site or index. For example if
a pub had, on a certain date, a special offer of two for
one Corona beers, a slot with this information could be
associated with the site’s provider or location object,
and would expire automatically when the lifecycle of
the slot was completed (this functionality, again,
belongs to the ?notes? field of the tuple and has to be
further investigated).

4. Early experiments

Our experience with the Registry Repository, while

constructing our catalogue, has shown that it is well
suited for this purpose. We found installation of the
registry to be relatively straightforward. The system
was quite flexible when it came to creating our
classification schemes. It may in fact be too flexible.
We found that there were limited controls governing the
creation of new branches within our classification
scheme. This places the responsibility for ensuring that
the schemes are pruned correctly on the indexing agent.
Another shortcoming we found with the registry was
that it provided no interface to the OpenGIS objects
native to the database (Oracle) we were using.

P a g e 6 4 / 3 0 / 2 0 0 5

5. Concluding remarks

In this paper we have discussed the technology

involved in indexing travel related content. Our main
aim is to develop a complete e-travel support system.
The ebXML Registry / Repository will be the central
index repository of this system. Our initial experiments
indicate that this is likely to be a good choice to support
the necessary functionalities. In the near future we will
combine the ebXML Registry / Repository with the
search agents [6] and initiate the next phase of
experiments. This time we will let the search agents
autonomously search the web for travel related
information and populate the repository. This
experimental work (combined with the intelligent query
capacities that are under development) will be used to
reevaluate the results presented here and establish the
final indexing schema that is going to be used in the
system. We also expect that these experiment will
provide us with additional insights that will help us is
establishing the correct support for the administrative
functions of the system (some of which have been
already mentioned above). Finally, we have to return to

the question of the classification of the travel resources.
As indicated above, we are currently utilizing a slightly
simplified Yahoo! catalog combined with the travel
categories originating from the OTA project. We will
study other existing classifications of travel as well as
contact human travel experts in an attempt to develop a
more complete classification. We will report on our
progress in subsequent publications.

References

[1] Angryk, R., Galant, G, Gordon, M., Paprzycki M.
(2002) “Travel Support System – an Agent-Based
Framework,” Proceedings of the International
Conference on Internet Computing (IC’02), CSREA
Press, Las Vegas, pp. 719-725

[2] Galant V. and Paprzycki M. (2002) “Information
Personalization in an Internet Based Travel Support
System,” Proceedings of the BIS’2002 Conference,
Poznań, Poland, April, 2002, pp. 191-202

 [3] Paprzycki M., Angryk R., Kołodziej K.,
Fiedorowicz I., Cobb M., Ali D. and Rahimi S. (2001)

P a g e 7 4 / 3 0 / 2 0 0 5

“Development of a Travel Support System Based on
Intelligent Agent Technology,” in: S. Niwiński (ed.),
Proceedings of the PIONIER 2001 Conference,
Technical University of Poznań Press, Poznań, Poland,
pp. 243-255

[4] Paprzycki M., Kalczyński P. J., Fiedorowicz I.,
Abramowicz W. and Cobb M. (2001) “Personalized
Traveler Information System,” in: Kubiak B. F. and
Korowicki A. (eds.), Proceedings of the 5th
International Conference Human-Computer Interaction,
Akwila Press, Gdańsk, Poland, pp. 445-456

[5] Jakubczyc, J., Galant, V., Paprzycki, M.,
Gordon, M. (2002) Knowledge Management in an
E-commerce System, Proceedings of the Fifth
International Conference on Electronic Commerce
Research, Montreal, Canada, October, CD, 15 pages

[6] Paprzycki M., Gordon M, Harrington P., Nauli A.,
Williams S., Wright J., (2003) Using Software Agents
to Index Data for an E-Travel System, Proceedings of
the ABC Symposium, Orlando, Florida, July, 2003, to
appear.

[7] Open GIS Consortium.
http://www.opengis.org/techno/abstract.htm

 [8] Semantic Web.
 http://www.semanticweb.org

[9] Open Travel Alliance
http://www.opentravel.org

[10] DCE 128 bit Universal Unique Identifier
http://www.opengroup.org/
 onlinepubs/009629399/apdxa.htm#tagcjh_20
http://www.opengroup.org/
 publications/catalog/c706

[11] OASIS/ebXML Registry Services Specification

v2.0, http://www.oasis-open.org/
 committees/regrep/documents/2.0/specs/ebrs.pdf

[12] Gudivada V, Raghavan V, Grosky W, Kasanagottu
R, (1997) “Information Retrieval on the World Wide
Web” IEEE Internet Computing 1997, Pages 57-68.

[13] Abramowicz, W., Kalczynski, P., Wecel, K. (2002)
“Filtering the Web to Feed Data Warehouses.” Springer
Verlag Publishing, New York.

[14] Ndumu, D., Collins, J., Nwana, H. (1998)
“Towards Desktop Personal Travel Agents,” BT
Technological Journal, 16 (3), pp. 69-78

[15] V. Galant, J. Jakubczyc, M. Paprzycki (2002)
Infrastructure for E-Commerce, in: M. Nycz, M. L.
Owoc (eds.), Proceedings of the 10th Conference

Extracting Knowledge from Databases, Wrocław
University of Economics Press, Wrocław, Poland, pp.
32-47

[16] H. Nwana, D. Ndumu, A Perspective on Software
Agents Research, The Knowledge Engineering Review,
14 (2), 1999, pp. 1-18

[17] Gordon, M., Paprzycki, M., Galant, V., (2002)
Knowledge Management in an Internet Travel Support
System, in: B. Wiszniewski (ed.), Proceedings of
ECON2002, ACTEN, Wejcherowo, 2002, pp. 97-104

[18] M. Paprzycki, M. Gordon, A. Gilbert (2002)
“Knowledge Representation in the Agent-Based Travel
Support System,” in: T. Yakhno (ed.) Advances in
Information Systems, Springer-Verlag, Berlin, 2002,
pp. 232-241

P a g e 8 4 / 3 0 / 2 0 0 5

http://www.semanticweb.org/
http://www.opengroup.org/
http://www.opengroup.org/
http://www.oasis-open.org/

	1. Introduction
	2. E-travel System
	Sources of Content Indices
	Semantics
	2.3 Organization of Travel Content
	2.3.1 The Travel provider component
	2.3.2 The Travel type component
	The Travel location component

	3. Building a travel index using the ebXML Registry / Repos
	4. Early experiments
	5. Concluding remarks
	References

