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Abstract: If a mechanical system experiences symmetry, the
Lagrangian becomes invariant under a certain group action. This
property leads to substantial simplification of the description of
movement. The standpoint in this article is a mechanical system
affected by an external force of a control action. Assuming that the
system possesses symmetry and the configuration manifold corre-
sponds to a Lie group, the Euler-Poincaré reduction breaks up the
motion into separate equations of dynamics and kinematics. This
becomes of particular interest for modeling, estimation and control
of mechanical systems. A control system generates an external force,
which may break the symmetry in the dynamics. This paper shows
how to model and to control a mechanical system on the reduced
phase space, such that complete state space asymptotic stabilization
can be achieved. The paper comprises a specialization of the well-
known Euler-Poincaré reduction to a rigid body motion with forcing.
An example of satellite attitude control illustrates usefulness of the
Euler-Poincaré reduction in control engineering. This work demon-
strates how the energy shaping method applies for Euler-Poincaré
equations.
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1. Introduction

A description of a mechanical system with forcing is addressed in this paper. It
focuses on modelling of a particular system, a rigid body. The issue has been
exhaustively analyzed in the literature of classical mechanics. This gives free-
dom to treat it from a Hamiltonian or a Lagrangian point of view, as a motion
on: Riemannian, symplectic or Poisson manifold. The standard references on
this subject are Goldstein (1980), Abraham and Marsden (1978), Marsden and
Ratiu (1999). It is the variational principles that are assumed in this article
as axioms and the equations of motion are derived therefrom. Let I ⊆ R be
an open interval. A motion in a set S denotes a smooth curve γ : I → S.
The equations of motion are differential equations, whose flow lines correspond
to motions. If the configuration manifold is a Lie group and the Lagrangian
becomes invariant under a group action, in this work the left translation, the
motion can be transformed using Euler-Poincaré reduction into two sets of equa-
tions: kinematics and dynamics; Marsden and Ratiu (1999, Ch. 13.6 ). This
description is of particular interest for modelling in Morton (1994), control in
Wísniewski and Kulczycki (2003), and estimation in Bak (1999).

The work merges two known techniques: the Euler-Poincaré reduction of
classical mechanics and the energy shaping of control engineering. Main focus
in the literature on mechanics is on reducing differential equations describing
the motion of a mechanical system, which are invariant under the action of a
Lie group. Hence, one obtains equations with fewer coordinates or even a glob-
ally defined differential operator on a quotient manifold; Marsden and Sheurle
(1993), Marsden and Ratiu (1999), Koiller (1992). Control of mechanical sys-
tems with symmetry was treated before e.g. in Bloch, Leonard, Marsden (2000),
Bloch et al. (1996). In these works the internal forces gave rise to the control
action, however, the effect of general forces was not discussed. The energy shap-
ing method will be applied in this paper. In its most common formulation it
gives a control action, being the sum of the gradient of potential energy and the
dissipation force; Nijmeijer and van der Schaft (1990, Ch. 12) and Koditschek
(1989). In this article the energy shaping method will be adopted to a mechan-
ical system with symmetry. It is shown that the reduction of the motion of a
mechanical system can be used for feedback synthesis, despite the symmetry
breaking property of the control action.

The article constitutes a tutorial on modelling the motion of a rigid body.
Relevant notions of classical mechanics are recalled first. Subsequently, the
article introduces the Euler-Poincaré reduction for a mechanical system with
forcing, which is then implemented for the rotary motion of a rigid body. Two
configuration manifolds are of interest, the special orthogonal group SO3 of
particular interest in robotics, and the group of unit quaternions Sp1 used in
aerospace for a global representation of attitude. An example of satellite atti-
tude control, wherein the Euler-Poincaré description of the rigid body motion
is applied to the energy shaping method concludes this article.



Euler-Poincaré reduction of externally forced rigid body motion 299

In this work M stands for a C∞ n-manifold with smooth structure {(Uα,

φα)}α∈U . The system πTG : TM → M defines the tangent bundle, and πT∗G :
T ∗M → M the cotangent bundle of M . The main concern of this work will be
the motion of a system with forcing.

Definition 1 A force field on a configuration manifold M is a fiber preserving
map, F : TM → T ∗M over the identity. It means that for each Uα, α ∈ U the
following diagram commutes

TUα
F

//

πTG

��

T ∗Uα

πT∗G

��

Uα
id

// Uα.

The Lagrange-d’Alembert principle is in the sequel stated in terms of the
variational calculus. If γ : [a, b] → M denotes a piecewise smooth curve, a
variation of γ means a family Γ : [−ǫ, ǫ]× [a, b] → M of piecewise smooth curves
such that Γ0(t) = γ(t) for all t ∈ [a, b]. It is called a proper variation if, in
addition, Γs(a) = γ(a) and Γs(b) = γ(b) for all s ∈ [−ǫ, ǫ]. A variation field δγ

of the variation Γ means the vector field along γ, δγ : [a, b] → Tγ(t)M defined
by

δγ(t) = (dΓt)0

(

∂

∂s

)

=
∂Γ(s, t)

∂s

∣

∣

∣

∣

s=0
,

where (dΓt)s : TsR → TΓt(s)M denotes the differential of Γt at s, and ∂
∂s

stands
for the basis of TsR. A vector field V along γ is proper if it vanishes at the
endpoints, i.e. δγ(a) = δγ(b) = 0. Thus, the variation field of a proper variation
is proper. For details, refer to Lee (1997).

The next definition expresses the Lagrange-d’Alembert principle. It is an
axiom stating the conditions for a mechanical system, with a given Lagragian
and known external forces, to follow a motion (γ, γ̇) ∈ TM .

Definition 2 (7.8.4 in Marsden and Ratiu, 1999) Given a Lagrangian L :
TM → R and a force field F : TM → T ∗M , the integral Lagrange-d’Alembert
principle for a curve γ(t) with the proper variation Γs(t) is

∂

∂s

∣

∣

∣

∣

∣ s=0

∫ b

a

L(Γs(t), Γ̇s(t))dt +

∫ b

a

F (γ(t), γ̇(t))(δγ(t))dt = 0. (1)

The motion appears particularly simple for the configuration manifold being
a finite dimensional Lie group G. The emphasis is put in this work on this class
of configuration manifolds. The Lie algebra TeG of G is denoted by g. Every
group element a ∈ G defines a left translation £a : G → G, g 7→ ag. It also
gives rise to an automorphism cg : G → G, a 7→ gag−1.
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Definition 3 (2.10 in Bröcker and Dieck, 1985) The adjoint representa-
tion is a homomorphism

Ad : G → Aut(g), g 7→ (dcg)e = Adg,

where Adg means the differential of cg at the unit element (dcg)e : g → g. The
adjoint representation Ad induces a homomorphism of Lie algebras

ad : g → End(g), X 7→ (dAdX)e = adX ,

where AdX : G → g, g 7→ AdgX.

The map ad sends X to the homomorphism Y 7→ [X, Y ]. Thus

[X, Y ] = adXY.

As mentioned before, the Lagrange-d’Alembert principle gives the condition
for a curve on the tangent bundle TG to represent a motion. However, if the
Lagrangian L : TG → R turns out to be invariant under the left translation, the
equations of motion are particularly simple. They break up into two separate
equations: the kinematics and the dynamics, hence the motion corresponds to
a curve I → G×g. This constitutes the contents of Section 2. Rotary motion of
rigid body comprises an important example of the above. Its motion is defined
on a linear Lie group. Section 3. addresses the case of the special orthogonal
group SO3, and Section 4. treats the group of unit quaternions Sp1. Section 5.
gives an example of a control application. It shows that the energy shaping
method applies to systems modeled by the Euler-Poincaré equations, and a
controller for three-axis stabilization of a rigid body is synthesized.

2. Euler-Poincaré motion

The Euler-Poincaré equation with forcing will be formulated in this section. A
mechanical system may experience a certain symmetry, expressed in the sequel
by the invariance of the Lagrangian under the left translation.

Definition 4 The Lagrangian L : TG → R is left invariant if the following
diagram commutes

TgG
(d£a )g

//

L
!!B

BB
BB

BB
B

TagG.

L
||yy

yy
yy

yy

R

Assuming the Lagrangian invariant under the left translation, the objective is
to consider independently the dynamics, i.e. the motion on the Lie algebra g and
the kinematics, the motion on the Lie group G. For this purpose, the translation
of the variation vector field will be examined. Namely, the differential of the
left translation

(

d£γ−1 (t)

)

γ(t)
: Tγ(t)G → TeG is allowed to act on δγ.
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Proposition 1 (5.1 in Bloch et al., 1996) Let Γ(s, t) : U ⊂ R2 → G be a
variation of a curve γ(t) on a Lie group G, and denote Ξ, Λ : U → g by

Ξ(s, t) =
(

d£Γ(s,t)−1

)

Γ(s,t)

(

∂Γ(s, t)

∂t

)

(2)

and

Λ(s, t) =
(

d£Γ(s,t)−1

)

Γ(s,t)

(

∂Γ(s, t)

∂s

)

. (3)

Then

∂Ξ(s, t)

∂s
−

∂Λ(s, t)

∂t
= [Ξ(s, t), Λ(s, t)] . (4)

Conversely, if U is simply connected and Ξ, Λ : U → g are smooth functions
satisfying (4) then there exists a smooth function Γ : U → G satisfying (2) and
(3).

The tangent space TΞ(s,t)g in Proposition 1 is isomorphic to the Lie algebra
g, and through the rest of the paper TΞ(s,t)g and g are canonically identified
with Rn, where n denotes the dimension of the manifold G. The theorem below
states the main results.

Theorem 1 Let G be a Lie group with Lie algebra g, L : TG → R be a left
invariant Lagrangian, l : g → R be its restriction to the Lie algebra and F :
TG → T ∗G a force field. For a curve γ : [a, b] → G, let ξ : [a, b] → g,
ξ(t) =

(

d£γ(t)−1

)

γ(t)
γ̇(t).

Then the integral Lagrange-d’Alembert principle

∂

∂s

∣

∣

∣

∣

∣ s=0

∫ b

a

L(Γs(t), Γ̇s(t))dt +

∫ b

a

F (γ(t), γ̇(t))(δγ(t))dt = 0 (5)

holds for all proper variations, and is equivalent to the Euler-Poincaré equation
with forcing

d

dt
dlξ(t) = ad∗ξ(t)dlξ(t) + (d£γ(t))

∗
e F (γ(t), γ̇(t)) (6)

γ̇(t) = (d£γ(t))e ξ(t). (7)

Equation (6) denotes the dynamics and (7) the kinematics.
Proof of Theorem 1. Vector fields Ξ, Λ : U → g are defined as in Proposition (1)

Ξ(s, t) =
(

d£Γ(s,t)−1

)

Γ(s,t)

(

∂Γ(s, t)

∂t

)
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Λ(s, t) =
(

d£Γ(s,t)−1

)

Γ(s,t)

(

∂Γ(s, t)

∂s

)

ξ(t) = Ξ(0, t) and λ(t) = Λ(s, t).

Since L is left invariant, meaning

L

(

Γ(s, t),
∂Γ(s, t)

∂t

)

= L

(

£Γ(s,t)−1 Γ (s , t),
(

d£Γ(s,t)−1

)

Γ(s,t)

∂Γ (s , t)

∂t

)

= L(e, Ξ(s, t),

the first part of (5) becomes

∂

∂s

∣

∣

∣

∣

∣ s=0

∫ b

a

L(Γs(t), Γ̇(s, t)) dt =
∂

∂s

∣

∣

∣

∣

∣ s=0

∫ b

a

l(Ξ(s, t)) dt

=

∫ b

a

(dl)ξ(t)(δξ(t)) dt. (8)

In (8) the chain rule was used

∂(l ◦ Ξ(s, t))

∂s
= (d(l ◦ Ξt(s)))s

(

∂

∂s

)

= (dl)Ξ(s,t)(dΞt(s))s

(

∂

∂s

)

= (dl)Ξ(s,t)
∂Ξ(s, t)

∂s
.

According to Proposition (1) the variation field of Ξ(s, t) is of the form

δξ(t) =
∂Ξ(s, t)

∂s

∣

∣

∣

∣

s=0
=

∂λ(t)

∂t
+ adξ(t)λ(t). (9)

Substituting (9) into (8) and using integration by parts gives

∫ b

a

(dl)ξ(t)(δξ(t)) dt =

∫ b

a

(dl)ξ(t)

(

∂λ(t)

∂t
+ adξ(t)λ

)

dt

=

∫ b

a

(

−
d

dt
(dl)ξ(t) + ad∗ξ(t)(dl)ξ(t)

)

(λ(t)) dt. (10)

The right hand side of (5) can be rewritten as

∫ b

a

F (γ(t), γ̇(t))(δγ(t)) dt =

∫ b

a

F (γ(t), γ̇(t))(((d£γ(t)−1 )γ(t))
−1λ(t)) dt

=

∫ b

a

F (γ(t), γ̇(t))((d£γ(t))eλ(t)) dt

=

∫ b

a

(d£γ(t))
∗
eF (γ(t), γ̇(t))(λ(t)) dt . (11)
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Comparing (10) and (11) with (5) and using the fundamental lemma of calculus
of variations, we obtain the Euler-Poincaré equation (6). �

Theorem 1 gives a general expression of motion on a Lie group. The next
two sections address equations of motion for a particular mechanical system, a
rigid body.

3. Reduction on SO3

The objective of this section is to derive equations of motion for a rigid body.
The special orthogonal group

G = SO3 = {A ∈ GL3(R) : ATA = I and det(A) = 1}

comprises the configuration manifold. The Lie algebra of SO3 will be first iden-
tified, and its properties will be subsequently examined. The section concludes
with formulation of the equation of motion for the rigid body with forcing.

The Lie algebra of SO3 consists of all skew symmetric matrices

so3 = TeSO3 = SS3 = {A ∈ GL3(R) : AT = −A}

and it is spanned by E1, E2 and E3

E1 =





0 0 0
0 0 −1
0 1 0



 , E2 =





0 0 1
0 0 0

−1 0 0



 , E3 =





0 −1 0
1 0 0
0 0 0



 .

The following isomorphism of vector spaces shall be introduced

s : R
3 → SS3, (x1, x2, x3) 7→ x1E1 + x2E2 + x3E3 =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 .

The map s can be used to represent the cross product a×b = s(a)b. This makes
s a Lie algebra isomorphism

s : (R3,×) → (SS3, [·, ·]),

taking a×b to [s(a), s(b)]. Since SO3 is a subgroup of GL3(R) the multiplication
of matrices describes the differential of the left translation, i.e.

(d£A)B : TBSO3 → TABSO3 , C 7→ AC .

The kinematics for a matrix group follows

γ̇(t) = (d£γ(t))e ξ(t) = γ(t)ξ(t). (12)

Equation (12) defines relation between the velocity γ̇(t) ∈ Tγ(t)SO3 and ξ(t),
an element of the Lie algebra so3.
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Define an angular velocity as ω(t) = s−1(ξ(t)) and the Lagrangian l̃ =
l ◦ s : R3 → R. The Lagragian comprises the kinetic energy only

l̃(ω) = T (ω) =
1

2
ωTJω,

where J denotes the inertia matrix. The Lagrangian turns out to be left invari-
ant and the assumption of Theorem 1 is satisfied. To establish the equations of
motion, the differential of the Lagrangian

dl̃ω = Jω

and an explicit expression for ad∗ξdlξ(t)

ad∗ξdlξ(X) = dlξ([ξ, X ]), (13)

where X ∈ so3, are provided. Since s is the Lie algebra isomorphism, Eq. (13)
becomes

ad∗ωdl̃ω(s−1(X)) = dl̃ω · (ω × s−1(X)) = (dl̃ω × ω) · s−1(X).

Concluding,

ad∗ωdl̃ω = dl̃ω × ω,

and the dynamics follows

d

dt
(Jω(t)) = Jω(t) × ω(t) + s−1(γ(t)∗F (γ(t), γ̇(t))). (14)

Equation (14) is indeed the celebrated equation of the rigid body dynamics,
where the second summand corresponds to the external torque. However, it
appears central for this work that the torque can be computed explicitly from
the force field. Thus, the control algorithms derived from the Lagrangian or
Hamiltonian formalism, which provide the control force field, can be directly
implemented for an Euler-Poincaré system. In particular, the energy shaping
method in Section 5. applies for control of a rigid body.

4. Reduction on unit quaternions

Alternatively, a group of all unit quaternions could be taken as the configuration
manifold. This attitude representation plays an important role in aerospace and
robotics. Quaternions owe their significance due to simple physical interpreta-
tion of an angle and an axis of rotation. For small angles the three components
of the vector part of a quaternion approximate pitch, roll and yaw. Furthermore
there is a variety of estimation algorithms based on quaternionic representation
of the attitude, Bak (1999), Wertz (1990).
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It is vital for this exposition to examine its geometric and algebraic proper-
ties. The unit quaternions can be viewed as a three sphere imbedded in R4 or
more conveniently for computation as a complex matrix group. Both interpre-
tations are treated in this section.

The quaternion algebra H will be defined first. The R-algebra H(+, ·) is the
division algebra of 2 by 2 complex matrices of the form

H =

{[

a b

−b̄ ā

]

: a, b ∈ C

}

,

with matrix addition and multiplication. Another definition of quaternions is
the algebra R4(+, ·) with standard addition in R4 and a product given by the
following formula:

x · y = Q(x)y, (15)

where

Q(x) =









x0 −x1 −x2 −x3

x1 x0 −x3 x2

x2 x3 x0 −x1

x3 −x2 x1 x0









.

The algebras H(+, ·) and R4(+, ·) are isomorphic with a ring isomorphism given
by

w̃ : R
4 → H, (x0, x1, x2, x3) 7→

[

x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

]

.

Since a configuration manifold of a Lie group is in focus, only the group
properties of H will be further exploited. Specifically, the quaternions with the
norm

N

([

a b

−b̄ ā

])

= |a|2 + |b|2

equal one, are of interest. The unit quaternions form a group

Sp1 = {x ∈ H : N(x) = 1},

with the product inherited from H. In fact Sp1 is the same as the special unitary
group

SU2 = {A ∈ GL2(C) : A∗A = I and det(A) = 1},

and makes up a subgroup of the Lie group GL2(C). The matrix group SU2

appears particularly important for this work.
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The three-sphere constitutes the second interpretation of the unit quater-
nion. The differential manifold SU2 becomes indeed diffeomorphic to the three-
sphere S3 = {x ∈ R

4 : ||x|| = 1} with a diffeomorphism

w : S3 → SU2, (x0, x1, x2, x3) 7→

[

x0 − ix3 −x2 − ix1

x2 − ix1 x0 + ix3

]

.

It appears useful to treat the three-sphere as a Lie subgroup of (R3, ·), then the
map w : (S3, ·) → (SU2, ·) is a group isomorphism, and x · y = w−1(w(x)w(y)).

The Lie algebra of SU2 consists of the 2 by 2 skew-Hermitian traceless ma-
trices su2 ⊂ H

su2 = TeSU2 = {A ∈ GL2(C) : A = A∗ and tr(A) = 0}.

It shall be noted that the Pauli spin matrices

σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i

i 0

]

, σ3 =

[

1 0
0 −1

]

span su2. The map

r : R
3 → su2, (x1, x2, x3) 7→

1

2i
(x1σ1+x2σ2+x3σ3) =

1

2

[

−ix3 −x2 − ix1

x2 − ix1 ix3

]

,

defines a Lie algebra isomorphism (R3,×) → (su2, [·, ·]) taking X × Y to [r(X),
r(Y )]. It will be useful to write r as follows

r =
1

2
w̃ ◦ i, where i : R

3 →֒ R
4, (x1, x2, x3) 7→ (0, x1, x2, x3),

then its left inverse becomes

r−1 = 2π ◦ w̃−1|su2
where π : R

4 → R
3, (x0, x1, x2, x3) 7→ (x1, x2, x3).

The remaining part of this section relies on Theorem 1 and the equations of
motion for the rigid body are formulated. Since SU2 is a subgroup of GL2(C),
the multiplication of matrices gives the differential of the left translation

(d£A)B : TBSU2 → TABSU2 , C 7→ AC .

The kinematics follows

γ̇(t) = (d£γ(t))e ξ(t) = γ(t)ξ(t).

Upon defining the angular velocity as ω(t) = r−1(ξ(t)) and q(t) = w−1(γ(t))
the kinematics takes the familiar form

q̇(t) = (dw)−1
γ(t)γ̇(t) = w̃−1(w(q(t))r(ω(t))) =

1

2
w̃−1(w̃(q(t))w̃(i(ω(t))))

=
1

2
q · i(ω(t)) =

1

2
Q(q(t))i(ω(t)).
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Consider a Lagragian l̃ = l ◦ r : R3 → R. Now the Euler-Poincaré motion
can be written

d

dt
dlω(t) = ad∗ωdlω(t) + (dr)∗e(d£γ(t))

∗
e F (γ(t), γ̇(t)).

Each term of the equation above will be computed separately in the sequel. As
in Section 3. the Lagragian corresponds to the kinetic energy only

l̃(ω) = T (ω) =
1

2
ωTJω,

where J denotes the inertia matrix. The Lagrangian is left invariant and The-
orem 1 applies. As in the case of SO3, the differential of the Lagrangian equals

dl̃ω = Jω,

and the expression for ad∗ξdlξ(t) takes on the form

ad∗ξdlξ(X) = dlξ([ξ, X ]), (16)

where X ∈ su2. Since r is the Lie algebra isomorphism, (16) becomes

ad∗ωdl̃ω(r−1(X)) = dl̃ω · (ω × r−1(X)) = (dl̃ω × ω) · r−1(X),

which gives

ad∗ωdl̃ω = dl̃ω × ω.

The external forcing is formulated as

(dr)∗e((d£γ)∗e F (γ, γ̇))(V ) = (d£γ)∗e F (γ, γ̇)((dr)e(V ))

= γ∗F (γ, γ̇)((dr)e(V )) = γ∗F (γ, γ̇)(r(V )) =
1

2
γ∗F (γ, γ̇)(w̃ ◦ i(V ))

=
1

2
π ◦ w̃∗(γ∗F (γ, γ̇)(V )),

where V ∈ TeS
3 ∼= Te(TeS

3). With a definition f(q, ω) = w̃∗(F (γ, γ̇)) the
torque becomes

(dr)∗e((d£γ)∗e F (γ, γ̇)) =
1

2
π ◦ w̃∗(γ∗F (γ, γ̇))

=
1

2
π ◦ w̃∗

(

(w∗)−1(q∗)(w∗)−1(f)
)

=
1

2
π ◦ w̃∗

(

(w∗)−1(q∗ · f)
)

=
1

2
π ◦ q∗ · f(q, ω) =

1

2
π(Q∗(q)f(q, ω)).

The dynamics of the rigid body follows

d

dt
(Jω(t)) = Jω(t) × ω(t) +

1

2
π(QT(q(t))f(q(t), ω(t)). (17)

The second summand in (17) gives an explicit expression for the external
torque. This form appears particularly useful for control synthesis. The energy
shaping technique will be applied in the next section for computing the control
force field f : TS3 → T ∗S3.
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5. Control synthesis

The energy shaping has been formulated for a general mechanical system in
Koditschek (1989) and Bullo and Murray (1999). The idea is to produce a
control input consisting of a term contributing to potential energy and a part
providing dissipation. In a simplest case, if a system functions in Rn and has
potential energy U : Rn → R, the energy shaping puts forward a feedback con-

trol of the form −∂V (q)
∂q

+Md, where V : Rn → R is a continuously differentiable
function. The term Md denotes a dissipative force. Assuming that the time
derivative of its work Ẇ = MT

d q̇ is negative definite, and the minimum of the
potential energy U +V is reached at a point p, the control law makes the system
asymptotically stable to the equilibrium point (q(t), q̇(t)) = (p, 0). The name
”shaping” comes form the property of the feedback that shapes the potential
energy of the system to the desired form using the controller contribution V .

The energy shaping has its generalization for an arbitrary manifold G. Again,
the control consists of a differential of a potential function φ : G → R and a
dissipative force field fd : TG → T ∗G as indicated in the following equation:

f(γ, γ̇) = −dφ(γ) + fd(γ, γ̇). (18)

The dissipative force field fd satisfies fd(v)(v) < 0 for all nonzero v ∈ TG. If
p is a local minimum of φ, then according to Theorem 1 in Koditschek (1989),
(p, 0) becomes asymptotically stable equilibrium state of the closed loop system.

It follows from Section 2. that the control law (18) applies to the systems
described by the Euler-Poincaré form. The control input becomes

M(γ(t), γ̇(t)) = −(d£γ(t))
∗
edφ(γ(t)) + (d£γ(t))

∗
e fd (γ(t), γ̇(t)). (19)

The first component in (19) will be called the conservative force and is denoted
by Mc, whereas the second one constitutes the dissipative force, Md.

An illustration of the energy shaping for the Euler-Poincaré system will
be given in the remaining part of the article. Consider a rigid body, e.g. a
spacecraft, to be stabilized in the inertial coordinate system with use of gas
jets. The task is to design a suitable control law. For this purpose quaternionic
parametrization of the attitude will be applied.

Consider the inclusion j : S3 →֒ R4, and let the potential function φ pa-
rameterize through some smooth function φ̃ : Rn → R, i.e. φ = φ̃ ◦ j. Since
(dφ)q = (dφ̃)j(q)|TqS3 , the differential (dφ)q is

(dφ)q = Q(q)iπQ∗(q)(dφ̃)j(q), (20)

where qi are the canonical coordinate functions in Rn, and (dφ̃)j(q) =
∑3

k=0
∂φ̃
∂qi

dqi.

Making use of (17) and (20), we obtain the conservative force as equal

Mc = −
1

2
πQT(q)

∂φ(q)

∂q
= −

1

2
[d1φ d2φ d3φ]T, (21)
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where

[

d0φ(q) d1φ(q) d2φ(q) d3φ(q)
]

=
∂φ(q)

∂q
Q(q).

Taking a dissipative force field

fd = −Dq̇,

where D indicates a positive definite matrix, and combining Eqs. (19), (21), the
control law follows

M = −
1

2
[d1φ d2φ d3φ]T −

1

2
πQT(q)Dq̇.

It was shown in Wísniewski and Kulczycki (2003) that for a particular choice
of D = 4kdE4×4 and the potential function φ(q) = kp(1 − q0) having the global
minimum at the identity e and the maximum at −e the differential dφ(q) equals

[d0φ d1φ d2φ d3φ] = kp

[

1 − q0 q1 q2 q3
]

. (22)

Now the control law reduces to the well known PD form

M = −kp[q1 q2 q3]
T − kdω. (23)

This shows that the energy shaping approach presented in this paper agrees with
the previous results on the 3-axis attitude control summarized in Ting-Yung
Wen and Kreutz-Delgado (1991). For other examples of potential functions
used in guidance one is referred to Wísniewski and Kulczycki (2004).

6. Conclusion

This work applied the calculus of variations to derive the Euler-Poincaré equa-
tions of motion with forcing. It showed that if the Lagrangian L : TG → R

was invariant under the left translation, the equations of motion broke up into
two separate expressions: the kinematics and the dynamics. The rigid body
motion considered comprised an illustrative example. The paper focused on
two configuration manifolds: the special orthogonal group and the group of
unit quaternions. It showed that the energy shaping method could be applied
for the Euler-Poincaré system. The findings were applied for the rigid body
stabilization in three axes. The resulting control consisted of the sum of the
conservative and the dissipative force fields.
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