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Neural Network for Estimating
Conditional Distributions

Henrik Schioler and Piotr Kulczycki,Member, IEEE

Abstract—Neural networks for estimating conditional distribu-
tions and their associated quantiles are investigated in this paper.
A basic network structure is developed on the basis of kernel
estimation theory, and consistency is proved from a mild set of
assumptions. A number of applications within statistics, decision
theory, and signal processing are suggested, and a numerical
example illustrating the capabilities of the elaborated network
is given.

Index Terms—Conditional distributions, data transmission,
kernel estimation, neural networks, optimal control.

I. INTRODUCTION

RELATIONSHIPS between random variables are most
often described by characteristic parameters such as

mean vectors and covariance matrices or in extraordinary
cases moments of higher order. When standard situations are
considered, for example, if all variables are jointly Gaussian or
when the conditional characteristics are linear or low-degree
polynomial functions, that approach is to be recommended.
On the other hand, when the situation is far from the above,
more general methods should be considered. Statistical rela-
tionships are completely described by the joint distribution
of all the variables in consideration, however in some cases
it is appropriate to partition the considered random variables
into two groups. One group of so-called explanatory variables
yielding information about or explaining the variables in the
second group. From that point of view conditional distribu-
tions as well as their associated quantiles are the objects
of interest. In some cases such conditional distributions are
sufficiently precisely described by standard expressions with
only a low number of characteristic parameters to be estimated
statistically. In the remaining cases nonparametric methods
including neural networks may prove to be useful, and the
purpose of this paper is to develop a neural network applicable
for estimating conditional distributions and quantiles in the
general nonstandard situation.

Neural networks have in recent years developed into pow-
erful tools for solving optimization problems within e.g.,
classification, estimation, and forecasting. For the majority of
cases, the applied neural networks, from a statistical point of
view, solve conditional estimation problems. The celebrated
backpropagation error algorithm used for training feedforward

Manuscript received February 25, 1994; revised July 25, 1995, August 12,
1996, and January 8, 1997.

The authors are with the Department of Control Engineering at Aalborg
University, Aalborg, Denmark. P. Kulczycki is currently on leave from
Cracow University of Technology, Poland.

Publisher Item Identifier S 1045-9227(97)05240-5.

neural networks is shown to be a special case of gradient opti-
mization in the sense of mean squared error [1]. Feedforward
neural networks are analyzed in [2] for consistent estimation
of conditional expectation functions, which optimize expected
squared error. Optimal classification is concerned with the
problem of classifying a set of objects, on the basis of
feature measurements, while obtaining a minimal probability
of misclassification. This problem is equivalent to conditional
estimation, and it is shown in [3] that feedforward neural
networks estimate the optimal discriminating function, when
trained with the backpropagation error algorithm. In all of the
above cases, some sort of optimization or training algorithm
is applied adjusting initially random network parameters opti-
mally with regard to average loss functions on a finite set of
training data. A more constructive way to follow is indicated
by [4], where a probabilistic neural network for classification
based on kernel estimators is investigated, as well as by [5] and
[6], in which a similar line is followed for proposing neural
networks estimating conditional expectation functions. From a
certain point of view, this strategy is the basis for suggesting a
large class of different neural-network architectures, including
among others localized receptive fields [7] and counter propa-
gation networks [8]. In this paper such a constructive strategy
is pursued in order to design a feedforward neural network
capable of estimating conditional distributions. Initially the
necessary mathematical preliminaries concerning conditional
distributions are given along with the basic terminology and
notation. In the following section two different applications are
suggested, where the latter, which is from the area of digital
signal processing, constitutes the basis of a numerical example
given in the last section. In Section III the basic neural-
network structure is developed based on kernel estimation
techniques, and a rather general theoretical result is presented
illustrating the wide applicability of the constructed network.

II. M ATHEMATICAL PRELIMINARIES

Consider a real random variable with a distribution
function , and a number . Any real number
fulfilling

(1)

is said to be a quantiles of order[9]. If the distribution func-
tion is continuous and strictly monotonous, the quantile of
order is uniquely defined for all values ofby (1). In general
the th-order quantile can be uniquely defined as follows:

(2)
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Consider two real random variables and defined on a
common probability space with a joint distribution on

. Then the function , exists ([10, Section
33]) such that we have the following conditions.

1) For every , is a distribution function
on .

2) For every and every measurable subset
of

(3)

The function is called the conditional distribution
function of the random variable with respect to . In the
case where the joint distribution has a density function

, a conditional density function is given as

(4)

for every where the denominator in the above formula is
nonzero. Then the conditional distribution function can
be found explicitly by

(5)

For any the conditional quantile of order
can be uniquely defined as in the unconditional case, i.e.,

(6)

The following equations:

(7)

(8)

are readily shown to hold in any point where is a
continuous function of its first argument.

Generalization of the definition of for and
is straigthforward, as well as of for

and . In the most general case where the
quantiles and are to be defined as sets. That is
omitted here.

III. A PPLICATIONS

Two applications of conditional distribution functions and
quantiles are considered below. One is a time optimal control
problem from the area of decision theory, and the other is
the task of data compression in the area of digital signal
processing.

A. Time Optimal Control

Let the function , here after referred to
as the loss function be defined by

if
if

(9)

Obviously for , so the loss function
describes the losses incurred when the estimatedoes not

equal the optimal value . As seen from (9) losses may depend
strongly on the sign of estimation error, depending on the
values of the coefficients and . If the optimal value
is a random variable with a probability distribution the
expected loss is given by the so-called Bayes loss function
defined as follows:

(10)

The value simply constitutes the expected loss when
estimating by the value . Any real number such that

(11)

is called a Bayes estimator.
When the loss functionis defined by (9) it is readily shown

that the Bayes estimator equals the quantile of order

(12)

A practical example illustrating the relevance of quantiles
as Bayes estimators is described in [11], where they are
the solution of a time-optimal control problem. A parameter

, representing motion resistances in a mechanical system,
is estimated by the value , which appear directly in the
equations of a time-optimal feedback controller. If ,
overshoots occur which increases the time of reaching the
target proportionally to with a coefficient . In the
case where , so-called sliding trajectories appear, also
prolonging the reaching period proportionally to with a
coefficient . The Bayes optimal estimate of the parameter
therefore exactly constitutes a quantile of order . That
problem has been solved in [12] using a preliminary version
of the neural network presented in this paper.

When explanatory variables are available the Bayes es-
timator for the above loss function is constituted by the
conditional quantile . In the time-optimal control problem,
the vector may contain disturbances possibly influencing the
resistances of motion, as for example temperature or target
position. Minimum expected reaching time is then obtained
for .

B. Signal Processing

When a finite capacity channel is used for data transmission,
coding is often provided for optimal channel utilization. One
example is the ADPCM [13] speech coding used for digital
data transmission in mobile telephones. The objective is to
transform a sequence of mutually dependent random data

with a certain distribution
into a sequence of mutually
independent and uniformly distributed data. The transformed
data are then quantized and transmitted across the line to
the receiver where they are decoded. ADPCM coding is
designed on the assumption that the uncoded data exhibit the
properties of linearly filtered white noise, in which case coding
can be performed by the inverse linear filter removing the
time correlation of the data. When the uncoded data are not
correlated but still strongly dependent, linear filtering will of
course work.
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Assume that the sequence is Markov, i.e.,

(13)

and that the conditional distribution function is a con-
tinuous function of its first variable. Then the sequence
defined by

(14)

will be independent and is uniformly distributed on [0, 1]
for all . After quantization the sequence is transmitted.
At the receiver side the original sequence with quantization
error can be restored by

(15)

The coding scheme can directly be generalized toth-order
Markov processes, i.e., where

(16)

The above coding scheme is based on the assumptions that
the conditional distribution is known in both ends of the
transmission line. Therefore means for transmitting this knowl-
edge without occupying any significant amount of channel
capacity is needed.

IV. NEURAL NETWORKS FORESTIMATING

CONDITIONAL DISTRIBUTIONS

Feedforward neural networks are most frequently trained
by applying some sort of optimization procedure like back-
propagation in order to set weights and offsets optimally with
regard to some objective function. In most cases the objective
function equals the average of some loss function on the
available set of data. Thus the objective function constitutes
an estimate of the expected loss function, i.e., the Bayes loss
function, and the training procedure an attempt to minimize the
Bayes loss function. Successful training will force the neural-
network output to estimate the theoretical optimum, which for
mean squared error is the conditional mean, and for the loss
function defined in (9) equals the conditional quantile.

In this section, a neural network for solving the more general
problem of estimating conditional distribution functions, and
their associated quantiles of any order. In [14] a perceptron
like structure is trained with backpropagation to reproduce
so called fractional bins representing the conditional density.
Here the reasoning follows the constructive line of [4]–[6]
and is based on the theory of kernel estimation, which will be
introduced shortly below.

A. Kernel Estimation

Let in the following be a sequence of identically
distributed random variables with a common density.
For any IN and the density estimate

can be defined by

(17)

where the volume function is expressed as

(18)

and the kernel function obeys

(19)

for any bounded continuous density function. The above
estimator has been investigated in [15] for the case of the
sequence being independently identically distributed
(i.i.d.) random variables with a common continuous density
function . For , and as ,

is shown to be a pointwise consistent estimator of
and its modes. By interpreting the kernel functionas the
nonlinear function of a neuron, and the sequence as
a set of observations serving as training data, it has been
demonstrated in [4] how this estimator exhibits properties
equivalent to neural networks. From a computational point
of view it possesses a massively parallel structure, which
allows for high-speed implementation on dedicated hardware;
functionally, it is capable of learning general probabilistic
information from measured data. It should be pointed out,
however, that the number of neurons in the network defined
from formula (17) equals the number of data in the training
set, and that learning more or less takes place by memorizing
data. In that respect the network provides no data compression.

In [5], [6] the estimator (17) was transformed to compute
conditional expectation functions and a structure equivalent
to the kernel smoother described in [16] was obtained. Here
this transformation is directed toward estimators of conditional
distribution functions.

In the multivariable case the training data is a finite sequence
of the form , where denotes an observation
of some observable explanatory variable. In that case the
multivariable density estimate can be given as

(20)

A conditional distribution estimate can be obtained by
subjecting to a transformation analogous to the one
defined by (4) and (5), i.e.,

(21)

which leads to the following closed-form expression:

(22)

where denotes the antiderivative of the function

(23)
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A scaled Gaussian density function may be proposed as a
candidate for the function , that is

(24)

where denotes the Euclidean metric on . This function
exhibits all properties required except that its antiderivative
is not computable in a closed-form expression. Therefore
the function can be chosen not according to (23) but
as a function exhibiting equivalent properties and which is
computable in a closed-form expression. The well-known
sigmoid function then constitutes a natural choice, i.e.,

(25)

The above elaboration has been based on kernel estimation
of a joint density function and leads to an estimate
of the conditional distribution ; and serves here merely
as motivation to formula (22). In fact, from definitions (24)
and (25) it can be shown by fairly standard means, on only a
very mild set of assumptions, that a slightly modified version
of consistently estimates , as stated precisely in the
following theorem, which is proved in the Appendix.

Theorem 1: Let be a probability measure on with
an associated distribution function and define the measure

on by

(26)

Assume a discrete-time random process IN
to be such that empirical distributions converge to at

every continuity point of that function, i.e.,

(27)

for every continuity point of , where the function
is given as

if and
otherwise.

(28)

Also let the conditional distribution function
fulfill the following smoothness condition:

(29)

at any point , where is continuous with regard to
its first argument.

Then, for the estimator defined by

(30)

the following is true for any in the support of :

(31)

In Theorem 1 only a very general ergodic property has to be
fulfilled, requiring empirical measures of the data sequence to
converge to the limit measure , which not even locally
is assumed to possess a density function. The conditional
distribution function needs to vary smoothly with regard
to the explanatory variable in the sense stated in (29), which
allows for almost any degree of discontinuity with regard to the
explained variable . The estimator is redefined in (30)
from its original definition in (22). The term now appears
in the argument of the function allowing for convergence to
points of discontinuity with regard to the explained variable

. It should be noted that the theorem is easily generalized to
arbitrary dimensions only by redefining the functionto an
arbitrary dimension , i.e.,

(32)

For the conditional quantile estimate is defined
uniquely by

(33)

B. Data Compression

The neural network defined by (30) maps its training data
directly onto its network parameters implying a number of
neurons equal to the number of training data. At least in
the signal processing application discussed earlier some sort
of efficient data compression is needed for the network to
serve its purpose. Data compression is generally introduced by
replacing the estimator with its compressed modification

(34)

In this equation denotes the number of neurons which is con-
sidered to be a design parameter restricted by in order
to ensure a sufficient level of compression. The parameters

, are viewed as adjustable weights and offsets,
subject to some training procedure projecting the statistical
information of the training data to the network parameters.
Two different procedures for setting the parametersare
discussed below.

One approach is based on the following self-organizing
scheme.

Algorithm 1:

• The parameters are initially drawn randomly according
to the joint density estimate defined in (20), i.e., for
every , is selected from with equal
probability for all values. is then initially set by

(35)

where is independent and Gaussian distributed with a
variance .
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Fig. 1. Time sequence of applied data sequence.

• All parameters are then submitted to the following
correction scheme:

— repeat

* for ;

• if then
•

— until all parameters have stabilized

The initial random setting according to the estimated density
produces a rather qualified starting guess for the subsequent
self organizing, which in turn diminishes the randomness from
the initial settings to a level fair to the number of available
training data . That is the statistical uncertainty of
will be comparable to that of .

For the signal processing application discussed earlier, only
the initial settings might be transmitted, whereas the subse-
quent correction is to be done independently at transmitter
and receiver ends, respectively. Such an approach closely
resembles the ADPCM scheme mentioned earlier and even
generalizes certain elements of that method.

Another approach to setting the parameters utilizes the
estimator and an analogous estimator , and is based

on the following reasoning. Let the function
be defined by

(36)

where is the quantile associated to the distribution
and is the conditional quantile associated to . If the
random variables and are independent and uniformly
distributed on [0, 1] then is distributed according
to on . Also if is a sequence of finite subsets of

and the empirical distributions of the points in

converge weakly to the uniform distribution on [0, 1]then the
empirical distributions of converge weakly to .
For example might be crossing points on rectangular
grids with gridsizes converging to zero. These properties are
used in algorithm (2) to make network parameters imitate the
empirical distributions of the data.

Algorithm 2:

• Select equidistantly on [0, 1].
• Let for .
• Select equidistantly on [0, 1].
• for ;

— for ;

* ;
* ;
*

The parameter setting scheme above can be generalized
to arbitrary dimensions but it is not recommended for high
dimensionality as the computational effort tends to grow
exponentially with dimension. The advantage of this second
approach for parameter setting is that constitutes a determinis-
tic mapping from the available training data onto the network
parameters, which makes it feasible for analysis. Convergence
properties for the compressed estimator could be stated
along the same line as for . The possibility for such
analysis is only mentioned at this point, whereas the analysis
itself is not presented in this paper.

V. NUMERICAL EXAMPLE

In this section, a numerical example is presented illustrating
how the proposed network can be applied to a signal process-
ing problem, where the data sequence is to be transmitted
over a finite capacity channel. The data sequence is artificially
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Fig. 2. Scatter plot of adjacent data.

Fig. 3. Network parameters transmitted across transmission line.

generated according to the following first-order autoregression:

for (37)

where is drawn independently from {1, 1} for every
and { } is a sequence of independent and standard normally
distributed random variables. The data sequence is depicted in
Fig. 1, and a scatter plot of the data is shown in Fig. 2. It is

obvious from (37) that and are completely uncorrelated
for , and any coding scheme based on linear filtering like
the ADPCM algorithm becomes useless.

The data are encoded in two different ways as mentioned in
the former section. It is first assumed that the complete data
sequence is available before any transmission takes place. An
uncompressed estimate of the conditional distribution ,
where and is defined by and the
network parameters are set according
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Fig. 4. Estimated and theoretical conditional quantiles.

Fig. 5. Scatter plot of adjacent coded data.

to algorithm (2), and transmitted to the receiving side in
advance. The transmitted parameters are shown in Fig. 3. The
performance of the compressed estimate is presented
by its associated conditional quantiles of orders 0.1, 0.3, 0.7,
and 0.9, which are plotted together with the theoretical ones
in Fig. 4. The data sequence is encoded according to (14)
and subsequently quantized in 4-b precision to produce the
sequence of which associated pairs ( ) are

shown in Fig. 5, illustrating how the joint distribution of
adjacent values of is close to being uniform in [0, 1]. At
the receiver side the sequence is decoded according to
(15) to produce the reviewed sequence . The average
absolute error is given by

(38)
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Fig. 6. Initial and final network parameter settings for on-line training algorithm.

Fig. 7. Time history of absolute error during on-line training.

If the original data sequence were to be quantized directly
in 4-b precision assuming [ 0.5, 0.5] for all , the
average absolute error is found to be 0.0156. Consequently
6-b precision is required to match the above coding scheme
by direct quantization. The second coding scheme suggested
in the former section requires no network parameters to be
transmitted over the line as network parameters are adjusted
during transmission by identical algorithms in the transmitter

and receiver ends of the line. In the presented example the
network parameters are initially set on a rectangular grid in
[ 0.5, 0.5] . Only the parameters { } are adjusted during
transmission as this was found to produce the best results.
The initial and final parameter settings are shown in Fig. 6.
The absolute error is shown slightly smoothened in Fig. 7,
and is seen to tend to the average value 0.004 obtained by the
previously presented coding scheme.
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VI. CONCLUSION

A neural network for estimating conditional distributions
and their associated quantiles has been constructed in the
present paper. Although the network is designed on the basis
of kernel estimation of joint probability density functions,
theory has been presented showing the network to be valid
in more general settings, where only a smoothness condition
with regard to the dependence on the explanatory variable, as
well as a very general ergodic property of the training data,
have to be fulfilled.

The problem of estimating conditional quantiles has been
related to Bayes estimation in the case of a special asymmetric
loss function feasible for application within a variety of areas
in engineering, as well as science and economics. An example
from the area of time optimal control is briefly discussed.

An application of the presented neural network within
digital signal processing has been suggested. A scheme for
encoding and decoding a sequence of data for optimal channel
utilization is presented, along with two algorithms for training
the network parameters before and during data transmission.

A numerical example where the neural network is applied
to the above coding/decoding scheme is given and results are
presented for both the two training algorithms. The results are
considered satisfying for the presented example.

APPENDIX

PROOF OF THEOREM 1

Assumption (27) guarantees weak convergence of empirical
measures to . This yields, according to (30) and [10,
Theorem 29.1]:

(39)

Now the following expansion can be made for any ,
, and :

(40)

where

(41)

(42)

(43)

(44)

(45)

(46)

(47)

in which the superscript “ ” denotes complementary set.
The first term can be further expanded into the following

terms:

(48)

where it is shown in (49)–(51)

(49)

(50)

(51)
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Because any distribution function is upper semicontinuous

(52)
for a sufficiently small value of .

For any , can be selected to fulfill

for

(53)

and

for (54)

which all together implies and .
The fact that by assumption belongs to the support of

implies

(55)

for a sufficiently small value of . Now trivially

for (56)

and

for (57)

Inequalities (55)–(57) together imply

(58)

(59)

so that

(60)

by which

(61)

is obtained for a sufficiently small value of
The distribution functions and can have only

a countable number of discontinuities. Also they are upper
semicontinuous. As a consequence a continuity point
of can be found so that

(62)

and

(63)

which implies
By assumption (29) can be chosen sufficiently small

to fulfill

for (64)

so that

for (65)

and consequently .
To prove the theorem first select to fulfill inequalities

(62) and (63). Then choose to fulfill (52) and (64).
Finally pick to fulfill (53), (54), and (61), that
all together imply

(66)

by which Theorem (1) is finally proved.

REFERENCES

[1] D. E. Rumelhart and J. McClelland,Parallel Distributed Processing.
Cambridge, MA: MIT Press, 1986.

[2] H. White, “Connectionist nonparametric regression: Multilayer feedfor-
ward network can learn arbitrary mappings,”Neural Networks,vol. 3,
pp. 535–549, 1990.

[3] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W.
Suter, “The multilayer perceptron as an approximation to a Bayes
optimal discriminant function,”IEEE Trans. Neural Networks,vol. 1,
pp. 296–298, 1990.

[4] D. F. Specht, “Probabilistic neural networks for classification, mapping,
or associative memory,” inProc. IEEE Int. Conf. Neural Networks,vol.
1, 1988, pp. 525–533.



SCHIOLER AND KULCZYCKI: NN FOR ESTIMATING CONDITIONAL DISTRIBUTIONS 1025

[5] , “A general regression neural network,”IEEE Trans. Neural
Networks,vol. 2, pp. 568–576, 1991.

[6] H. Schioler and U. Hartmann, “Mapping neural network derived from
the parzen window estimator,”Neural Networks,vol. 5, pp. 903–909,
1992.

[7] J. Moody and C. Darken, “Fast learning in networks of locally tuned
processing units,”Neural Computa.,vol. 1, pp. 281–294, 1989.

[8] R. H. Nielsen, “Counter propagation networks,” inProc. 1st IEEE Int.
Conf. Neural Networks,vol. 2, 1987, pp. 19–33.

[9] M. Fisz, Probability Theory and Mathematical Statistics.New York:
Wiley, 1963.

[10] P. Billingsley,Probability and Measure. New York: Wiley, 1979.
[11] P. Kulczycki, “Time-optimal stochastic positional control,” inProc.

IFAC 12th World Congr.,vol. 7, 1993, pp. 443–448.
[12] P. Kulczycki and H. Schioler, “Parameter identification by Bayes deci-

sion and neural networks,” inProc. 10th IFAC Symp. Syst. Identification,
vol. 3, 1994, pp. 477–482.

[13] S. Haykin,Communications Systems,2nd ed. New York: Wiley, 1983.
[14] A. S. Weigend and A. N. Srivastava, “Predicting conditional probability

distributions: A connectionist approach,”Int. J. Neural Syst.,vol. 6,
1995.

[15] E. Parzen, “On estimation of a probability density function and mode,”
Ann. Math. Statist.,vol. 33, pp. 1065–1076, 1962.

[16] T. J. Hastie and R. J. Tibshirani,Generalized Additive Models,1st ed.
London: Chapman and Hall, 1990.

Henrik Schioler was born in 1965 and received
the M.Sc. and Ph.D. degrees from the Department
of Control Engineering at Aalborg University, Den-
mark.

Since 1993, he has been with that department,
where he is currently an Assistant Professor. Dur-
ing a two-year leave from 1994 to 1996, he was
with CorTech A/S in Pandrup, Denmark, where he
worked with methods for improving signal quality
in cordless telephones. His research interests include
probability theory, control theory, neural networks,

fuzzy control, signal processing, etc.

Piotr Kulczycki (M’93) received the M.Sc. and
Ph.D. degrees in control engineering from the Acad-
emy of Mining and Metallurgy, Cracow, Poland,
and the M.Sc. degree (with honors) from the Jagiel-
lonian University, Cracow.

Since finishing his studies in 1987, he has been
at the Cracow University of Technology, where he
is currently an Assistant Professor. In 1993, he held
a Visiting Professor position at Aalborg University,
Denmark. He has authored many journal and con-
ference papers in the areas of optimal control, fault

detection, neural networks, system identification, and fuzzy control, as well
as applications of a probability approach to issues of economy and biology.

Dr. Kulczycki is a Member of PTM (Polish Mathematical Society) and
AMS (American Mathematical Society)


