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Fig. 7. Lower bounds onL performance as a function of sampling rate and
quantizer precision.

The main feature of the performance data is that performance de-
grades with decreasing quantizer precision. As the quantizer’s preci-
sion increases, the sampling rate at which the “onset” of worsening
performance occurs also increases. In general however, it seems that
for any given quantizer precision, there is a sampling rate fast enough
to cause performance to degrade. Furthermore, from this and other
data (for various precisions), it seems that as the sampling rate in-
creases, performance degrades unboundedly. Since simulation time in-
creases linearly with the sampling rate, it is not very practical to simu-
late rates faster than10�4-10�5 using MATLAB on currently available
workstations.

The performance data indicates that for any given precision level
in the controller’s arithmetic, the output norm limits to infinity as the
sampling period goes to zero. If this conjecture is true, such systems
should be regarded as unstable for fast sampling rates, even though for
any fixed rate they are BIBO stable as argued earlier.

Finally, we should point out that as observed in [8], one can sig-
nificantly improve the finite precision performance of a system by the
choice of controller realization. This issue was not addressed in this
note. A more judicious choice of controller realization, would have
probably improved the performance curves in Fig. 7 (by delaying the
onset of worsening performance to higher sampling rates). However, it
appears that the basic pattern of degrading performance for sufficiently
fast sampling rates would persist. This last point deserves further inves-
tigation, and if true, would indicated some fundamental limitation for
the use of unstable dynamic sampled-data controllers.
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Rotational Motion Control of a Spacecraft

Rafal Wisniewski and Piotr Kulczycki

Abstract—This note describes a systematic procedure for the control syn-
thesis of a rigid spacecraft using the energy shaping method. The geometric
concept of a mechanical system in a coordinate-independent form is used
to derive a control algorithm for the Euler–Poincaré equations. The main
result of this note is a specialization of the method on the unit quaternion
group. This note is concluded with the examples of the potential functions
and implementation for the three-axis attitude control problem.

Index Terms—Attitude control, differential geometric methods, non-
linear control, stability theory.

I. INTRODUCTION

Over the last fifty years since the first spacecraft was launched, the
subject of attitude control has become mature. A new demand on the
aerospace/control engineering has come up. The design phase has to
be reduced in time and thereby in cost. A way for achieving this goal is
to establish a general design method for an on-board attitude control.
Here, energy shaping seems to be a good candidate. The objective of
this work is to adopt energy shaping to rotational motion control of a
spacecraft.

The energy shaping method in its most common formulation gives a
control action, which is the sum of the gradient of potential energy and
the dissipation force; [1, Ch. 12]. Such a control law makes the system
uniformly asymptotically stable to the desired reference point—the
point of minimal potential energy. The key to a precise description of
this method is a concept of a mechanical control system. In general, a
mechanical system may be approached from the point of view of Rie-
mannian geometry on the tangent bundle or symplectic geometry on the
cotangent bundle; see [2] and [3]. An additional generalization of the
mechanical system on the cotangent bundle can be accomplished intro-
ducing a Poisson structure on the configuration manifold, in particular,
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the underlying manifold needs not to be even dimensional. If the system
allows symmetry, it is an advantage to use the reduced Lie–Poisson dy-
namics [4].

Stabilization by the energy shaping of a mechanical system was first
proposed in [2]. At present, it stands for numerous methods reliant on
the aforementioned descriptions of the mechanical system. References
[1] and [2] presented the energy shaping for manifolds with Poisson
structure. The concept of the energy shaping on a Riemannian manifold
was addressed in [3] and [5]. The first work relied on the Lagrangian ap-
proach and provided earliest coordinate free formulation of the method,
the latter gave a description of the energy shaping for a general mechan-
ical system expressed in terms of a Riemannian connection.

This note brings motion control of a rigid body into focus. The con-
tribution is an application of the potential energy shaping for the sys-
tems described by the Euler–Poincaré equations with forcing. The work
places the stress on the configuration manifold given by the group of
unit quaternions. The choice of the unit quaternion is made as it is
the most commonly used attitude representation in the literature on
aerospace. The findings of this work are implemented for three-axis
attitude control of a rigid spacecraft.

This note is organized as follows. Section II provides a general de-
scription of an Euler–Poincaré control system. The energy shaping
method for the configuration space of the unit quaternions is formu-
lated in Section III. Section IV gives an application of the results for
the three-axis control of a rigid spacecraft.

II. EULER–POINCARÉ CONTROL SYSTEM

A description of a general mechanical system with forcing is
addressed in this section. The final part deals with modeling of a
particular system, a rigid body. A rigid body belongs to the class
of simple mechanical systems, which Hamiltonian is the sum of
potential and kinetic energy. It has been exhaustively analyzed in the
literature of classical mechanics. This gives freedom to treat it from a
Hamiltonian or a Lagrangian point of view, as motion on: Riemannian,
symplectic, or Poisson manifold. Following the baselines of [6] and
[5], a simple mechanical system on a configuration manifoldQ is
defined by a Riemannian metricg playing the role of the kinetic
energy, a twice differentiable function� on Q identified with the
potential energy, andm one-forms,F 1; . . . ; Fm, on Q defining
the inputs to the system. There exists a unique linear connection
r : � (Q)� � (Q) ! � (Q) that is compatible withg and symmetric,
called the Levi–Civita connection [7]. The forced Euler–Lagrange
equation ([4] and [8]) can then be expressed by means of the covariant
derivativeD=Dt related tor

g[
D _q

Dt
= �d�(q) + F (q; _q) (1)

whereg[ : TQ! T �Q indicates the following map associated to the
Remannian metricg:

g(V;W )q = (g[V )(q) �W; 8W 2 TqQ (2)

D _q=Dt in (1) denotes the covariant derivative of_q along
_q, d� is the differential of the potential function�(q) and
F (t; q; _q) = F j(q)uj(t) stands for the input force. Notice
that if there are no external forces and the potential energy equals zero
thenD _q=Dt = 0 gives the equation of the geodesics with respect to
r.

If the configuration manifold is a Lie group, (1) can be transformed
using Euler–Poincaré reduction to two sets of equations: kinematics
and dynamics; see [4, Ch. 13.6]. The following theorem formulates
the Euler–Poincaré equation with a force field, a fiber preserving map,
F : TG ! T �G.

Theorem 1: LetG be a Lie group with Lie algebra,L : TG!
be a left invariant Lagrangian,l : ! be its restriction to the Lie

algebra andF : TG ! T �G a force field. For a curveg(t) 2 G, let
�(t) = Tg(t)Lg(t) _g(t).

Then, the integral Lagrange–d’Alembert principle

�

b

a

L(g(t); _g(t))dt =

b

a

F (g(t); _g(t)) � �g dt (3)

holds for all proper variations�g(t), is equivalent to the following
Euler–Poincaré equation with forcing:

d

dt
dl�(t) = ad��dl�(t) + T �

e Lg F (g(t); _g(t)) (4)

_g(t) =TeLg(t) �(t): (5)

Proofs of Theorem 1:Since L is left invariant

L(g(t); _g(t)) = L(e; Tg(t)Lg(t) _g(t))

the left-hand side of (3) becomes

�

b

a

L(g(t); _g(t))dt = �

b

a

l(�(t))dt =

b

a

�l

��
(��)dt: (6)

According to [9, Th. 6.1] the variation of

�(t; �) = TLg(t;�) (@g(t; �))=(@t)

takes the form

�� =
@�(t; �)

@�
=

@�(t; �)

@t
+ ad�(t;�)�(t; �) (7)

where�(t; �) = TLg(t;�) (@g(t; �))=(@�). Substituting (7) into (6)
gives

b

a

�l

��
(��)dt =

b

a

�l

��

@�

@t
+ ad�� dt

=

b

a

�
d

dt

@l

@�
+ ad��

@l

@�
(�)dt: (8)

The right-hand side of (3) can be rewritten as
b

a

F (�g)dt =

b

a

F (TeLg�)dt =

b

a

T �

e LgF (�)dt: (9)

Comparing (8) and (9) with (3), the Euler–Poincaré equation (4)
follows.

In the remaining part of this section, the equation of the rigid body
are formulated with use of Theorem 1. The attitude is parameterized
by the unit quaternion. The coordinates in4 are denoted byqi, and
the bases for the tangent space atq, Tq 4, consist of the partial deriva-
tive operators@=@q1. The unit quaternionsS3 = fq 2 4 : kqk =
1g form a Lie group with the multiplication defined by the following
formula:

q � p =Q(q)p (10)

where

Q(q) =

q0 �q1 �q2 �q3

q1 q0 �q3 q2

q2 q3 q0 �q1

q3 �q2 q1 q0

: (11)

The physical interpretation of the unit quaternion arises from the
Euler’s theorem. It states that the general displacement of a rigid body
with one point fixed is uniquely given by a unit vector�, defining an
axis of rotation, and an angle of rotation�. A unit quaternion can be
interpreted as a combination of the components of the unit vector and
the angle of rotation

q = [ cos �
2

�1 sin �
2

�2 sin �
2

�3 sin �
2
]T : (12)
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Denoting the body angular velocity by! the kinematics of a rigid
body motion take the celebrated formula [10]:

_q =
1

2
Q(q)i(!) (13)

wherei : 3 ,! 4 is the inclusion[!1 !2 !3]T 7! [0 !1 !2 !3]T.
Notice that (13) corresponds to (5) for� = (1=2)i(!) and

TeLq� = Q(q)�; where� 2 TeS
3: (14)

The Lagrangian of the rigid body consists of the kinetic energy only

l(!) = T (!) =
1

2
!TJ! (15)

where! is the body angular velocity, andJ indicates the inertia tensor.
To derive the Euler–Poincaré equation two facts are used. The Lie
algebra ofS3 is 3 relative to the Lie bracket given by twice cross
product of vectors

ad��� = 2i(�(�)� �(�)) (16)

where� 2 TeS
3, � 2 T �

e S
3, and� : 4 ! 3 is the projection

[q0 q1 q2 q3]T 7! [q1 q2 q3]T. Furthermore, the following equality
holds:

T �

e Lq� = QT(q)�; 8� 2 T �

e S
3: (17)

It is worthy of note that in (16) the tangent spaceTeS
3 and the cotan-

gent spaceT �

e S
3 were identified with 3.

Finally, the specialization of the Euler–Poincaré equation (4) for a
rigid body and identifyingTeS3 as well asT �

e S
3 with 3 gives

J _! =! � J! +M(q; _q) (18)

where

M(q; _q) =
1

2
�QT(q)F (q; _q): (19)

Notice thatM(q; _q) in (18) is merely a torque. It has been decided
to keep the original force fieldF (q; _q) in the formulation of the rigid
body motion to make an implementation of the standard energy shaping
method straightforward.

III. CONTROL SYNTHESIS

The energy shaping has been formulated for a general mechanical
system (1) in [3] and [6]. The control consists of a differential of a
potential function� : G! and a dissipative force fieldFd : TG!
T �G as indicated in the following equation:

F (g; _g) = �d�(g) + Fd(g; _g): (20)

The dissipative force fieldFd satisfieshFd(v); vi < 0 for all nonzero
v 2 TG. If g0 is a local minimum of�, then according to Theorem 1 in
[3], (g0; 0) is asymptotically stable equilibrium state of the closed-loop
system.

A. Energy Shaping on Three-Sphere

The control law (20) applies to the systems described by the
Euler–Poincaré equations. The control input is

M(g; _g) = Mc(g) +Md(g; _g) (21)

whereMc(g) = �T �

e Lgd�(g) denotes the conservative force and
Md(g; _g) = T �

e Lg Fd(g; _g) represents the dissipation. To compute
the explicit form for the conservative force for the unit quaternions, the
following equation for the differential of� applies:

T �

e Lqd�
@

@qi
= d� TeLq

@

@qi
= TeLq

@�

@qi
: (22)

Making use of (17) and (22), the conservative force equals

Mc=�
1

2
[d1� d2� d3�]T (23)

where

[d0�(q) d1�(q) d2�(q) d3�(q)]=
@�(q)

@q
Q(q): (24)

The interest in this note is confined to a particular choice of the dissi-
pative force field

Fd = �D _q (25)

whereD indicates a positive–definite matrix. Combining (21), (23),
and (25), the control law follows:

M = �
1

2
[d1� d2� d3�]

T �
1

2
�QT(q)D _q: (26)

B. Potential Functions

Finding an appropriate potential function constitutes a major task in
the construction of a control algorithm with use of the energy shaping.
An immediate choice points at a Morse function, which all critical
points are non degenerated. Since the three-sphere is a compact mani-
fold, one shall seek for potential functions having only one minimum
and one maximum.

It seems reasonably easy to design a positive definite function on
n. Quadratic forms are frequent examples. It appears, however, much

more difficult to find a desired positive definite function on the three-
sphere. As a matter of fact especially one has gained a great attention
in the literature of aerospace and robotics:�(q) = 1� q0; see [11].

The procedure outlined below provides another example of a po-
tential function. One may design a potential function�R(q) in the
Euclidean space with the minimum at the required pointqe and then
restrict it to the three-sphere�(q) = �R(q) jS . One choice could be
a quadratic form

�R(q) =
1

2
(Q(qe)q� e)TP (Q(qe)q� e) (27)

whereP > 0 denotes a positive–definite matrix ande = [1 0 0 0]T

indicates the identity. The necessary condition for existence of critical
points, d�(q) = 0, is equivalent saying that there exists a realk such
that

@�(q)

@q
q=q

= kqTe (28)

since then

@�(q)

@q
q=q

Q(qe) = [ k 0 0 0 ] (29)

which follows from the orthogonality of the matrixQ(q) : QT(q)
Q(q) =Q(q)QT(q) = E4�4 and becauseq defines the first column
of Q(q) in (11). Using the definition of the differential in (22) together
with (17), it is seen that d�(q) = 0.

(28) permits two solutions: the first one fork = 0 and the second
for k 6= 0. Therefore�(q) has two critical points. Equations (27) and
(28) show that the function�(q) reaches minimum fork = 0 and
q = qe. The potential function�(q) is continuous andS3 is compact,
hence, both a minimum and a maximum of�(q) exist on the 3-sphere.
It was already shown that the minimum is determined byk = 0. The
maximum can be computed by solving (28) fork 6= 0.

For a particular choice ofP = E4�4 andqe = e the potential func-
tion�(q) = �R(q) jS , where�R(q) was defined in (27), is equivalent
to �(q) = 1� q0, which has the global minimum at the identitye and
the maximum at�e.

IV. SPACECRAFTATTITUDE CONTROL

The findings developed in the preceding sections are applied to the
three-axis attitude control in the inertial frame. The objective is to sta-
bilize the spacecraft to the desired attitude given byqe. The restriction
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of �R(q) defined by (27) to the 3-sphere gives the potential energy
�(q) = �R(q) jS . The control law (26) takes the following form:

M = �
1

2
�Q

T(q)DQ(q)i(!)

� [d1� d2� d3�]T (30)

where

[d0� d1� d2� d3�] =
1

2
(Q(qe)q � e)TPQ(qe)Q(q): (31)

This seemingly a complex control law has an ordinary PD control. To
see this the following example is considered. Let the reference be the
unit quaternion, the gainsD = 4kdE4�4 andP = 2kpE4�4. Then,
the differential d�(q) equals

[d0� d1� d2� d3�] = kp(qQ
T(q)� eQ

T(q))

= kp[ 1� q0 q1 q2 q3 ] (32)

and the control law reduces to the PD form

M = �kp[q
1
q
2
q
3]T � kd!: (33)

This shows that the energy shaping approach presented in this note
agrees with the previous results on the three-axis attitude control sum-
marized in [12].

V. CONCLUSION

This note further enhanced the energy shaping method for the
Euler–Poincaré systems. The resultant algorithm was applied for the
configuration manifold of the unit quaternions. A general scheme for
control design of a rigid body was proposed and implemented for
three-axis attitude control of a spacecraft.
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Exact Computation of Traces and Norms for a
Class of Infinite-Dimensional Problems

Bassam Bamieh and Mohammed Dahleh

Abstract—We derive a formula for the trace of a class of differential op-
erators defined by forced two point boundary value problems. The formula
involves finite-dimensional computations with matrices whose dimension is
no larger than the order of the differential operator. Thus, we achieve an
exact reduction of an infinite-dimensional problem to a finite-dimensional
one. We relate this trace calculation to computation of the norm for
certain infinite-dimensional systems. An example from fluid dynamics is
included to illustrate the method.

I. INTRODUCTION

Certain differential operators on functions of one variable are typi-
cally given in terms of a two point boundary value problem (TPBVP)
with a forcing function (an input). For certain problems in control
theory and systems analysis it is desirable to compute the trace of
operators related to the given differential operator. Such computations
are typically done numerically after appropriate discretization of the
underlying differential operator. This results in a finite-dimensional
approximations to the underlying infinite-dimensional problem.

In this note, we show that in certain computations involving only the
trace, it is possible to circumvent the approximation procedures. Spe-
cial cases when this can be done turn out to be useful in computing the
H2 of a certain class of infinite-dimensional systems, and in problems
involving transition to turbulence in fluid dynamics [1]. An example of
the latter is included in the last section.

II. COMPUTING THETRACE FROMSTATE-SPACEREALIZATIONS

Differential operators in one variable with mixed boundary condi-
tions can always be transformed into the so-called “first-order” repre-
sentation, which is a state space realization. An example of this trans-
formation is given in the last section of this note. Thus, we assume
that we are given an operatorH : f 7�! g in the form of a two point
boundary value state-space realization (TPBVSR), i.e.,g = Hf is rep-
resented by

d

dy

x1(y)

x2(y)
=A

x1(y)

x2(y)
+Bf(y)

g(y) =Cx(y); y 2 [�1; 1]

x2(+1)

x2(�1)
=

0

0
(1)

wherexT (y) : = [xT1 (y) x
T
2 (y)] is an equal partitioning of the state

variables. The independent variabley is typically a spatial position
which takes values in a finite interval, which in our notation has been
standardized to [�1; 1]. We will assume that the given TPBVSR is well
posed, that is, it has a unique solution for every input functionf .

We note that the TPBVSR in (1) is not in the most general form pos-
sible. In particular, the boundary conditions could be given as a general
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