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Abstract

Data clustering constitutes at present a commonly

used technique for extracting fuzzy system rules from

experimental data. Detailed studies in the field have

shown that using above-mentioned method results in

significantly reduced structure of fuzzy identification

system, maintaining at the same time its high modelling

efficiency. In this paper a clustering algorithm, based

on a kernel density gradient estimation procedure

applied for fuzzy models synthesis, is presented. It

consists of two stages: data elements relocation and

their division into clusters. The method is automatic,

unsupervised, and does not require any assumptions

concerning the desired number of fuzzy rules. The

results of experimental evaluation show that the algo-

rithm under consideration achieves relatively high per-

formance when compared to the standard techniques

frequently applied in similar class of problems.

1. Introduction

Fuzzy modelling (or fuzzy identification), intro-

duced by Takagi and Sugeno [1], is currently a very

popular method of capturing a system’s behaviour

using its available measurable characteristics. This

approach has been successfully applied in several multi

disciplinary problems i.e. prediction tasks [2], con-

trollers’ design [3] or systems analysis [4]. Inference

by means of fuzzy modelling is based on employing

a set of fuzzy if–then rules, which reflects the input-

output relationship of the modelled system. Usually

typical Takagi-Sugeno rules are used, where the con-

sequent part is described by non-fuzzy equations with

the input variables, for example: if error is high

and error derivative is low then control=α·error +

β·error derivative.

The problem of extracting rules from data has been

approached using different techniques, such as genetic

algorithms [5], neuro-fuzzy methods [6] or criteria

based on information theory [7]. Since one wishes to

find the compact representation of a fuzzy relationship,

clustering is also used often, either as a stand-alone

procedure or as part of another method. The most

classic approach is subtractive clustering developed by

Chiu [8], although some other promising techniques,

such as evolving clustering [9] or Gustafson-Kessel

clustering [10] were also applied.

The aim of the paper is to present an alternative

method of obtaining rules’ prototypes by means of

clustering based on nonparametric density gradient

estimation. A detailed description of the clustering

procedure can be found in work [11] and preliminary

study on its application in fuzzy modelling was pre-

sented in [12].

The estimation is performed using kernel density

estimators (KDE) [13], [14]. The kernel estimator of

unknown density function f for the n-dimensional

probabilistic variable U with the sample u1, u2, ... , um,

kernel K and bandwidth (smoothing parameter) h, is

defined as the following function:

f̂(u) =
1

mhn

m
∑

i=1

K

(

u− ui

h

)

. (1)

For the kernel function K introduced in the above

definition one can use either radial

K(u) = c κ(||u||) (2)

or product kernel

K(u) = c

n
∏

j=1

κ(uj) . (3)

In the latter case each one-dimensional kernel κ is

associated with the individual bandwidth hj with j =
1, ..., n, and consequently hn in formula (1) is equal

to
∏n

j=1 hj . Furthermore the factor c normalises the

integral of the kernel K to 1.

Applying radial kernel ensures a relatively higher

estimation quality. The drawback of this approach
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is the need to perform linear transformation of data

with differently-scaled dimensions; furthermore the

calculation of bandwidth has to be performed using

least-squares cross-validation, not so suitable from

the applicational point of view. Moreover, although

estimation based on the product kernel suffers from

slightly lower effectiveness, it profits from the use

of the simple and automatic plug-in method of the

selection of the bandwidths hj , and also much easier

integration and differentiation procedures. For above

mentioned reasons in the further part of this paper the

product kernel will be considered and applied. More

detailed information about the practical issues of KDE

methods and usage examples can be found in [14],

[15].

The clustering algorithm being considered here will

use the gradient ∇f estimation. The idea of the pro-

posed concept is based on the Fukunaga method [16],

but the rule extraction from clusters centers is similar

to the one used in standard subtractive clustering.

This paper is organised as follows. The second sec-

tion is devoted to the short description of the clustering

algorithm based on KDE considered in this paper. It

includes as well the explanation of fuzzy rules con-

struction process based on obtained clusters centers.

The subsequent section contains results of the com-

putational experiments and performance comparisons

with existing methods. Finally, some concluding re-

marks on the clustering technique under investigation,

its effectiveness, applicational issues and directions for

future work are presented.

2. Fuzzy identification with kernel density

estimation clustering

2.1. Algorithm description

The algorithm is based on the natural assumption

that each cluster can be represented by the local maxi-

mum of the kernel estimator of the probability density

function f̂ , obtained for the considered n-dimensional

data elements u1, u2, ... , um. However, instead of the

direct analysis of a density function, its gradient is used

here. The algorithm consists of two stages: relocation

of data elements and their division into clusters.

In the first phase of the algorithm each element is

moved along a direction defined by the gradient ∇f̂ ,

according to the following equation:

u
(k+1)
i = u

(k)
i +b

∇f̂(u
(k)
i )

f̂(u
(k)
i )

for i = 1, 2, ... ,m (4)

taking the original data set as a procedure starting

point, i.e.

u
(0)
i = ui for i = 1, 2, ... ,m . (5)

The parameter b = [b1, b2, ... , bn]T, with bj > 0,

defines the “speed” of data movement:

bj =
h2

j

3
. (6)

The first phase of the KDE clustering algorithm ends

if the following stop condition is fulfilled:

||D(k) −D(k−1)||

D(0)
≤ 0.001 , (7)

where D(k) =
∑m

i=1,j=i d
(k)
ij with d

(k)
ij = ||u

(k)
i −

u
(k)
j ||2 constitutes a sum of distances in each of k

algorithm’s iterations.

The second stage of the KDE clustering algorithm

starts when condition (7) is found to be true. First, a

sample consisting of elements’ distances d
(k)
ij for i =

1, 2, ... ,m and j = i, i + 1, ... ,m is constructed.

For large data sets it is advised to use at this stage

some data condensation algorithm (e.g. [17]). Then, the

smallest argument dmin for which the KDE function,

calculated for the sample, assumes its local minimum

(excluding possible minimum in zero) should be iden-

tified. The value dmin serves as a cluster distinction

parameter, i.e. two points ui and uj belong to the same

cluster if d
(k)
ij ≤ dmin. The last step of this algorithm

consist of mapping points to proper clusters according

to the above-formulated rule. Details of the clustering

procedure can be found in paper [11].

2.2. Rules base construction

Now assume that the data set under consideration

represents input x1, x2, ..., xm and y1, y2, ..., ym output

values. As a result data dimension n = nx + ny ,

where nx denotes a dimension of inputs space and

ny - dimension of outputs space. Using presented

clustering procedure one obtains centers of gravity for

C clusters i.e. ucj
= {xcj1, ... , xcjnx

, ycj1, ... , ycjny
}

with j = 1, 2, ..., C. Those centers can then serve as a

basis for the rule generation process as shown in [8].

Therefore each cluster represents a fuzzy rule with

membership function which, for given input vector x,

is defined by:

µcj
(x) = e

− 4

r2
a

||x−xcj
||2

. (8)

The parameter ra > 0 used in (8) allows the designer

to control the generalisation ability of a resulting fuzzy

inference system. One can adjust it to his needs, it was
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observed however that in most cases satisfactory results

were obtained for ra = 1
C

.

The output of fuzzy modelling system is defined

consequently as:

y =

∑C

j=1 µcj
(x)ycj

∑C

j=1 µcj
(x)

. (9)

Furthermore, as shown in paper [8] significantly better

accuracy of fuzzy modelling can be achieved if one

allows each output cluster in formula (9) to be a linear

function of input variables. Given the set of training

data it adds only a relatively easy-to-solve simple linear

least-squares estimation problem to the process of rules

set construction. Obtained consequents with associated

membership functions (8) and C rules base constitute

a complete fuzzy modelling system.

To conclude, presented method, when applying any

standard bandwidth selection procedure, offers auto-

matic definition of the number of clusters directly

resulting model complexity. However one can adjust

it to one’s needs by altering bandwidth value – its

increasing implies stronger density smoothing and

smaller number of clusters obtained, with the opposite

result when this value is decreased.

The next section is devoted to the experimental

verification of the method investigated in this paper

using some standard benchmark examples presented

already in the literature.

3. Results of experimental evaluation

The algorithm was tested on several data sets rep-

resenting various engineering problems where fuzzy

modelling was perceived as an appropriate solving

tool. Here, the examples of function approximation

and synthesis of fuzzy PD controller will be presented.

Moreover, the results of comparison with popular sub-

tractive clustering and ANFIS methods will be given

as well. All algorithms were used in their MATLAB R©

implementations.

3.1. Function approximation

At first, the matter of interest was a problem of fuzzy

modelling of the following function

y =
20

x
sin

( x

20

)

(10)

presented already in [10]. The training set consisted

of 100 data pairs {x, y} for x ∈ [1, 200] generated

with uniform distribution and rounded to the nearest

integer. Additionally, normal distributed random noise

with zero mean and 0.02 variance was added to this

data set.

The modelling error was defined as root mean

square error (RMSE) between the noise-free testing

curve y(x), where x = 1, 2, ..., 200, and data ob-

tained from the models synthesised using tested fuzzy

identification techniques. For each method a set of

parameter’s values were tested. Subtractive clustering

was invoked with ra = {0.1, 0.2, ..., 1.0}, KDE clus-

tering with bandwidth varying from optimal in range

hj = {0.5hjopt
, 0.6hjopt

, ..., 1.4hjopt
} and ANFIS

with initial rules number r from 2 to 11. Experiments

were repeated 10 times, with different random number

generator’s seed. Average rules number and root mean

square errors (with its standard deviation) for com-

pared methods are reported in Tab. 1. Best algorithms’

configurations (in terms of obtained average RMSE)

are shown in Tab. 2.

Table 1. Average performance of fuzzy modelling

methods for function (10) approximation.

Method Rules RMSE σRMSE

Subtractive 5.42 0.152 0.135

ANFIS 6.50 0.058 0.009

KDE-based 3.78 0.058 0.012

Table 2. Average performance of best fuzzy

modelling methods’ configurations.

Method Config. Rules RMSE

Subtractive ra = 0.5 3.0 0.038

ANFIS r = 3 3.0 0.043

KDE-based hj = 0.9 hjopt
4.2 0.050

It can be seen that introduced KDE-based clustering

technique is the best one in terms of average perfor-

mance and stability to the choice of the algorithm’s

parameters. One should notice however that when this

choice is done conveniently, other methods can be

found fractionally superior.

3.2. Fuzzy PD controller synthesis

In paper [18] subtractive clustering was effectively

applied for the rules set reduction of the fuzzy logic

PI (FPIC) and PD (FPDC) feedback controllers. Input-

output data obtained from a controller consisting of 49

rules were used as training values for a cluster analysis

algorithm which generated a less complex model of the

considered system. Furthermore, the reduced controller

was shown to maintain almost the same level of

performance as the original one.
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The same approach will be under consideration

here, with difficult to control marginally stable process,

described by following transfer function:

G(s) =
1

s(s + 1)
. (11)

Using the reference, properly tuned fuzzy logic PD

controller, with rules base consisting of 49 elements,

a set of training data was created. It consists of

525 {∆eN , eN , un} triplets representing control sys-

tem input-output signal values for the square wave

reference r. The fuzzy modelling algorithms were

performed on a part of this set – 105 points sampled

at regular intervals. Then the resulting models were

evaluated with the same reference signal. The test

was conducted for introduced KDE-based clustering

technique (with default settings), subtractive cluster-

ing and ANFIS. For both referenced methods two

configurations with approximately the same number

of rules were under consideration. Results obtained

during methods’ experimental evaluation, taking into

account RMSE, settling time ts,5% and overshoot OV ,

are presented in Tab. 3. The response characteristics of

synthesised fuzzy logic controllers are shown on Fig.

1.

Table 3. Performance of methods for fuzzy PD

controller rules base reduction.

FPDC Rules RMSE ts,5%[s] OV[%]
Initial 49 0.371 7.168 0.0

Subtractive
3 0.134 8.000 0.0
9 0.137 9.204 0.0

ANFIS
4 0.121 7.205 10.1
9 0.147 7.000 36.0

KDE-based 5 0.114 5.924 7.7
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Figure 1. Comparison of selected fuzzy logic

controllers’ time responses.

Reducing initial complex structure of fuzzy PD

controller brings positive effects in all considered ex-

amples. Reduced controllers offer smaller root mean

square modelling error, quicker settling time, with the

application of compact set of fuzzy rules. Here, con-

sidering obtained results, investigated KDE clustering

technique was found to be superior - it offers the

smallest RMSE, the quickest settling time (with a little

overshoot though) and a small, 5 fuzzy rules base. It

is worth to mention that the same encouraging remark

can be made for the outcome of experiments with fuzzy

PI controllers.

4. Conclusion and directions for further

work

The aim of this paper was to present a novel ap-

proach to fuzzy rules synthesis via cluster analysis. The

concept is based on the nonparametric kernel density

estimation. The procedure consists of two phases:

points relocation and their assignment into appropriate

clusters. The method under investigation allows to

determine a set of rule prototypes, without arbitrary

assumption concerning their number and also a need to

select any user-defined parameters. Moreover, the high

computational burden of calculations needed can be

easily and effectively reduced, with parallel processing,

as shown in paper [19].

The proposed method was tested on various fuzzy

modelling cases and was shown to achieve similar

or even better level of performance as other popular

modelling techniques. Further research in the subject

could concern the customisation of the rule construc-

tion process (e.g. by automatic preselection of the

generalisation factor ra) to the specific features of the

kernel density estimation.
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