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Abstract. We are developing an agent-based intelligent middleware for
the Grid (the Agents in Grid system). Resource providing agents are or-
ganized in teams and negotiate contracts with agents representing users.
All information is ontologically demarcated and semantically processed.
In particular, user preferences are turned into ontology class expressions
and used directly in contract negotiations. The aim of this chapter is to
discuss in details how ontologies are used in the AiG system. First, we
briefly discuss the most important issues encountered in development of
the AiG ontology. We follow, with the description of the implementation
of ontology-focused parts of the system.

1 Introduction

The aim of this chapter is to discuss practical aspects of application of ontologies
and semantic data processing in management of resources in the Grid. First,
issues involved in development of an ontology of Grid computing are briefly
considered. Discussed ontology is used not only to describe Grid resources, but
also in Service Level Agreement (SLA) negotiations. Second, it is discussed how
an ontology-driven user interface can be developed, to facilitate human-computer
(i.e. human-software agent) communication. Third, a solution to the problem
of ontology-based agent-agent communication is presented. Finally, the role of
ontologies in SLA negotiations is outlined. The chapter begins with top-level
description of the system, which will be used to illustrate these four main points.

The Agents in Grid (AiG) project aims at development of a flexible agent-
based infrastructure, which is to facilitate intelligent resource management in
the Grid. Thus, the project can be considered as an attempt at realizing the
main idea underlining the seminal paper [5], where use of software agents as
high-level middleware for the Grid was suggested. In the AiG project, it is pro-
posed that flexible management of resources in the Grid can be provided by
teams of software agents [10, 11]. Furthermore, the proposed approach is based
on application of semantic data processing in all aspects of the system. Specifi-
cally, ontologies provide the metadata, to be used to describe resources, reason
about them, and negotiate their usage. Finally, adaptability and flexibility of
the system are to result from application of “agreement technologies,” agent
negotiations, in particular.
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2 System overview

In the work of Wasielewska et al, Grid is considered as an open environment
(see, Chapter 7), in which Agents representing Users interact to, either (a) join
a team, or (b) find team(s) to execute job(s) [1, 10]. The main assumptions
behind the proposed approach were: 1

– agents work in teams (groups of agents),
– each team has a single leader—the LMaster agent,
– each LMaster has a mirror, the LMirror agent that can take over its job,
– incoming workers (Worker agents) join teams based on User -defined criteria,
– teams (represented by their LMasters) accept Workers based on team-specific

criteria,
– each Worker agent can (if needed) play role of the LMirror or the LMaster,
– matchmaking is facilitated by the CIC component, represented by the CIC

Agent.

These assumptions have been summarized in the Use Case diagram in Fig-
ure 1.

Let us now outline interactions between components of the system, i.e. the
User and its representative, the LAgent, and agent teams represented by their
leaders—LMaster agents (more information can be found in [2]). Since the sys-
tem is based on semantic data processing, ontologies are used whenever appli-
cable. Here, recall that utilization of ontologies as a method of knowledge rep-
resentation, and basics of the OWL (Web Ontology Language) were introduced
in Chapters 4 and 5, respectively. Let us now assume that the team “advertise-
ments” describing: (1) what resources they offer, and / or (2) characteristics of
workers they would like to “hire”, are registered with the Client Information
Center (CIC ). Obviously, team advertisements are ontologically demarcated.
Specifically, offered resources are represented with individuals (instances), and
worker characteristics are represented with OWL class expressions. Let us fo-
cus on two main scenarios in the system: the User is looking for a team (1) to
commission job execution, or (2) to join (to be paid for use of her resources).
In both cases, the User interacts with her LAgent via an ontology-driven GUI
application, and formulates conditions for (1) job execution, or (2) team joining.
Respective descriptions of a desired resource(s) (or characteristics of (an) offered
resource(s)) are also ontologically represented. Specifically, the GUI application
allows the User to select such requirements on the basis of the existing AiG ontol-
ogy, without any need of knowing it (see, Section 4). The resulting ontology class
expression, is passed from the GUI to the LAgent. The LAgent communicates
with the CIC (passes the ontology fragment to the CIC Agent ; see, Section 5) to
obtain a list of teams that satisfy the User -defined criteria. The CIC utilizes a
reasoner to find individuals satisfying criteria found in the received ontology class
expression. These individuals represent potential partner teams (their LMas-
ters), and are send back to the LAgent. Next, the LAgent forwards the result to

1 For a comprehensive discussion of reasons behind the approach, see [2, 14]
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Fig. 1: Use case diagram of AiG system.

the GUI application and waits for the generated ontology fragment with contract
conditions that the User specifies. Additionally, the User can limit the number of
selected potential partner teams; based, for instance, on trust verification. Note
that, similarly to the selection of required resource characteristics, specification
of contract conditions is driven by the AiG ontology (its contract ontology part;
see Section 6). Next, the LAgent communicates with the LMasters of selected
teams, and they apply the FIPA Iterated Contract-Net Protocol2 [14] to nego-
tiate the contract (SLA) (see, Section 6). All information exchanged during the
negotiations is based on the AiG ontology. The LAgent sends a Call-For-Proposal
message that contains contract conditions, represented in the form of a class ex-
pression, and obtains (from the LMasters) contract offers represented as ontology
individuals. If the LAgent finds an appropriate team, a Service Level Agreement
is formed. If no such team is found, the LAgent informs the User and awaits
further instructions. Let us stress that this process applies to both, the job execu-
tion scenario and the team joining scenario. The only difference is in the details
of negotiations (e.g. content of exchanged messages) taking place in each case.

2 www.fipa.org/specs/fipa00030/PC00030D.pdf
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3 Ontologies in the system

As stated above, when designing the system, it was assumed that all data pro-
cessed in it will be ontologically demarcated. Therefore, after a brief reflection, it
was realized that what was needed was an ontology, covering: (a) computer hard-
ware and software (Grid resources), (b) Grid structure, (c) concepts related to
the SLA and contract definitions. After a comprehensive investigation of existing
Grid-related ontologies (see, [3]) it was decided to modify and extend the Core
Grid Ontology (CGO 3; [16]). While the CGO provided excellent base-terms
concerning Grid resources and structure (parts (a) and (b)), there was a need
to modify it slightly and to extend it to include the remaining concepts needed
for the AiG system (concepts concerning part (c)). The complete description of
the resulting ontology can be found in [3,4]. Here, let us briefly outline its main
features. The extended CGO (the AiG Ontology) is structured into three layers
(its core classes depicted in Figure 2):

1. Grid Ontology—directly extending the CGO concepts.
2. Conditions Ontology—includes classes required by the SLA negotiations (e.g.

pricing, payment mechanisms, worker availability conditions, etc.); it im-
ports the Grid Ontology, to use the terms related to the Grid structure and
resources.

3. Messaging Ontology—contains definitions of messages exchanged by the agents,
forming the communication protocols of the system (it uses the Grid Ontol-
ogy and the Conditions Ontology to specify content of messages).

The crucial aspect of ontological modeling was the representation of con-
straints on ontology classes. For example, when a User is looking for a team
to have a job executed, she needs to specify the necessary hardware (and pos-
sibly software) configuration. In this case, the common way of assigning values
to class properties is not enough, as there is also a need to specify minimum,
maximum, and range conditions. For instance, to execute her job, the User may
need a processor that has at least 4 cores, but no more than 8 cores (these re-
strictions could be based on the knowledge of characteristics of the problem /
job; e.g. parallelization methods used when it was implemented, and its parallel
performance profile). After considering several approaches, to solve this problem,
designers of the AiG system have settled on class expressions. Here, requirements
are defined as a new class that restricts the set of individuals to these satisfying
conditions on class properties. It is thus possible to ask a reasoner to infer a list
of individuals of the generated class and receive these fulfilling the constraints.

While it may be possible to question some specific decisions made when
completing the “re-design” of the CoreGrid ontology 4—and interested readers
are invited to send comments and suggestions to Wasielewska et. al., let us focus

3 Unfortunately, the original CGO is not available online anymore and thus only the
published work can be referenced

4 its current version can be found at http://gridagents.svn.sourceforge.net/

viewvc/gridagents/trunk/ontology/AiGOntology/
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Fig. 2: Ontology diagram for AiG ontologies

on issues that arise when it is to be used in an actual application. Specifically,
when it is to be the core data representation form in an agent-based system,
and used to facilitate agent negotiations leading to an SLA. Note that, for space
limitations, the focus of this chapter is on the “job execution scenario.” However,
all issues and results presented in what follows apply directly to the “team joining
scenario.”

4 Front-end design and implementation

The front-end developed for the system was designed to help the user commu-
nicate her needs and/or preferences using terms familiar and convenient for her,
and then to translate her requirements into appropriate ontology fragments, e.g.
into classes of the AiG ontology. In other words, the front-end subsystem, while
becoming means to provide ontological data to the system (e.g. for the SLA
negotiations), has to do this in a User -friendly way, without assuming the user’s
knowledge about semantic technologies and OWL specifically. After completing
the requirements analysis, it was decided that, the front-end of the system has to
consists of three main parts, allowing specification of requirements concerning:

1. Scheduling job execution—lets User specify hardware and software require-
ments that a team has to satisfy in order to be taken into consideration. In
the second step of the scenario, the User creates a set of constraints on the
contract for executing the job.

2. Joining a team; Worker criteria—specify information needed for negotiating
joining a team, i.e. description of available resources. When an initial list of
teams is found, the User also defines the restrictions on the contract between
the Worker and the team.



6 Katarzyna Wasielewska et al.

3. Joining a team; LMaster criteria—also concerns worker joining a team. Here,
the owner of the LMaster can specify conditions that must be met by any
worker willing to join the team. These include, among others, hardware and
software configuration of the Grid resource.

Note that, for brevity, material presented in this section is focused only on the
first two sets of criteria (concerning direct Users of the system, rather than team
managers). In this context, there exist two possible goals of the system. First, the
system that would be 100% autonomous, where all decisions would be made by
software agents, without further User participation (except of the initial spec-
ification of requirements). Second, User participation would be also possible /
required / expected in specific stages of SLA negotiations. For instance, it would
be possible for the User to manually filter the initial list of teams received from
the CIC. Here, this could be considered as means of letting the User restrict the
executors of her tasks only to the entities that she trusts (see, also [6]). While the
first approach (total agent autonomy in representing User ’s interests), can be
seen as the “Holy Grail” of agent system design, it is the second approach that
is more realistic (and has to be implementable; if not implemented). However, in
the future, when reliance on autonomous software agents becomes a norm (e.g.
when a complete system-wide trust management would be implemented), User
involvement may not be needed (or, at least, considerably limited).

The design of the front-end of an agent system leads to a number of inter-
esting problems. In the initial system prototype, the front-end was a desktop
application with the LAgent running in the background (on the same machine).
Advantages of that approach included simple architecture, and ease of interac-
tions between the client application and the LAgent. Note however, that in this
approach, a copy of the AiG ontology had to be stored locally (at least this
would be the most natural solution). As a result any change in this ontology
would have to be propagated to all LAgents residing on all User -machines. Fur-
thermore, this approach also meant that: (1) the LAgent could only work while
the front-end application was running, and (2) at least a part of the User ’s
data was stored on the local machine. Therefore, meaningful interactions with
the LAgent from different machines would be difficult (if not impossible). At
the very least they would require installing the front-end software (including
the ontology), on any such device. Since, currently, the possibility of accessing
an application from any computer becomes highly desired (if not a necessity),
Wasielewska et al. have decided to develop a web application that can be hosted
in a “shared environment.” Furthermore, such application, if properly designed,
could help in solving the above mentioned problem of expected lack of User
knowledge about ontologies. Finally, the proposed system could be friendly to
potential ontology modifications. Therefore, it was decided to proceed with de-
velopment of an ontology-driven front-end. Here, the vocabulary of specification
of User -constraints would originate from the existing Grid ontology, hopefully
simplifying tasks of Users of the system. Furthermore, the AiG ontology could
be stored in a “single” place—with the application, considerably simplifying the
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ontology maintenance. Note that the most natural place for the location of the
application would be the CIC component (see, Figure 1).

(a) Condition builder

(b) OWL class

Fig. 3: A condition builder section

The core of the front-end is a condition builder—a set of condition boxes,
each representing a description or constraint on a single class-property relation-
ship (see, Figure 3 for screen-shots from the running front-end, representing the
condition selection process, and the resulting OWL class). Depending on the
selected class, the User may choose one of properties that the class is in the
domain of. For instance, having selected the WorkerNode class, the expanded
property box will contain properties such as hasStorageSpace, hasMemory or
hasCPU.

Next, she can specify an operator, from the set of applicable ones, to the
selected property. For example, for the datatype properties these may include:
equal to, or greater than, less than whereas for object properties these would
be is equal to individual and is constrained by. When an operator is selected,
the system generates a “new” fragment of the user interface, used to specify
value of the property. Again, controls depend on the selected operator—be it a
simple text box, or a drop down list of applicable individuals. It is an important
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feature of this component that both: available properties, and possible class
arguments, are inferred directly from the ontology using a reasoner, which means
that the application fully supports class and property inheritance and other,
more complex relations between the elements of the ontology.

To illustrate the relationship between the ontological metadata and the struc-
ture of user interface elements, let us look at the following examples. In Figure 4
a drop-down list of properties that can be applied to the selected class – the
PhysicalMemory – is presented. The elements of this list are generated from the
ontology, the relevant part of which is contained in the following (RDF/XML)
snippet 5. Notice that these properties are actually defined in two different on-
tologies (listed in a single snippet, for clarity and brevity) and, furthermore, they
do not specify the PhysicalMemory directly in their domain. This shows how the
usage of a reasoner, when analyzing the metadata of the ontology, can help in
making the system more robust and flexible.

ObjectProperty : belongToVO
Domain : GridEntity
Range : VO

ObjectProperty : hasID
Domain : GridEntity
Range : URI

DataProperty : hasTota lS i ze
Cha r a c t e r i s t i c s : Funct ional
Domain : Memory or StorageSpace
Range : i n t

DataProperty : ha sAva i l ab l eS i z e
Domain : Memory or StorageSpace
Range : i n t

DataProperty : hasName
Domain : Gr idAppl icat ion or GridEntity
Range : string

Fig. 4: Selecting a class property

In the next example, it is demonstrated how the User can specify that a
property should be equal to a specific individual contained in the ontology. Fig-
ure 5 shows a list of individuals that can be used as a value of the property
hasArchitecture for class WorkerNode. These reflect the following individuals
from the ontology:

5 All ontological snippets, cited in the text, shall be presented in the Manchester OWL
Syntax with namespaces omitted for readability and space preservation.



Using ontologies to manage resources in Grid computing—practical aspects 9

Fig. 5: Selecting an individual

Turning the attention to more complex use cases, an interesting one is that
of nested constraints. For object properties, when the User selects the operator
is constrained by, for a class to be further specified, a new condition box is
created within the existing one. It is used to describe the details, or requirements,
regarding the value of the selected property. The front-end supports also setting
constraints on multiple properties of the same class, using the and buttons,
which add a new condition box at the same level as the previous one.

As an example let us consider a User specifying that the resource required for
running her job should have a multi-core processor with clock speed greater than
1.4 GHz. This can be easily specified in the application as shown on Figure 6.
The User first specifies that the computing element should have the value of
the hasWN set to an instance of the WorkerNode class. This instance is in turn
constrained to an individual with an instance of the CPU class, as the value
of the hasCPU class. Finally, the two conditions are set on the properties of
the CPU class: the hasCores (greater than one) and the hasClockSpeed (greater
than 1400 MHz). The result of such specification, translated into the OWL by
the server component is shown in the following listing.

Class : TeamCondition
EquivalentTo : ComputingElement that hasWN some (WorkerNode that

hasCPU some (CPU that hasClockSpeed some i n t e g e r [> 1400 ] and hasCores
some i n t e g e r [> 1 ] ) )

When the User finishes specifying conditions and pushes the submit but-
ton, the system parses the internal representation of the conditions, and trans-
forms it into an OWL Class Expression. This OWL fragment is passed to the
JADE GatewayAgent, responsible for passing information between the applica-
tion server, and the JADE agent container. The GatewayAgent forwards the
data to the LAgent, to handle it within the system.

Here, it is worthy stressing (again) that in the front-end, all elements from
which the User builds the ontological conditions and descriptions are generated
dynamically, from the structure of the ontology. Therefore, all changes to the
ontology can be applied automatically during the system runtime. This is ex-
tremely important, especially in the case of ontology matching and enriching,
based on the information received from other agents. It also simplifies, in one
more way, maintenance of changes in the ontology. For instance, if a new class
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Fig. 6: Example of a class constraint

of NVidia processors will be introduced, the necessary changes in the ontology
will almost automatically materialize in the front-end.

Furthermore, user interface elements are built dynamically, in response to
User actions. For example, if the User wishes to specify a particular CPU archi-
tecture, individuals of the CPUArchitecture class will only be fetched from the
ontology when the User selects an equal to individual condition on the hasAr-
chitecture property. This allows the processing to be limited only to the needed
parts of the ontology. Moreover, it allows to base displayed options on the User ’s
previous choices. Observe that this could be the basis of developing a mechanism
for providing automated assistance to the User, by suggesting the most useful
or common options, or by filtering out inconsistent options.

The part of the user interface responsible for defining the concrete instances
(e.g. the hardware and software configuration of a particular Grid resource), is
built around the same condition builder components. Of course, here the avail-
able property operators are restricted to the equal to and the ontology elements
generated by the OWL generator represent individuals instead of class expres-
sions. Moreover, the class condition constraints have been modified slightly (for
better User experience); the is constrained by operator has been replaced with
the is described with. The functionality of specifying descriptions of individuals,
instead of class expressions, is used, among others, when defining the hardware
and software configuration of a resource that is offered to (join) a team.

The example, displayed in Figure 7, illustrates a description of a WorkerN-
ode having total size of 1500 MB of storage space formatted using the ext3 file
system. The following snippet shows the rendering of the individual representing
such resource as returned by the OWL generator.

I nd i v i dua l : WorkerDescr ipt ion
Types : WorkerNode
Facts : hasStorageSpace : s t o rage

Ind i v i dua l : : s t o rage
Types : StorageSpace
Facts : hasFi leSystem ext3 , hasTota lS i ze 1500
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Fig. 7: Example of a class constraint

Another interesting challenge that was encountered, while migrating the GUI
from a desktop based application towards a web-based one, was that of passing
messages between the web controllers and the agents. Although the JADE agent
environment contains special classes that provide valuable help in such scenarios
(the Gateway and the GatewayAgent classes), and makes sending messages from
a non-agent environment rather straightforward, handling requests coming from
agents, within the user interface, is less trivial (for an interesting discussion
and another possible solution, see [7, 8]). This is mostly due to the fact that
web applications are stateless by nature, and therefore it is not directly possible
to implement an event-based system where a message coming from an agent
triggers a particular action in the GUI. Instead, it is necessary to implement a
queue of messages received by the GatewayAgent, representing the user interface,
and some form of a polling mechanism that would check for new messages.
In our implementation, the GatewayAgent is responsible for keeping a list of
conversations containing messages. Through the use of the Gateway class, the
web controllers are able to reach the message queue. Polling itself is achieved by
using the client side AJAX requests.

The front-end application has been developed on top of the Play! Frame-
work 6—a lightweight web framework offering straightforward deployment and
a rich plugin ecosystem. This framework also serves as the technological stack for
the server part of the ontology builder user interface, which comprises the web
controllers as well as modules for reading ontological metadata and generating
the OWL data from the descriptions provided by the User. The browser-side
subsystem is implemented as a dynamic JavaScript application using jQuery
7—one of the most popular general purpose JavaScript libraries. The remaining
part of the application—the JADE Gateway component is created as a stan-
dalone Java library, exposing an API for initiating agent conversations, sending
messages and retrieving contents of a specific conversation. After some additional
testing,the JADE Gateway and the ontology builder user interface are to be re-

6 www.playframework.org
7 www.playframework.org
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leased as Play! modules, to be easily integrated into other Play! applications.
Furthermore, the JADE Gateway will be released as a JADE add-on. It is worth
noting that the AJAX functionality for listening on agent’s responses has been
developed as a jQuery plugin, enabling its easy embedding into any HTML page.
Currently, the plugin is developed using a simple polling mechanism controlled
on the browser-side with a request sent to the server every specific number of
seconds. In the future versions of the software this mechanism willnbe replaced
with a less server-consuming implementation based on the Comet / Long polling
mechanism 8

5 Passing ontological information; integrating front-end
and back-end

Let us now assume that, as described above, the User requirements / constraints
have been specified and transformed by the user interface into OWL class ex-
pressions / individuals and passed to the LAgent representing the User. Next,
such information has to be passed further to various components of the system.
For instance, it could be passed to the CIC infrastructure (the CIC Agent) to
query for agent teams satisfying User ’s needs. It can be also sent to the LMaster
agents as a part of SLA negotiations. As noted, all these processes involve onto-
logical matchmaking (which was introduced in chapters 6 and 7). In summary,
communication in the AiG system relies on passing around, extracting infor-
mation from, and manipulating instances of, ontologies. However, issues raised
here apply to any agent based system that is to use in practice ontologies and
pass their “fragments” around for semantic data processing. Without a flexible
and robust support, use of ontologies in agent systems (e.g. as envisioned in
the classic paper by J. Hendler [9]) will be overly complex, thus reducing their
uptake.

Unfortunately, the default JADE ontological facilities are very limiting. In
this framework, ontologies are stored in static Java classes. Those classes are
not shared between agents (i.e. each agent needs to have a private copy) and,
when used for communication purposes, may lead to misunderstandings between
agents. The default JADE codecs for ontological communication can encode the
Java classes into the FIPA SL (FIPA Semantic Language 9)—a language used
to describe the context of any JADE ACL message. Using the FIPA SL in both
context and content of the message is disadvantageous, as there is currently
no good reasoner for this language. As a matter of fact, it seems that there
is currently no publicly available FIPA SL reasoner. Moreover, the FIPA SL is
not decidable, which may sometimes prevent an agent from “understanding”
the content of the FIPA SL-encoded message. Using a non-decidable ontology
language is simply not possible in the AiG system, because the problem domain
requires introducing new, as well as changing the already existing data. Under

8 Comet and Reverse Ajax: The Next-Generation Ajax 2.0”, http://dl.acm.org/

citation.cfm?id=1453096
9 http://www.fipa.org/specs/fipa00008/SC00008I.html
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such conditions it would be impossible to guarantee decidability of ontology at
any time. Managing an ontology that is not decidable would require writing new
reasoning algorithms capable of dealing with undecidability. Using an ontology
language that is decidable is a much simpler and more feasible solution.

It should be stressed that having the ontology “constrained” within static
classes means that there is no practical way to quickly add new class expressions,
properties or constraints to the ontology. Any change in the ontology would
require change in the Java files for every agent. New files would need to be
sent to every agent and swapped with the old ones (possibly via dynamic class
loading). In any case, updating JADE ontologies is extremely impractical and
requires reloading, which in turn means that, for all practical purposes, the
system would need to stop working during the ontology update process. The
Wasielewska et al.’s solution, outlined here, does not suffer from such penalties.

Observe also that, from the practical point of view, JADE ontologies are very
hard to manage and do not offer many of the useful features that are present
in the OWL 2.0. For instance, there is no multiple inheritance (which is also a
property of Java itself), there are no cardinality restrictions, or datatype facets
and reasoner support is missing. Using only the JADE ontologies, there is no
way to, for example, define a team condition restricted to having exactly two
computers with between 4 and 8 processor cores. Creating such a class expression
would require writing custom Java code to supplement the JADE classes. As a
result it is not possible to create the team condition dynamically and contain its
entire description within a JADE ontology class. One of the biggest downsides
of JADE ontologies is also that they are hardly reusable. They cannot be used
outside of a JADE agent system, which makes them rather unpopular. All these
disadvantages of the JADE ontologies make them applicable only to very simple
ontologies with basic vocabularies. Let us now present a solution that does not
suffer from such problems.

As presented above, in the AiG system, it is essential to be able to transfer ar-
bitrary fragments of OWL ontologies, including TBox definitions of classes, used
for representing constraints and requirements. Previously, this problem has been
discussed in [13], and resulted in creation of the JadeOWL Codec [12]. Unfortu-
nately, this plugin was extremely tightly integrated with the commercial Racer-
Pro 10 reasoner, and its development seems to have stopped before the release of
the OWL 2.0 specification. Therefore, a JADE plugin called JadeOWL was de-
veloped, aiming at providing OWL support to the agent message processing. The
JadeOWL uses the OWL API 11 interface and improves upon it by integrating
it with JADE communication routines and adding other useful features.

Direct mapping of the OWL 2.0 12 into any static object-oriented program-
ming language is not possible; i.e. there is no way to represent OWL as Java
classes while preserving its dynamic structure and properties (partial solution
to this problem can be found in [15]). Therefore, as opposed to the existing so-

10 http://www.racer-systems.com/
11 http://owlapi.sourceforge.net/
12 http://www.w3.org/TR/owl2-overview/
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lutions, it was decided that any information instance, such as information about
teams or negotiation deals, will be stored and accessed as OWL formatted text
files. Thus, the plugin had to provide interface to files viewed both as a raw text,
and as an OWL ontology; i.e. after passing a raw file, the plugin had to be able
to probe the structure of the ontology, extract classes and instances, as well as
their properties. In this way the plugin had to be able to serve as a high level
interface to the structure and content of ontological messages, passed between
JADE agents.

In communication scenarios considered here, data is prepared as a piece of the
OWL ontology. The OWL content that is encoded in the message can contain any
valid OWL entity including classes, instances, properties definitions, annotation
properties, imports declarations and so on. The actual syntax can be any OWL
expression supported by the OWL 2.0. Currently the supported syntaxes include:
Manchester, functional, RDF/XML, OWL/XML, and the Turtle syntax. Note
that, as indicated above, the AiG ontologies are stored and communicated in
the RDF/XML format. Using this format guarantees that the used ontologies
can be read by any OWL 2.0 tool because the support for the RDF/XML in the
OWL ontologies is a requirement set by the official OWL documents.

Although messages contain raw OWL data, their interpretation is done in-
ternally by the plugin, which separates the syntax from the semantics. In this
way agents can access the information without the need to parse the text. This
interpretation requires reasoning about the data. Therefore, an instance of a se-
mantic reasoner had to be bundled with the communication plugin. JadeOWL
currently supports: HermiT 13, Pellet14, and Fact++15 reasoners. However, in
the AiG implementation, the Pellet reasoner is used. Note that reasoners are
used not only by the codec, but also provide the infrastructure for all agent rea-
soning. For instance, the CIC infrastructure uses it to match registered resource
descriptions (teams, or worker candidate, profiles) against restrictions expressed
with class expressions—for instance, in the two scenarios described in Section 2.

The design of the system requires agents to have shared (public) knowledge,
as well as private knowledge. For example every agent in the Grid needs to un-
derstand basic concept such as a computing node. This knowledge is considered
to be shared by every agent and does not depend on its role in the system. On
the other hand, detailed information about every team in the Grid is, by design,
gathered in the CIC infrastructure. This information can be considered an exam-
ple of the private knowledge of the CIC ; i.e. it is up to the CIC Agent to decide
how and with whom to share this knowledge. The separation of knowledge into
public and private parts creates a need for a query language that would allow
agents to ask specific questions about the private knowledge of other agents.
This need is satisfied by the JadeOWL A-Box query language.

The JadeOWL query language provides a way to ask questions about the
OWL ontologies using pieces of the OWL code. Any query can be answered

13 HermiT OWL Reasoner, http://hermit-reasoner.com/
14 Pellet: OWL 2 Reasoner for Java,http://clarkparsia.com/pellet/
15 OWL: FaCT++”,http://owl.man.ac.uk/factplusplus/
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locally or sent to another agent to be answered there. An answer to a query is
a piece of data in the OWL format. To extract data (e.g. an OWL instance)
from an ontology, a custom OWL class is created—a defined class called the
“query class.” The exact structure of this class depends on the data that needs
to be extracted. For example, if the CIC is asked for agent teams with an IBM
Linux machine, it sends information received from the LAgent to the JadeOWL
plugin. The plugin creates an OWL class that extends the definition of the OWL
class describing the team advertisements, but also contains an OWL property
restrictions that forces any instance of this class to be a team with an IBM Linux
computer. Other types of restrictions (like the cardinality restriction) supported
by the OWL 2.0 16 are also available.

Here, the reasoner performs consistency and satisfiability tests on the new
class in the context of the ontology. If the tests fail, it means that either the class
cannot have any instances or it contradicts other information in the ontology.
In this case, an exception is thrown and the reasoner output is routed back to
the creator of the instance, to inform about the problem and, possibly, how to
fix it. After passing the tests, the class prepared in this way is presented to the
reasoner that finds all its instances. The prepared OWL instances are sent back
to the LAgent that requested the information.

The JadeOWL is used in any communication routine required by the system.
For example, advertising a team by the LMaster involves sending an instance of
an OWL class (describing the team) to the CIC, which recognizes it as a team
advertisement and stores it in an OWL file. When asked by the LAgent, it filters
all stored instances, to satisfy the specified constraints.

Summarizing, the JadeOWL plugin aids creation of OWL classes and in-
stances by producing and structuring the actual OWL text, while the reasoner
(that is internal to the plugin) performs the validity/consistency checks and fil-
tering. The A-Box query system assists in finding teams or agents that fit the
criteria defined by the User via the GUI. The JadeOWL also intermediates in
the agent-to-agent communication, and makes full ontological communication
available, while preserving constraints set upon ontologies in the OWL format.
Finally, it makes it possible to exploit the dynamic nature of the OWL.

6 Negotiations in the system

Let us now assume that the preliminary processes (in the scenarios described
in Section 2) been completed and a group of team managers (LMaster agents)
has been selected as potential job executors (see, 8). In the next step, the SLA
negotiations ensue. The SLA, defines agreement reached by the parties, while
negotiations are understood as a flow of messages between “parties” (in this
case the LAgents and the LMasters). It should be obvious that, since in the
AiG system, ontology fragments are passed as the message content (using the
above described codec), all negotiation parameters and contract conditions are

16 http://www.w3.org/TR/owl2-overview/
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represented with respective class expressions and properties (from the AiG on-
tology). As stated in [14], the negotiation process is based on the FIPA Iterated
Contract-Net Protocol, and involves both negotiable e.g. deadline penalty, job
execution timeline, and static parameters e.g. resource description specified by
the User through the front-end (described in Section 4). Currently, a simplified
version of the protocol e.g. the FIPA Contract-Net Protocol is utilized, however,
in the future its complete multi-round version of will be utilized.

Fig. 8: Sequence diagram for job execution scenario

After User specifies contract conditions and restrictions, an appropriate on-
tology with class expression is generated (by the GUI, see Section 4) and send to
the LAgent, which constructs a Call-For-Proposal message with an OWL class
expression representing restrictions on contract conditions (for either one of the
negotiation scenarios) including also the required resource description—for the
job execution scenario; or of a resource that the User wants to sell—for the team
joining scenario. This message is sent to the selected LMasters, and those inter-
ested in the proposal reply with the OWL instances—individuals representing
their offers. Before replying, each LMaster agent assesses received offers, based
on its internal criteria e.g. checking if any team member suitable to do a job is
available. The LAgent verifies if received contract offers match it’s criteria and
selects the best offer, in the case that one can be selected. In Figure 9 the se-
quence of messages exchanged during the negotiation process based on the FIPA
Contract-Net Protocol is depicted.

The following snippet shows a simple class expression with restrictions on
the contract, where the deadline penalty should be less than 100, fixed resource
utilization price should be less than 500, and the required resource should run
Windows Vista SP2 operating system.

ObjectProperty : contractedResource
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Fig. 9: Sequence diagram for contract negotiations

ObjectProperty : f i x e dU t i l i z a t i o nP r i c e
ObjectProperty : paymentConditions
ObjectProperty : isRunningOS
DataProperty : dead l inePena l ty
DataProperty : peakTimePrice
Class : JobExecutionCondit ions
Class : PaymentConditions
Class : Pr i c ing
Class : WorkerNode
Ind i v i dua l : v i s t a s p 2
Class : JobExecutionCondit ions
EquivalentTo : JobExecutionCondit ions that contractedResources some

(WorkerNode that isRunningOS value v i s t a s p 2 ) and paymentConditions some
( PaymentConditions that f i x e dUn i t i z a t i o nP r i c e some ( Pr i c ing that
peakTimePrice some f loat [<= 500 ] ) ) and dead l inePena l ty some f loat [< 100 ]

In response to such a CFP message, the following snippet shows a potential
offer (contract proposal) instance generated by the LMaster agent. Presented
contract offer specifies the deadline penalty to be 91.56, and a fixed utilization
price to be 450.0. Obviously, in both cases of the CFP and the contract proposal,
the prices are represented in some imaginary currency.

I nd i v i dua l : Contract
Types : JobExecutionCondit ions
Facts : dead l inePena l ty ” 91 .56 ”ˆˆxsd : f loat , paymentConditions

ContractPaymentConditions
Ind i v i dua l : ContractPaymentConditions
Types : PaymentConditions
Facts : f i x e dU t i l i z a t i o nP r i c e ” 450 .0 ”ˆˆxsd : f loat

Note that, reasoning in the back-end part of the system is required for both
negotiating parties, i.e. the LAgent and the LMasters in order to select best of-



18 Katarzyna Wasielewska et al.

fer, or respectively verify if an offer can be prepared (e.g. the contract conditions
are acceptable). In the initial proof of concept application, the LAgent utilized
a linear-additive model for three predefined criteria to select an offer [10]. This
model is a simple MCA model, in which criteria are treated and assessed inde-
pendently. In the future, both parties shall use multicriterial analysis to evaluate
received proposals and make offers that take into consideration their own ability
to fulfill required conditions, as well as preferences. Additional criteria, that be-
came available in the ontology (as compared to the proof of concept application)
are going to be considered. Both negotiation parties should be able to handle
arbitrary constraints from the AiG ontology based on the restricted property
datatype and weight.

Upon receiving the offer from the LMaster agent, the LAgent uses the rea-
soner to verify if the received contract offer satisfies the criteria provided by
the User. On the other hand, the LMaster agents may use reasoning and MCA
to determine, for instance, the cost of job execution. Note that each resource
needed for job execution, e.g. memory, I/O bandwidth, has a pricing property in
the ontology. This property specifies the pricing type and the price. To evaluate
the total price of the job execution, the LMaster combines prices for each re-
quired component. Reasoning is also used by the LMasters to verify if they are
able to execute a given job i.e. if there is an available member in the team that
has resources required to execute a specific job. So far, team members resource
descriptions have been stored in the CIC component, however, they will be
stored also locally so that the LMaster can use reasoner on it’s local ontological
database.

7 Concluding remarks

The aim of this chapter was to illustrate how ontologies and semantic data pro-
cessing can be used in an actual application, to facilitate contract negotiations.
It describes in detail the front-end, which allows use of the application without
knowledge of ontologies, the front-end back-end integration that allows agent
systems use ontologies without the need to turn them to Java classes, and the
initial design of the negotiation mechanism. Since all the needed ”front-end-
tools” are in place, the focus of research will now shift to the extending the
existing simple SLA negotiations.
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