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Abstract. This paper deals with dimensionality and sample length re-
duction applied to the tasks of exploratory data analysis. Proposed tech-
nique relies on distance preserving linear transformation of given dataset
to the lower dimensionality feature space. Coefficients of feature transfor-
mation matrix are found using Fast Simulated Annealing - an algorithm
inspired by physical annealing of solids. Furthermore the elimination or
weighting of data elements which, as an effect of above mentioned trans-
formation, were moved significantly from the rest of the dataset can be
performed. Presented method was positively verified in routines of clus-
tering, classification and outlier detection. It ensures proper efficiency of
those procedures in compact feature space and with reduced data sample
length at the same time.

Keywords: dimensionality reduction, sample reduction, linear transfor-
mation, fast simulated annealing, cluster analysis, classification, outlier
detection.

1 Introduction

Modern data analysis has in its disposal a variety of methods based on both
traditional and modern statistical techniques reinforced by soft computing pro-
cedures. Here, beside classical tools like fuzzy logic, neural networks and genetic
algorithms, recent metaheuristics like particle swarm optimization, ant colony
algorithms or bees optimization are frequently in use. Proper connection of al-
gorithms’ advantages enables their effective application in problems of contem-
porary knowledge engineering and data mining in particular. The subject of
presented research is a concept of using nature-inspired Simulated Annealing
algorithm [7] for the purpose of data dimensionality and sample size reduction.

Recently, the subject of data analysis are more and more frequently high di-
mensional datasets with huge sample lengths. It is a result of growing amount

J. Tang et al. (Eds.): ADMA 2011, Part I, LNAI 7120, pp. 152–161, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

szymonl@pk.edu.pl
kulczycki@ibspan.waw.pl


An Algorithm for Sample and Data Dimensionality Reduction 153

of information stored in data warehouses. Extraction of knowledge from such
datasets is a very complicated task. Difficulties include mainly limitations of
computer systems’ performance when considering huge samples and method-
ological obstacles of high dimensional data analysis. The latter is connected
with properties of such datasets referred in bibliography as “curse of dimen-
sionality” (this term was used for the first time by Bellman in the context of
control systems design) [21]. It includes exponential grow of sample size needed
to achieve proper efficiency of data analysis with increasing dimensionality, so
called “empty space phenomenon” and vanishing of distances between close and
distant points when using typical Minkowski norm.

To overcome above-mentioned problems adequate reduction procedures were
developed. Sample length reduction is performed usually by means of sampling
techniques [2] or advanced data condensation routines [14] and its expected result
is mainly speeding up calculation time associated with data mining process.
Dimensionality reduction can be performed in numerous ways. Let X to denote
n × m data matrix:

X =
[
x1 x2 ... xm

]
(1)

columns of which represent n dimensional sample elements for given probabilistic
variable. Each dimension of such variable will be referred later in this paper as
a feature. The aim of dimensionality reduction is a data transformation to a
new N × m sized form, where N is significantly smaller than n. This can be
achieved either by selecting most N significant features (feature selection) or by
construction of a new set of N features based on the initial ones (i.e. by feature
extraction). The second case is more general and will be considered in this work.

Among feature extraction procedures one can distinct: linear methods where
synthesis of resulting dataset Y is performed by linear transformation:

Y = AX (2)

with A being a transformation matrix of size N × n and nonlinear techniques
where data transformation can be described by a nonlinear function g : Rn →
RN (or if such functional relationship does not exist). Details of feature transfor-
mation are usually established using some criterion which ensures maintaining
critical data properties. It can be derived either from some general data charac-
teristics (in unsupervised manner) or from the result of considered data analysis
task (supervised feature extraction). One of the most widely used universal lin-
ear techniques of feature extraction is the principal components analysis (PCA).
Conversely, multidimensional scaling (MDS) constitutes a typical representa-
tive of traditional nonlinear methods [6]. Studies on performance of routines
belonging to both of above mentioned classes prove that even though nonlinear
techniques possess more advanced mathematical background, they obtain often
worse results in case of real-life datasets [12]. Apart from the performance the
ability to create implicit mapping, which afterwards can be easily generalized to
new data elements acquired dynamically, is also important in practical analytical
tasks [10].
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This paper introduces a new universal method of linear dimensionality re-
duction for use in exploratory data analysis. Dimensionality reduction is ac-
complished here by means of distance preserving linear transformation. The el-
ements of the transformation matrix are to be determined using Fast Simulated
Annealing. Additionally sample elements which as an effect of transformation
significantly change their position could be eliminated or given lower weights. It
can later serve in improvement of data analysis performance or sample length
reduction.

The paper is organized as follows. Methodological preliminaries of the intro-
duced method and its detailed description will be presented in the following
Sections. As the performance of the technique under consideration was tested
in clustering, classification and outlier detection procedures their short descrip-
tion will be given as well, followed by experimental results obtained in numerous
testing trials. Finally some concluding remarks on the introduced method and
planned further research will be given.

2 Methodological Preliminaries

2.1 Basic Exploratory Data Mining Tasks

First consider a problem of outlier detection. Such procedure is usually performed
at the start of data exploration process to remove those elements from the sam-
ple which are found to be not representative. Usually it is performed by means of
statistical approaches, e.g. using Grubbs test or Local Outlier Factor algorithm [3].
Measuring the performance of given procedure is difficult as usually it is not known
in advance which element of the sample is atypical. However, if such knowledge is
available, then the performance of the algorithm can be measured by:

Iout =
co

m
(3)

where co is a number of correctly classified elements - either as an outlier or
normal sample data point.

The task of cluster analysis is equivalent to such division of available data
elements into subgroups (clusters) that elements belonging to each cluster are
similar to each other and, at the same time, there is a significant dissimilarity
between different clusters’ elements. Numerous procedures have been developed
to solve this problem. Among others K-means and DBSCAN algorithms can
be named as popular ones [23]. If it is needed to compare different clustering
solutions (or there exists a knowledge about cluster assignment) it is possible to
use appropriate clustering indices e.g. Rand index:

IRand =
a + b
(
m
2

) (4)

with a and b being a number of data pairs which have been assigned to the same
and different clusters in the both of analyzed solutions. If cluster number is
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fixed, one can also try to form confusion matrix, align it properly to find cluster
correspondence and calculate cluster preservation index Iclust [16].

Finally let us consider the task of classification, that is designating element x̃ ∈
Rn from the testing set to one of the fixed class with known set of representative
patterns, similar to (1) (i.e. training set). Classification is often performed using
instance-based learning methods e.g. k-nearest neighbor algorithm, along with
more sophisticated statistical or computational intelligence procedures [19]. The
efficiency of classification is evaluated by measuring its accuracy:

Iclass =
l

m
100% (5)

that is by a number of testing dataset elements l properly assigned to available
classes, given as a ratio of overall dataset length. When precise division of the
dataset into testing and training part is not explicitly given, one can use k-fold
cross-validation, i.e. split available data into k sets and use one for evaluating
purposes and the rest – for classifier learning. Whole process is usually repeated
k times, although different variants of such validation can be found in the bibli-
ography of the subject. Nevertheless in the case of cross-validation the average
accuracy Iclass is usually reported as a final result.

2.2 Fast Simulated Annealing

Simulated Annealing (SA) is a heuristic algorithm which can be used in vari-
ous optimization problems. Its idea is based on metallurgic annealing process.
The SA algorithm incorporates iterative local search with individual acceptance
criterion. By means of this criterion current algorithm’s solution is established,
typically with usage of solution quality index from two consecutive iterations and
variable decreasing in time parameter called temperature of annealing. Moreover
it is assumed that non-zero probability of worse solution acceptance should be
enforced. This probability ought to decrease in time and enable the algorithm to
escape from pitfalls of local minima. In most generic variants of the SA algorithm
Metropolis rule is used as above mentioned criterion [7].

The algorithm in particular application demands specifying few functional
elements like generation of initial and neighbor solutions, initial temperature
and scheme of its changes, solution quality index and finishing criterion. Some
general remarks concerning these issues were made in [15]. It is worth to mention
as well that SA can be effectively used in continuous optimization with specific
variants of the algorithm developed precisely for that purpose, e.g. Boltzmann
Annealing, Fast Simulated Annealing and Adaptive Simulated Annealing [5].

Fast Simulated Annealing (in short: FSA), used in dimensionality reduction
algorithm described here, is a strategy which employs random moves obtained by
using multidimensional Cauchy distributed random numbers [18]. Global conver-
gence of the algorithm to the optimal solution as iteration number t approaches
infinity, is maintained by using conservative logarithmic annealing temperature
schedule.
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3 Algorithm Description

3.1 Dimensionality Reduction

Concept of the dimensionality reduction technique from n to predetermined N -
dimensional space is based on linear transformation (2), given in detail by:

⎡

⎢
⎢⎢
⎣

y11 y12 ... y1m

y21 y22 ... y2m

...
...

...
yN1 yN2 ... yNm

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

a11 a12 ... a1n

a21 a22 ... a2n

...
...

...
aN1 aN2 ... aNn

⎤

⎥
⎥⎥
⎦

⎡

⎢
⎢⎢
⎣

x11 x12 ... x1m

x21 x22 ... x2m

...
...

...
xn1 xn2 ... xnm

⎤

⎥
⎥⎥
⎦

. (6)

Elements of transformation matrix A are found using Fast Simulated Annealing
technique. Solution is represented as a vector:

z = [a11, a12, ..., a1n, a21, a22, ..., a2n, ..., aN1, aN2, ..., aNn]T ∈ RnN . (7)

Solution quality index is given in the form of cost which is going to be minimized
as a result of FSA algorithm. It can be represented in the form of:

g(z) =
m−1∑

i=1

m∑

j=i+1

(dij − δij(z))2 (8)

or

g(z) =
1

∑m−1
i=1

∑m
j=i+1 dij

m−1∑

i=1

m∑

j=i+1

(dij − δij(z))2

dij
(9)

where dij and δij are distances (predominantly Euclidean) between sample points
i and j in the initial and reduced feature space respectively. Both indices should
enable achieving minimal difference of distances between sample elements in ini-
tial and reduced feature spaces, with additional emphasis put on small distances
in the second cost function. Such formulations of solution quality indices are
referred to as raw stress (8) and Sammon stress (9). Both were already used in
nonlinear procedures of Multidimensional Scaling [4].

Initial solution is determined either randomly or by using feature selection
algorithm presented in [13], with the second strategy being represented by two
different variants. In general this alternative deterministic technique is based on
the idea of feature space partition into clusters containing features which are
similar to each other, with maximum information compression index being used
as a similarity measure. Feature space clustering is performed using k-nearest
neighbor algorithm, where k equal to n−N should be assumed. As a result ap-
proximately N clusters are obtained. It is worth mentioning that a result of such
initial solution’s determination instead of being strictly fixed is customized to a
real data structure. First approach of employing this feature selection algorithm
to initial solution generation is based on N most representative features. The
transformation matrix is formed in a way to retain them. It is achieved by using
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1 and 0 properly as an indicative weights in the structure of A. Second strategy
based on approach presented in [13] involves creating reduced feature set by lin-
ear combination of features included in each of “feature clusters”. To implement
it, the solution of feature selection is stored in auxiliary vector v ∈ Rn. Each
element of v characterizes the number of cluster to which corresponding feature
from the initial feature space was assigned. This vector is then transformed into
transformation matrix A using following rule: aij = 1 if vj = i and aij = 0
otherwise.

Initial temperature of FSA is determined from preliminary set of pilot runs
and it ensures approximate 0.7 probability of worse solution acceptance in the
introductory phase of the algorithm. Annealing ends after fixed number of it-
erations and as its result matrix A minimizing solution quality indices (8) or
(9) and transformed dataset Y are obtained. In the case of classification task
the reduction is performed for training dataset and reduced evaluation set is
synthesized using transformation matrix formed as a result of such procedure.

3.2 Weighting and Sample Length Reduction

Linear transformation of feature space in the form presented in the previous Sub-
section can seriously affect some data elements’ relative position. Consequently
the performance of data mining procedures in the reduced feature space can
deteriorate significantly. As a countermeasure it is proposed to associate with
each sample element a positive weight wi normalized to ensure

∑m
i=1 wi = m.

Those weights are to be calculated using auxiliary parameters:

w∗
i =

1
∑m

j=1,j �=i (dij − δij)2
, (10)

and performing normalization:

wi =
mw∗

i∑m
i=1 w∗

i

(11)

for i = 1, ..., m. Introduction of weights allows to take into account deforma-
tions in a relative data structure. Data elements with higher weights could then
be treated as more adequate. Furthermore, one can use them as well to elim-
inate some data elements from the sample. It can be performed by removing
instances with associated weights fulfilling following condition: wi < W where
W ∈ (0, +∞) and then normalizing all weights (11). One can achieve in this way
simultaneous dimensionality and sample length reduction with W serving as a
data compression ratio.

4 Experimental Results

Proposed technique was verified for data exploration procedures based on four
multidimensional example datasets taken from the UCI Machine Learning
Repository [20].
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Data dimensionality reduction routine was compared with PCA and unsu-
pervised feature selection based on Evolutionary Algorithms [16] (first, best
performing, variant of this algorithm was selected for this comparison). The
latter was chosen for this study, because it employs Sammon stress as solution
quality index. Heuristic procedure of Simulated Annealing as well as referenced
techniques were executed in 10 independent trials (similarly to [16]). Each run
was performed using 1000000 iterations as a stopping condition. Reduced fea-
ture space size N was selected according to [16], with the exception of V ehicle
dataset for which standard PCA-based intrinsic dimensionality estimation was
employed.

Table 1 summarizes results obtained for classification performed using five-
fold cross validation and the nearest-neighbor classifier. Reported values include
classification accuracy in the initial feature space, six variants of the FSA-based
algorithm with different cost function and initial solution generation, as well as
classification accuracy Iclass obtained by referenced algorithms. It is important

Table 1. Dimensionality reduction for nearest-neighbor classification

Glass WBC
m=214, n=9, N=4 m=683, n=9, N=4

6 classes 2 classes
Accuracy [%] Accuracy [%]

Average Std. dev. Average Std. dev.
Initial FS 69.0 7.7 95.6 2.2
Raw, Linear combination 61.2 8.7 95.7 1.7
Raw, Feature selection 63.6 6.5 96.0 1.6
Raw, Random 62.1 7.7 96.0 1.4
Sammon, Linear combination 62.1 9.4 96.2 1.4
Sammon, Feature selection 64.5 4.4 95.9 1.5
Sammon, Random 61.4 9.9 96.0 1.2
EA-based [16] 64.8 4.4 95.1 0.8
PCA 57.6 9.9 96.3 1.8

Wine Vehicle
m=178, n=13, N=5 m=846, n=18, N=5

3 classes 4 classes
Accuracy [%] Accuracy [%]

Average Std. dev. Average Std. dev.
Initial FS 72.6 3.9 64.8 3.1
Raw, Linear combination 70.6 6.3 57.9 5.0
Raw, Feature selection 70.6 6.0 55.7 3.9
Raw, Random 76.0 5.1 66.4 3.9
Sammon, Linear combination 68.6 4.0 57.9 5.1
Sammon, Feature selection 70.9 6.0 56.2 6.4
Sammon, Random 75.4 6.1 64.9 3.5
EA-based [16] 72.8 1.0 60.8 [N=9] 1.5
PCA 70.9 8.4 46.9 5.5
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to stress that for EA-based technique reduced feature set is synthesized using
both training and testing sets. In the case of the algorithm being described here
out-of-sample extension is used. It allows to transform testing set using trans-
formation matrix synthesized for the training set. Nevertheless, results obtained
are comparable to the ones achieved by referenced techniques. It can be noticed
however, that it is difficult to select in advance which variant of the algorithm
will reach highest-performance.

To test the possibility of sample size reduction classifier based on the kernel
density estimators (KDE) was used [9], as its structure is very easy to modify
to include weights [8]. In the considered case weighting scheme alone does not
have a positive effect on classificator’s performance. It can be used though to
eliminate elements which as an effect of dimensionality reduction have a negative
impact on data mining process. Elimination of elements with weights lower than
0.5 leads in some cases to the improvement of classification accuracy (see Table
2). It is predominantly observed when the sample size is too small to perform
KDE-based classification reliably in the initial, high dimensional feature space.
It confirms well-known fact that kernel density estimation is seriously affected
by the curse of dimensionality [17].

Table 2. Dimensionality and sample size reduction for KDE-based classification

Glass WBC
Accuracy [%] Accuracy [%]

Average Std. dev. Average Std. dev.
Initial FS 60.5 7.6 95.0 2.0
PCA 52.6 8.9 93.0 2.8
Reduced 63.8 10.5 92.4 2.4
Reduced + Sample size reduction 67.6 7.7 95.5 2.1
(Sample elements removed [%]) (8.7) (1.8) (10.3) (2.1)

Finally cluster analysis and outlier detection experiments were performed.
The preservation of cluster structure was indicated by cluster preservation index
Iclust. In the case of outlier classification, its preservation was measured by (3).
Values of both indices were reported for selected datasets in Table 3). Again,
the technique under consideration achieved high accuracy of datasets structure
preservation, comparable (or even better) to the one achieved by EA-based
technique.

Table 3. Dimensionality reduction with cluster and outlier preservation

Glass WBC
Preserved [%] Preserved [%]

Average Std. dev. Average Std. dev.
Cluster preservation Reduced 71.2 9.7 98.1 0.4

EA-based [16] 69.3 4.9 94.7 2.3

Outlier Preservation Reduced 95.4 0.9 88.1 1.1
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5 Conclusion

This paper introduces new dimensionality and sample reduction technique de-
signed for tasks of exploratory data mining. Introductory studies on method’s
performance prove that it offers promising solution quality in reference to the
state-of-art principal components analysis procedure and similar heuristic based
feature selection strategy. One should note however it is not specifically suited
and designed for very high dimensional problems with huge sample sizes, as the
optimization phase of FSA has significant computational complexity. Its leads
to exponential growth of computation time with increasing m. Nevertheless the
method under consideration can be still used for data visualization and formu-
lation of convenient data transformation, which can be later used in the data
acquisition process. What is more, the possibility of practical implementation is
significantly increased by employing simultaneous sample size reduction.

Further studies on the subject will concern various improvements in Fast Sim-
ulated Annealing scheme (e.g. statistic termination criterion of the algorithm).
As Simulated Annealing can be effectively parallelized (refer to [1] and [11]) this
area of research is going to be explored as well. It will allow the algorithm appli-
cation for larger datasets. In addition prospective research will concern further
improvements in sample size reduction scheme and its usage in various standard
data mining algorithms.
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