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Abstract

Extracting fuzzy system rules from experimental data by means
of clustering constitutes at present a commonly used technique.
Intense studies in the field have shown that this method leads
to a significant reduction in the system’s complexity, maintaining
at the same time its high modelling performance. In this paper
a clustering algorithm, based on a kernel density gradient estima-
tion procedure applied for fuzzy system identification, is presented.
The method is unsupervised, fully automatic and does not need
any requirement concerning the assumed number of data clusters.
The results of experimental evaluation show that the algorithm
under investigation is in most cases superior over the standard
subtractive clustering technique frequently applied in similar types
of problems.

Keywords: fuzzy inference, clustering, kernel density estima-
tion.

1 Introduction

Fuzzy identification (or fuzzy modelling), introduced by Takagi and
Sugeno [1], is currently a very popular method of capturing a system’s
behaviour using its available quantitative characteristics. Numerous ap-
plications of this approach include, among others, prediction problems
[2], controllers’ design [3] and systems analysis [4].
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Inference based on fuzzy modelling relies on employing a set of fuzzy
if–then rules, which reflects the input-output relationship of the mod-
elled system. Usually typical Takagi-Sugeno rules are used, where the
consequent part is described by non-fuzzy equations of the input vari-
ables, for example: if temperature is high and air circulation is low then
control=α·temperature – β·air circulation.

The problem of extracting rules from data is not trivial and has
been investigated using different techniques, such as genetic algorithms
[5], neuro-fuzzy methods [6] or criteria based on information theory [7].
Since one wishes to find the minimum representation of a fuzzy rela-
tionship, clustering is also used very frequently, either as a stand-alone
procedure or as part of another method. The most popular approach
is subtractive clustering developed by Chiu [8], although researchers’
efforts resulted in some other interesting techniques, such as evolving
clustering [9] or Gath-Geva clustering [10].

The aim of the paper is to present an alternative method of obtaining
rules’ prototypes by means of clustering based on nonparametric density
gradient estimation; a detailed description of the method can be found
in work [11]. The estimation is performed using kernel density estima-
tors (KDE); more information is found in e.g. books [12, 13]. Such an
estimator of unknown density function f for the n-dimensional proba-
bilistic variable U with the sample u1, u2, ... , um, the kernel K and the
bandwidth h, is defined as the following function:

f̂(u) =
1

mhn

m∑

i=1

K

(
u− ui

h

)
. (1)

For the kernel function K introduced in the above definition one can use
either radial

K(x) = c κ(||x||) (2)

or product kernel

K(x) = c κ(x1) · κ(x2) · ... · κ(xn) , (3)

where each one-dimensional kernel κ is associated with the individual
bandwidth h1, h2, ... , hn, and consequently hn in formula (1) is equal to
h1 · h2 · ... · hn and the factor c normalises the integral of the kernel K
to 1.

The radial kernel experiences a relatively higher estimation effective-
ness. The drawback of this approach is the need to perform data linear
transformation in the case of differently-scaled dimensions; moreover,
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the calculation of bandwidth has to be performed using least-squares
cross-validation, not so suitable from the applicational point of view.
On the other hand, although estimation based on the product kernel
suffers from slightly lower effectiveness, it profits from the use of the
simple and automatic plug-in method of the selection of the bandwidths
hi, and also much easier integration and differentiation procedures. More
detailed information about the practical issues of KDE methods and ap-
plications are found in books [13, 14]. In the further part of this paper
the product kernel will be applied.

The clustering algorithm being considered here will use the gradient
∇f estimation. The idea of the proposed concept is based on the Fuku-
naga method [15], but the rule extraction from clusters centers is similar
to the one used in standard subtractive clustering.

This paper is organised as follows. The second section is devoted to
the commonly used subtractive clustering method (Subsection 2.1); it
presents the identification of cluster centers as well as fuzzy rule con-
struction from data prototypes (Subsection 2.2). In the next section a
detailed description of the clustering algorithm based on KDE, worked
out in this paper, is given. The subsequent section contains results of the
computational experiments and comparisons. Finally, some concluding
remarks on the clustering method under investigation, its effectiveness
and directions for future work, are presented.

2 Subtractive Clustering for Fuzzy Model Syn-
thesis

Among various cluster analysis procedures the most suitable for fuzzy
identification are the ones, which do not need an arbitrarily assumed
number of clusters. Subtractive clustering is a method with such prop-
erty, commonly used for fuzzy modelling. It also constitutes a refer-
ence for other procedures’ performance. Some short description of the
method, based on work [8], will be given in the following. The KDE
approach investigated in this paper refers to it, both in methodological
and experimental aspects.
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2.1 Cluster Estimation

The algorithm for m-elements data set u1, u2, ... , um starts with calcu-
lating data density measures:

Di =
m∑

j=1

e
− ||ui−uj ||2

(ra/2)2 for i = 1, 2, ... ,m , (4)

where ra > 0 is a so-called cluster radius coefficient. A data element with
the highest density value D(c1) is treated as a first cluster center u(c1)

and density measures of points lying within radius rb (usually assumed
as 1.5ra) are reduced according to the following formula:

Di := Di −D(c1)e
−
||ui−u(c1)||2

(rb/2)2 . (5)

The procedure of selecting new clusters and reducing density measures
is repeated iteratively until

D(ck) > AD(c1) (6)

or
D(ck) ≤ RD(c1) , (7)

where A > 0, R > 0 and A > R. If the first condition is true, the
clustering ends with the obtained cluster centers u(c1), u(c2), ... , u(ck).
In the case when inequality (7) is true, one has to check whether the
following holds:

dmin

ra
+

D(ck)

D(c1)
≥ 1 , (8)

where dmin is the smallest distance between the candidate for a new
cluster center u(ck) and the set of previously obtained cluster centers
u(c1), u(c2), ... , u(ck−1). If dependence (8) is true, the clustering procedure
continues with obtained u(ck); if not, then D(ck) = 0 and the next cluster
center candidate with the biggest density is tested by conditions (6) and
(7).

It should be noted that the assumed value of the parameter ra

strongly affects the number of clusters obtained by the algorithm. Gen-
erally, a large ra yields lower number of clusters, however, a smaller ra

results in the opposite phenomenon. It allows a full control of the algo-
rithm resolution, but on the other hand there are no general guidelines
as to how this parameter should be chosen.
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2.2 Generation of Rules

Assume that n-dimensional space, previously partitioned into C clusters,
consists of a nx-dimensional inputs space and a ny-dimensional outputs
space of the modelled system under consideration. As a result, each
cluster center is defined as u(ck) = {x(ck)1, ... , x(ck)nx

, y(ck)1, ... , y(ck)ny
}

and can be treated as a general fuzzy rule describing the system’s be-
haviour. A degree to which this rule is fulfilled, for given input vector
x, is defined by

µ(ck) = e−α||x−x(ck)||2 , (9)

where α = 4
r2
a
. The output vector y can be calculated as

y =
∑C

k=1 µ(ck)y(ck)∑C
k=1 µ(ck)

. (10)

To build a fuzzy inference system (FIS), based on the information ob-
tained from the clustering process presented above, one has to define
a set of C fuzzy rules, taking into account each of the system’s inputs
and outputs, i.e. every cluster should be mapped onto each dimension
of input-output space: if x1 is A(ci)1 and x2 is A(ci)2 and ... and xnx

is A(ci)nx
then y1 is B(ci)1 and y2 is B(ci)2 and ... and yny is B(ci)ny

for i = 1, 2, ... , C. Thus, membership functions for input variables are
defined in the following manner:

A(ci)j(xj) = e−α(xj−x(ci)j
) (11)

and their consequents as a set of singletons

B(ci)j = y(ci)j . (12)

It was shown in paper [8] though that significantly better accuracy
of fuzzy modelling can be achieved if I-order Takagi-Sugeno rules are
used, i.e. when each output cluster in formula (10) is a linear function
of input variables:

y(ci) = G(ci) · x + w(ci) . (13)

The procedure for calculation of optimal consequent parameters, i.e.
matrices G(ci) and w(ci), does not result in significant additional com-
putational overhead, as they can be easily obtained – when the set of
training data {x1, x2, ... , xm, y1, y2, ... , ym} is given, then equation (10),
with substitution from formula (13), represents a simple linear least-
squares estimation problem [1].
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3 Kernel Density Estimation Clustering

3.1 Algorithm Description

The algorithm is based on the natural assumption that each cluster can
be represented by the local maximum of the kernel estimator of the prob-
ability density function f̂ , obtained for the considered n-dimensional
data elements u1, u2, ... , um. However, instead of the direct analysis of
a density function, its gradient is used here. The algorithm consists of
two stages: relocation of data elements and their division into clusters.

In the first phase of the algorithm each element is moved along a di-
rection defined by the gradient ∇f̂ , according to the following equation:

u
(k+1)
i = u

(k)
i + b

∇f̂(u(k)
i )

f̂(u(k)
i )

for i = 1, 2, ... , m (14)

taking the original data set as a procedure starting point, i.e.

u
(0)
i = ui for i = 1, 2, ... , m . (15)

The parameter b = [b1, b2, ... , bn]T, with bi > 0, defines the “speed” of
data movement:

bi =
h2

i

3
. (16)

The first phase of the KDE clustering algorithm ends when the following
stop condition is fulfilled:

||D(k) −D(k−1)||
D(0)

≤ 0.001 , (17)

where D(k) =
∑m

i=1,j=i d
(k)
ij with d

(k)
ij = ||u(k)

i − u
(k)
j ||2 constitutes a sum

of distances in each of k algorithm’s iterations.
The second stage of the KDE clustering algorithm starts when con-

dition (17) is true. First, a sample consisting of elements’ distances
d

(k)
ij for i = 1, 2, ... , m and j = i, i + 1, ... ,m is constructed. Then,

the smallest argument dmin for which the KDE function, calculated for
the sample, assumes its local minimum (excluding possible minimum
in zero) should be found. The value dmin serves as a cluster distinc-
tion parameter, i.e. two points ui and uj belong to the same cluster if
d

(k)
ij ≤ dmin. The last step of this algorithm consist of mapping points

to proper clusters according to the above-formulated rule. Details are
found in paper [11].
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3.2 Application for Fuzzy System Modelling

Now assume that the data set under consideration represents input-
output values. When one obtains the mapping of elements to C clusters,
by use of the earlier-presented algorithm, it is easy to calculate the
centers of gravity for clusters. Those centers can then serve as a basis
for the rule generation process as shown in Section 2.2. The parameter
ra is used here only in equation (9) and allows the designer to control the
generalisation ability of a resulting fuzzy inference system. As a “rule
of thumb”, ra = 1

C can be proposed.
It is important to note that the method, when applying any standard

bandwidth selection procedure, offers automatic definition of the number
of clusters directly resulting model complexity. However one can adjust
it to one’s needs by altering bandwidth value – increasing it implies
stronger density smoothing and smaller number of clusters obtained,
with the opposite result when this value is decreased.

The next section is devoted to the experimental verification of the
method investigated in this paper using some standard benchmarks pre-
sented already in the literature.

4 Experimental Results

The algorithm was tested on three data sets representing, in order, prob-
lems of function approximation, gas furnace system input-output mod-
elling, and synthesis of fuzzy PI controllers. Moreover, comparison with
the up-to-date subtractive clustering method was also performed. Both
algorithms were used in their MATLABR© implementations.

4.1 Function Approximation

Consider the classic problem [8] of fuzzy modelling of the function

y =
sin(x)

x
. (18)

The training set consists of 50 data pairs for x ∈ [−10, 10] generated
with uniform distribution. A testing set was created in the analogical
way.

The modelling error was defined as root mean square deviation (RMS)
between the testing set and data obtained from the model. The results of
the methods’ comparison is presented in Tab. 1. It can be seen that the
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Table 1: Comparison of clustering methods for fuzzy function modelling.
Method Radius ra Rules Obtained RMS
Subtractive clustering 0.5 3 0.1834
KDE-based clustering 0.33 3 0.1678

introduced KDE-based clustering technique achieves better accuracy of
fuzzy modelling than subtractive clustering, providing at the same time
a simple structure of the fuzzy inference system, consisting of only 3
rules.

4.2 Gas Furnace Fuzzy Model Identification

The gas furnace data set, originally presented in book [16], is a bench-
mark frequently used for research on fuzzy and neural modelling. The
set consists of 296 elements (x, y) ∈ R2. The input signal represents the
flow rate of the methane in a gas furnace, while the output of the model
corresponds to the CO2 concentration in the gas mixture flowing out of
the furnace, under a steady air supply. Both signals are sampled every 9
seconds. The aim of fuzzy modelling is in this case predicting y at fixed
k iteration on the basis of available knowledge of system behaviour in
prior moments of time. Most studies use the values y(k−1) and u(k−4)
for such purpose [17]. Here the same approach was applied.

A training set consists of the values y(k− 1), u(k− 4), y(k) with k =
5, 6, ... , 150. For evaluation of the obtained models the rest of the data
set was used. Subtractive clustering was tested with ra = 0.1, 0.2, ... , 1.0
and KDE-based clustering with bandwidth varying from 50% to 150%
of the optimal value. Here the best two-clustered configurations of both
compared methods are presented in Tab. 2. Note that in the case of
subtractive clustering the presented configuration is also the best one
in the terms of RMS, however, for the KDE-based method the reported
result can be further improved by changing the bandwidth value.

Table 2: Comparison of clustering methods for gas furnace modelling
Method Radius ra Rules Obtained RMS
Subtractive clustering 1 2 0.6134
KDE-based clustering 0.5 2 0.6112

Figure 1 presents a comparison of real system response and data ac-
quired from fuzzy models synthesised via investigated clustering meth-
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ods. Although both reduced inference systems’ outputs follow real data
closely, the RMS is in the case of KDE-based clustering a little smaller.

150 200 250 300
48
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60

62

k

y(
k)

Real data
Subtractive
KDE

Figure 1: Results of Box-Jenkins’ gas furnace data set modelling.

4.3 Fuzzy PI Controller Synthesis

In paper [18] subtractive clustering was effectively applied for the rules
set reduction of the fuzzy logic PI feedback controller. It was presented
there how input-output data obtained from a controller consisting of 49
rules can be used as training values for a cluster analysis algorithm which
generates a less complex model of the considered system. Furthermore,
the reduced controller maintains almost the same level of performance
as the original one.

Assume that the following process transfer function is given:

G(s) =
1

(s + 1)
1

(0.2s + 1)
1

(3s + 1)
. (19)

Using the reference PI fuzzy logic controller, with rules base consisting
of 49 elements, a set of training data was created. It consists of 926
{∆eN , eN , ∆un} triplets representing control system input-output signal
values for the square wave reference x. The clustering algorithms were
performed on a part of this set – a hundred points sampled at regular
intervals. Then the resulting fuzzy models were evaluated using the
whole training sample. The comparison of the algorithms’ performance
is shown in Tab. 3. The response characteristics of clustering-based
fuzzy logic controllers were presented on Fig. 2.
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Table 3: Performance of clustering methods for fuzzy PI reduction.
Method Radius ra Rules RMS
Initial controller – 49 0.4824
Subtractive clustering 0.5 4 0.4742
KDE-based clustering 0.5 2 0.4643

0 2 4 6 8 10 12 14 16 18 20
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Initial Controller
Subtractive Clustering
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Figure 2: Comparison of fuzzy logic controllers’ time responses.

Again, KDE clustering was found to be superior considering obtained
clustering results. It offers the smaller RMS modelling error, quicker set-
tling time (although with a little overshoot) and less complex structure
of the inference system at the same time. It is worth mentioning as well
that the reduced fuzzy logic controller performs in this case better than
the original controller.

5 Conclusion and Directions for Further Work

The aim of this paper was to present a novel approach to fuzzy rules syn-
thesis via cluster analysis. The concept is based on the nonparametric
kernel density estimation. The procedure consists of two phases: points
relocation and their assignment into appropriate clusters. The method
under investigation allows to determine a set of rule prototypes, without
arbitrary assumption concerning their number and also a need to select
any user-defined parameters. Furthermore, the high computational bur-
den of associated calculations can be effectively reduced using parallel
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processing, as shown in paper [19].
The proposed method was tested on various fuzzy modelling cases

and was shown to achieve a better level of performance as an up-to-
date subtractive clustering algorithm. Further research in the subject
could concern the customisation of the rule construction process (e.g.
by automatic preselection of the generalisation factor ra) to the specific
features of the kernel density estimation.

References

[1] Takagi T., Sugeno M. (1985). Fuzzy Identification of Systems and
Its Applications to Modeling and Control. IEEE Transactions on
Systems, Man and Cybernetics, 15, 116–132.

[2] Olej V., Krupka J. (2005). Prediction of Gross Domestic Prod-
uct Development by Takagi-Sugeno Fuzzy Inference Systems. IEEE
Proceedings of International Conference on Intelligent Systems De-
sign and Applications, Wroclaw, 186–191.

[3] Kadmiry B., Driankov D. (2004). A Fuzzy Gain-Scheduler for the
Attitude Control of an Unmanned Helicopter. IEEE Transactions
on Fuzzy Systems, 12, 502–515.

[4] Trabelsi A. et al. (2004). Identification of Nonlinear Multivariable
Systems by Adaptive Fuzzy Takagi-Sugeno Model. International
Journal of Computational Cognition, 2, 137-153.

[5] Papadakis S.E., Theocharis J.B. (2002). A GA-based fuzzy model-
ing approach for generating TSK models. Fuzzy Sets and Systems,
131, 121–152.

[6] Jang J-S. R., (1993). ANFIS: Adaptive-Network-Based Fuzzy Infer-
ence System, IEEE Transactions on Systems, Man and Cybernetics,
23, 665–684.

[7] Yen J., Wang L. (1998). Application of Statistical Information Cri-
teria for Optimal Fuzzy Model Construction. IEEE Transactions
on Fuzzy Systems, 6, 362–372.

[8] Chiu S.L. (1994). Fuzzy model identification based on cluster esti-
mation. Journal of Intelligent and Fuzzy Systems, 2, 267–278.

11



[9] Song Q., Kasabov N. (2001). ECM – A Novel On-line, Evolving
Clustering Method and Its Applications. Proceedings of the Fifth
Biannual Conference on Artificial Neural Networks and Expert Sys-
tems, Dunedin, 87–92.

[10] Abonyi J. et al. (2002). Modified Gath-Geva fuzzy clustering for
identification of Takagi-Sugeno fuzzy models. IEEE Transactions
on Systems, Man and Cybernetics B, 32, 612–621.

[11] Kulczycki P., Charytanowicz M. (2008). A Complete Gradient Clus-
tering Algorithm by Kernel Estimators. In press.

[12] Wand M.P., Jones M.C. (1995). Kernel Smoothing. Chapman and
Hall, London.

[13] Kulczycki P. (2005). Estymatory jadrowe w analizie systemowej.
WNT, Warsaw.

[14] Kulczycki P. (2008). Kernel Estimators in Industrial Applications.
In: Soft Computing Applications in Industry, Prasad B. (ed.),
Springer-Verlag, Berlin. In press.

[15] Fukunaga K., Hostetler L.D. (1975). The Estimation of the Gradi-
ent of a Density Function, with Applications in Pattern Recogni-
tion. IEEE Transactions on Information Theory, 21, 32–40.

[16] Box G.E.P., Jenkins G.M. (1970). Time Series Analysis: Forecast-
ing and Control. Holden-Day, San Francisco.

[17] Farag W., Tawfik A. (2000). On Fuzzy Model Identification and the
Gas Furnace Data. Proceedings of the International Conference on
Intelligent Systems and Control, Honolulu, paper: 317-083.

[18] Chopra S. et al. (2006). Analysis of Fuzzy PI and PD Type
Controllers Using Subtractive Clustering. International Journal of
Computational Cognition, 4, 30–34.

[19] ÃLukasik S. (2007). Parallel Computing of Kernel Density Estimates
with MPI, Lecture Notes in Computer Science, 4489, 726–734.

12


