
Reduction of Dimension and Size of Data Set
by Parallel Fast Simulated Annealing

Piotr Kulczycki and Szymon Łukasik

Abstract A universal method of dimension and sample size reduction, designed
for exploratory data analysis procedures, constitutes the subject of this paper. The
dimension is reduced by applying linear transformation, with the requirement that it
has the least possible influence on the respective locations of sample elements. For
this purpose an original version of the heuristic Parallel Fast Simulated Annealing
methodwas used. In addition, those elements which change the location significantly
as a result of the transformation, may be eliminated or assigned smaller weights
for further analysis. As well as reducing the sample size, this also improves the
quality of the applied methodology of knowledge extraction. Experimental research
confirmed the usefulness of the procedure worked out in a broad range of problems of
exploratory data analysis such as clustering, classification, identification of outliers
and others.
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1 Introduction

Contemporary data analysis avails of a broad and varied methodology, based on
both traditional and modern—often specialized—statistical procedures, currently
ever more supported by the significant possibilities of computational intelligence.
Apart from the classical methods—fuzzy logic and neural networks, metaheuristics
such as genetic algorithms, simulated annealing, particle swarm optimization, and
ants algorithms [1] are also being applied here more widely. The proper combination
and exploitation of the advantages of these techniques allows in practice for the
effective solution to fundamental problems in knowledge engineering, particularly
those connected with exploratory data analysis.

More and more frequently the process of knowledge acquisition is realized using
multidimensional data sets of large size. This stems from the dynamic growth in the
amount of information collected in database systems requiring permanent processing.
The extraction of knowledge from extensive data sets is a highly complex task. Here
difficulties are mainly related to limits in efficiency of computer systems—for large-
sized samples—and problems exclusively connected with the analysis of multidi-
mensional data. The latter arise mostly from a number of phenomena occurring in
data sets of this type, known in literature as “the curse of multidimensionality”.
Above all, this includes the exponential growth in sample size necessary to achieve
appropriate effectiveness of data analysis methods with increasing dimension (the
empty space phenomenon), as well as the vanishing difference between near and far
points (norm concentration) using standard Minkowski distances [2].

As previously mentioned, the data set size can be reduced mainly to speed up or
make at all possible calculations. In the classical approach, this is realized mostly
with samplingmethods or advanced data condensation techniques. Useful algorithms
have also been worked out allowing the problem to be simplified by decreasing its
dimensionality. Therefore, let X denote a data matrix of dimension m × n:

X = [x1 |x2| · · · |xm ]T (1)

with particular m rows representing the realizations of an n-dimensional random
variable.1 The aim of reducing a dimension is to transform the data matrix in order
to obtain its new representation of the dimension m × N , where N is considerably—
from the point of view of conditioning of a problem in question—smaller than n.
This reduction can be achieved in two ways, either by choosing N most significant
coordinates/features (feature selection) or through the construction of a reduced set,
based on initial features (feature extraction) [3]. The latter can be treated as more
general—the selection is a particularly simplecase of extraction. Noteworthy among

1 Particular coordinates of a randomvariable of course constitute one-dimensional randomvariables
and if the probabilistic aspects are not the subject of research, then in data analysis these variables
are given the terms “feature” or “attribute”.
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extraction procedures are linear methods, where the resulting data set Y is obtained
through the linear transformation of initial data set (1), therefore using the formula

Y = X · A, (2)

where A is a matrix of dimension n × N , as well as nonlinear methods for which the
transformation can be described by the nonlinear function g : Rn → R

N . This group
also contains the methods for which such a functional dependence, expressed explic-
itly, does not exist. Comparisons of effectiveness of extraction procedures carried out
in subject literature show that nonlinear methods, despite having more general math-
ematical apparatus and higher efficiency in the case of artificially generated specific
sets of data, for real samples frequently achieve significantly worse results [4].

The goal of this paper is to develop a universal method of reducing dimension
and size of a sample designed for use in data exploration procedures. The reduction
of the dimension will be implemented using a linear transformation on the condi-
tion that it affects as little as possible the mutual positions of original and resulting
samples’ elements. For this aim a novel version of the heuristic method of parallel
fast simulated annealing will be researched. Moreover, those elements of a random
sample which significantly change their position following transformation will be
eliminated or assigned less weight for the purposes of further analysis. This con-
cept achieves an improvement in quality of knowledge discovery and—possibly—a
reduction in sample size. The effectiveness of the presented method will be verified
for fundamental procedures in exploratory data analysis: clustering, classification
and detection of atypical elements (outliers).

2 Preliminaries

2.1 Reduction in Dimension and Sample Size

Thedimension canbe reduced inmanyways.Correctly sorting theprocedures applied
here requires, therefore, a wide range of criteria to be taken into account. Firstly the
aforementioned systematic for linear and nonlinear methods is associated with char-
acter of dependence between initial and reduced data sets. Most important of these,
a reference linear procedure for dimension reduction even, is the Principal Com-
ponent Analysis (PCA). Among nonlinear methods the most often mentioned is
Multidimensional Scaling (MDS). Reduction procedures are often considered with
respect to facility of description of mapping between initial and reduced data sets.
This can be defined as explicite (which allows to generalize the reduction procedure
on points not belonging to initial data set), as well as given only implicite, i.e. through
reduced representation of elements of an initial data set. The type of method chosen
has particular significance in the cases of data analysis tasks, where a continuous
influx of new information is present—in this form of problem, the reduction meth-
ods belonging to the first of the above groups are preferred. The third division of
transformation procedures is related to their level of relationship with the data
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analysis algorithms used in the next step. It is worth noting here universal techniques
which, through analogy tomachine learningmethods, can be termed as unsupervised.
These work autonomously, without using results of exploration procedures [5]. The
second category concerns algorithms dedicated to particular techniques in data analy-
sis, in particular considering class labels. Here are often used statistical methods [6]
as well as heuristic procedures of optimization, e.g. evolutionary algorithms [7].

A reduction in data set size can be realizedwith awide range of sampling or group-
ing methods. The former most often uses random procedures or stratified sampling
[8]. The latter applies either classical clustering techniques or special procedures for
data condensation problems. There exists also a significant number of methods for
reducing size which take into account additional knowledge, for example concerning
whether elements belong to particular classes [9, 10]. Moreover methods dedicated
to particular analytical techniques, for example kernel estimators [11, 12], have been
developed (see e.g. [13]).

The method presented in this paper is based on a concept of dimension reduction
which is linear, explicite defined and of universal purpose. Its closest equivalents
can be seen to be the Principal Component Analysis method (due to its linear and
unsupervised nature), feature selection using evolutionary algorithms [14] and the
projection method with preserved distances [15–17], with respect to the similar qual-
ity criterion.

A natural priority for the dimension reduction procedure is maintaining distances
between particular data sets elements—awide range ofmethods treat this as a quality
indicator. Typical for this group of algorithms is the classicmultidimensional scaling,
also known as principal coordinates analysis. It is a linear method, which creates the
analytical form of the transformation matrix A, minimizing the index

S(A) =
m−1∑

i=1

m∑

j=i+1

(
d2

i j − δi j (A)2
)
, (3)

where di j denotes the distance between the elements xi and x j of the initial data
set, while δi j (A) are respective distances in the reduced data set. A different strategy
is required when searching for a solution with different structural characteristics or
performance indicator, or else a nonlinear relation between initial and reduced data
sets. This type of procedure is termed multidimensional scaling (MDS), mentioned
before.Amodel example of this is nonlinear Sammonmapping,which—thanks to the
application of a simple gradient algorithm—allows to find a reduced representation
of the investigated data set, ensuring minimization of the so-called Sammon stress:

SS(A) = 1
∑m−1

i=1
∑m

j=i+1 di j

m−1∑

i=1

m∑

j=i+1

(di j − δi j (A))2

di j
. (4)

Such a defined criterion enables more homogenous treatment of small and large
distances [18], while the value SS(A) is further normalized to the interval [0,1].
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An alternative index, also considered in the context of MDS is so-called raw stress,
defined by

SR(A) =
m−1∑

i=1

m∑

j=i+1

(
di j − δi j (A)

)2
. (5)

The multidimensional scaling methods are mostly nonlinear procedures. However,
the task was undertaken to formulate the problem of minimization of indexes (4) and
(5) with assumed linear form of transformation. The first example of this technique
is the algorithm for finding linear projection described in the paper [17]. Here an
iterative method of greatest descent is applied, which gives in consequence better
results than PCA in the sense of index (4). A similar procedure was investigated for
function (5), with the additional possibility to successively supplement a data set
[16]. In both cases the applied approach did not account for the multimodality of
the stress function. To avoid becoming trapped in a local minimum one can use the
appropriate heuristic optimization strategy. In particular, for minimization of index
(4), the paper [14] uses the evolutionary algorithm. The solution for this investigation
is, however, only to choose the reduced features set. Amore effective approach seems
to be the concept of their extraction—being more general, it will be the subject of
investigation in this paper.

In the construction of the algorithmpresented here, an auxiliary role is playedby an
unsupervised technique of feature selection using to this aim an appropriate measure
of similarity—index of maximal compression of information [19]. It is based on the
concept of dividing features into clusters, with the similarity criterion of features
defined by the aforementioned index. This division is based on the algorithm of
k-nearest neighbors, where it is recommended that k ∼= n − N . The number of
clusters achieved then approaches N , although it is not strictly fixed, but in a more
natural manner is adapted to a real data structure.

Another aspect of the procedure presented here is a reduction in size of sample (1).
Conceptually, the closest technique is the condensation method [20]. It is unsuper-
vised and to establish the importance of elements takes into account their respective
distances. In this case the algorithm of k-nearest neighbors is also applied, where the
similarity measure between sample elements is Euclidean distance. Within this algo-
rithm, in the data set are iteratively found prototype points, or points for which the
distance r to the kth nearest neighbor is the smallest. With every iteration, elements
closer than 2r from the nearest prototype point, are eliminated.

2.2 Simulated Annealing Algorithm

Simulated annealing (SA) is a heuristic optimization algorithm, based on the iter-
ative technique of local search with appropriate criterion for accepting solutions.
This allows to establish a valid solution for every iteration, mostly using the quality
index value for the previous and current iteration, and variable parameter called the
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annealing temperature, which decreases in time. In this way it becomes possible to
accept a valid solution worse than the previous, thereby reducing the danger of the
algorithm getting stuck at local minimums. In addition it is assumed that the proba-
bility of accepting a worse solution should decrease over time. All of the above traits
contain the so-called Metropolis rule, which is most often applied as acceptance
criterion in simulated annealing algorithms.

Let therefore Z ⊂ R
t denote the set of admissible solutions to a certain opti-

mization problem, while the function h : Z → R is its quality index, hereinafter
referred to as cost. Furthermore, let k = 0, 1, . . . mean the number of iteration,
whereas T (k) ∈ R, z(k) ∈ Z , c(k) = h (z(k)) , z0(k) ∈ Z , c0(k) = h (z0(k))—
respectively—temperature and solution valid for the iteration k and its cost, and also
the best solution found to date and its cost. Under the above assumptions the basic
variant of the SA algorithm can be described thus:

procedure Simulated_annealing
begin

Generate(T(1),z(0))
c(0)= Evaluate_quality(z(0))
z0(0)= z(0)
c0(0)= c(0)
k = 1
repeat
z(k)= Generate_neighbor(z(k-1))
c(k)= Evaluate _quality(z(k))
�c = c(k) – c(k-1)
z(k)= Metropolis_rule(�c,z(k),z(k-1),T(k))
if c(k) < c0(k-1)

z0(k)= z(k)
c0(k)= c(k)

else
z0(k)= z0(k-1)
c0(k)= c0(k-1)

Calculate(T(k+1))
stop_condition = Check_stop_condition()
k=k+1

until stop_condition == FALSE
return kstop=k-1, z0(kstop), c0(kstop)
end

where the procedure for the Metropolis rule is realized by

procedure Metropolis_rule(�c,z(k),z(k-1),T(k))
if �c < 0

return z(k)
else

if Random_number_from_(0,1) < exp(-�c/T(k))
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return z(k)
else

return z(k-1)
end

The SA algorithm requires in the general case the assumption of the appropriate
initial temperature value, formula of its changes associated with an accepted method
of generating a neighboring solution, as well as a condition for ending the procedure.
However in particular applications one should also define other functional elements,
such as method of generating the initial solution and form of the quality index. The
first group of tasks will now be discussed, while the second—as specific for the
application of the SA algorithm investigated here—will be the subject of detailed
analysis in Sect. 3.

Numerous fundamental and applicational works have resulted in creation of many
variants of the algorithm described here. Their main difference is the scheme for
temperature changes and method for obtaining a neighboring solution. The standard
approach is the classical simulated annealing algorithm, also known as theBoltzmann
annealing algorithm (BA). This assumes an iterative change in temperature accord-
ing to a logarithmic schedule and generation of a subsequent solution by adding to
the current one the value of step �Z ∈ R

t , which is the realization of t-dimensional
pseudorandom vector with normal distribution. The BA algorithm—although effec-
tive in the general case—has a large probability of acceptance of worse solutions,
even in the final phase of the search process. This allows for the effective escape
from local minimums of a cost function and guarantees asymptotic convergence to
a global one [21], while also ensuring the procedure represents—in some sense—a
random search of the space of admissible solutions. For the SA algorithm to be more
deterministic in character, and at the same time keeping convergence to the optimal
solution, the following scheme for temperature change can be applied:

T (k + 1) = T (1)

k + 1
, (6)

together with the generation of neighboring solution using a Cauchy distribution

g(�z) = T (k)
(
�z2 + T (k)2

)(t+1)/2
. (7)

The procedure defined by the above elements is called Fast Simulated Annealing
(FSA) [22]. It will be a base—in the framework of this paper—for the dimension
reduction algorithm.

The problem of practical implementation of FSA is the effective generation of
random numbers with multidimensional Cauchy distribution. The simplest solution
is the application for each dimension of the vector, of a one-dimensional number gen-
erator with the same distribution. This strategy was used in the Very Fast Simulated
Annealing algorithm (VFSA), expanded later within the framework of a complex
procedure of Adaptive Simulated Annealing [23]. Such a concept has, however, a
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fundamental flaw: the step vectors generated here concentrate near the axes of the
coordinate system.An alternative could be to use amultidimensional generator based
on the transformation of the Cartesian coordinate system to a spherical one. It is sug-
gested here that the step vector�z = [�z1,�z2, . . . ,�zt ] be obtained by generating
first the radius r of the hypersphere, using themethod of inverting the Cauchy distrib-
ution function described with the spherical coordinates, and then selecting the appro-
priate point on the t-dimensional hypersphere. The second phase is realized by ran-
domly generating the vector u = [u1, u2, . . . , ut ]T with coordinates originating from
the one-dimensional normal distribution ui ∼ N (0, 1), and then the step vector �z:

�zi = r
ui

|u| , i = 1, 2, . . . , t. (8)

The presented procedure ensure a symmetric andmultidirectional generation scheme,
with heavy tails of distribution, which in consequence causes effective exploration
of a solution space [24]. Taking the above into account, it has been applied in the
algorithm investigated in this paper.

Establishing an initial temperature is vital for the correct functioning of the
simulated annealing algorithm. It implies the probability of acceptance of a worse
solution at subsequent stages of the search in the solutions space. Subject literature
tends to suggest choosing the initial temperature so that the probability of acceptance
of aworse solution at the first iteration, denoted hereinafter as P(1), is relatively large.
These recommendations are not absolute, however, and different proposals can be
found in literature, for example close to 1.0 [25], around 0.8 [26] or even only 0.5
[27]. Often in practical applications of SA algorithms, the temperature value is fixed
during numerical experiments [28]. An alternative is to choose a temperature accord-
ing to a calculational criterion which has the goal of obtaining T (1) the value on the
basis of a set of pilot iterations, consisting of generating the neighbor solution z(1)
so that the assumed P(1) value is ensured. For this purpose one can—analyzing the
mean difference in cost between the solutions z(1) and z(0), denoted as �c in the
following—calculate the temperature T (1) value by substituting�c to the right-side
of the inequality in theMetropolis rule defining the probability of the worse solutions
acceptance:

P (1) = e
− �c

T (1) , (9)

thus in consequence

T (1) = − �c

In P(1)
. (10)

The mean difference in cost can be replaced with e.g. the standard deviation of the
cost function value, marked as σ c, also estimated on the basis of the set of pilot
iterations [29]. A problem which appears in the case of SA algorithms dedicated
to minimizing functions with real arguments (including the aforementioned BA,
FSA, VFSA and ASA), is the dependence of the strategy for generating a neighbor
solution on temperature. Therefore, both the standard deviation σ c and the mean �c
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are directly dependent on it. The application of formula (10) is not possible here and
in the case of these algorithms, the initial temperature value is usually arbitrary. This
paper proposes a different strategy based on the generation of a set of pilot iterations,
allowing the value T (1) to be obtained on the assumption of any value of initial
probability of worse solutions acceptance.

As equally important as the choice of initial temperature is the determination of
the iteration at which the algorithm should be terminated. The simplest—although
not flexible and often requiring too detailed knowledge of the investigated task—
stop criterion is reaching a previously assumed number of iterations or a satisfactory
cost function value. An alternative could be to finish the algorithm when following
a certain number of iterations, the best obtained solution is not improved, or the use
of an appropriate statistical method based on the analysis of cost function values
as they are obtained. The last concept is universal and—desirable among heuristic
algorithms stop criterions—related to the expected result of their works. This usually
consists of calculating the estimator of expected value of the global minimum ĉmin

and finishing the algorithm in the iteration k, when the difference between it and the
discovered smallest value c0(k) is not greater than the assumed positive ε, so if

|c0 (k) − ĉmin |≤ ε. (11)

One the most recent techniques using this type of strategy is the algorithm proposed
in the work [30]. In order to calculate the value cmin an estimator is applied here
based on order statistics [31]. This algorithm constitutes a universal and effective
tool for a wide range of stochastic optimization techniques. Such a method, used as
part of the FSA procedure, will now be described.

Let therefore {c0(k), c1(k), c2(k), . . . , cr (k)} denote the ordered non-decreasing
set of r lowest cost function values, obtained during k iterations of the algo-
rithm. In the case of an algorithm convergent on a global minimum, the condition
limk→∞c j (k) = cmin is fulfilled for every j ∈ N , while the sequences c j (k) can be
applied to construct the aforementioned estimator value cmin . This estimator makes
use of the assumption of asymptotic convergence of order statistic distribution to the
Weibull distribution, and in the iteration k takes the general form:

ĉmin (k) = c0 (k) −
2t
β

− 1

r
(cr (k) − c0 (k)) . (12)

The parameter β occurring above is termed a homogenous coefficient of the cost
function h around its minimum. On additional assumptions, in calculational practice
one can take β = 2 [32]. The confidence interval for the cost function minimum, at
the assumed significance level δ ∈ (0, 1), is of the form

[
c0 (k) −

(
1 − (1 − δ)1/r )β/t

1 − (
1 − (1 − δ)1/r )β/t (cr (k) − c0 (k)) , c0 (k)

]
. (13)
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The paper [30] suggests that point estimator (12) can be replaced by confidence
interval (13) with the algorithm being stopped when the confidence interval width
is less than the aforementioned, assumed value ε. Such an idea, modified for the
specific problem under investigation, will be applied here.

The simulated annealing procedure can be easily parallelized,whether for required
calculations, or in the scheme of establishing subsequent solutions. While paralleliz-
ing the SA algorithm is not a new idea, and was already investigated a few years
after its creation [33], it needs to be adapted for particular applicational tasks [34]. At
present the suitability of the Parallel Simulated Annealing (PSA) algorithm continu-
ously increases with the common availability of multicore systems. In the algorithm
worked out in this paper, a variant will be taken with parallel generation of neighbor
solutions, assuming that the number of SA threads equals the number of available
processing units.

3 Procedure for Reducing Dimension and Sample Size

The algorithm investigated in this paper consists of two functional components:
a procedure for reducing the dimension and a way of allowing sample size to be
decreased. They are implemented sequentially, with the second dependent on the
results of the first. The reduction of sample size is optional here.

3.1 Procedure for Dimension Reduction

The aim of the algorithm under investigation is a decrease in the dimensionality of the
data set elements, represented by thematrix X with the form specified by formula (1),
so of the dimension m × n, where m means the data set size, and n—the dimension
of its elements. In consequence the reduced form of this data set is represented by the
matrix Y of the dimension m × n, while N denotes the assumed reduced dimension
of elements, appropriately less than n. The procedure for reducing the dimension is
based on linear transformation (2), with the matrix A given in form

A =

⎡

⎢⎢⎢⎣

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
...

an1 an2 · · · anN

⎤

⎥⎥⎥⎦ , (14)

although for the purposes of notation used in the simulated annealing algorithm, its
elements are denoted as the row vector

[a11, a12, . . . , a1N , a21, a22, . . . , a2N , . . . , an1, an2, . . . , anN ] , (15)
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which represents the current solution z(k) ∈ R
n·N in any iteration k. In order to

generate neighbor solutions, a strategy was used based on the multidimensional gen-
erator of the Cauchy distribution (formulas (7) and (8)). The quality of the obtained
solution can be evaluated with the application of the cost function h, which is the
function of the raw stress SR given by dependence (5), where the matrix Y elements
are defined on the basis of Eq. (2). The alternative possibility of using Sammon stress
(4) for this purpose was also examined.

The developed procedure requires firstly that the basic parameters are specified:
the dimension of the reduced space N , a coefficient defining directly the maximum
allowed width of the confidence interval εw for the stop criterion based on the order
statistics, the number of processing threads of the FSA procedure pthread , initial
scaling coefficient (length of step) for the multidimensional Cauchy generator Tscale,
as well as the probability of acceptance of a worse solution P(1) in the first iteration
of the FSA algorithm.

Starting the algorithm requires moreover the generation of the initial solution
z(0). To this aim the feature selection procedure of [19], described in the previous
section, was realized. Here k = n − N should be assumed, which in consequence
usually results in obtaining approximately N clusters. The aforementioned procedure
described leads to getting the auxiliary vector b ∈ R

n , the particular coordinates of
which characterize the number of cluster, to which the coordinate from the original
space was mapped, as well as the vector br ∈ R

n of binary values br (i) ∈ {0, 1} for
i = 1, 2, . . . , n, defining whether a given feature was chosen as a representative of
the cluster to which it belongs, in which case br (i) = 1, or not—then br (i) = 0. The
auxiliary vectors b and br can be used in the considered algorithm for generating the
initial solution in two ways:

1. Each of N features of the initial solution is a linear combination of features
mapped to one of N clusters—to define the form of the matrix A one can use

{
ai j = 1, if b (i) = j
ai j = 0, if b (i) �= j

for i = 1, 2, . . . , n and j = 1, 2, . . . , N . (16)

2. Each of N features of the initial solution is given as representative for one of N
clusters—the form of the matrix A is then defined as

{
ai j = 1, if br (i) = 1 and b (i) = j
ai j = 0, if br (i) = 0

for i = 1, 2, . . . , n and j = 1, 2, . . . , N .

(17)

The possibility of applying both the aboveways of generating an initial solution—the
first called a linear combination of features and the second, referred to as features
selection—is a subject of detailed experimental analysis concerning dimensional
reduction, described in Sect. 4.

After generating the initial solution, in order to carry out the simulated annealing
algorithm, the temperature T (1) should be fixed in the first iteration. To this aim the
technique presented in the previous section can be followed, allowing at the start to
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obtain the assumed initial value of the probability of worse solution acceptance P(1).
In the case of the algorithm for generating neighbor solutions, it is not recommended
to use the relation resulting from equality (9). As mentioned in the previous section,
this is implied by the dependence of a formula for generating a neighbor solution
on the annealing temperature. In order to avoid this inconvenience, an additional
coefficient Tscale was introduced, being the parameter of the Cauchy distribution in
the first iteration of the FSA algorithm (also known as an initial step length), and
furthermore the temperature occurring in the generating distribution was scaled. The
coefficient Tscale is thus used as a parameter of the random numbers generator, with
the aim of calculating a set of pilot iterations (the size of this set is assumed to be
100). These iterations consist of the generation of an appropriate number of transi-
tions from z(0) worse in the sense of cost function used, to the neighbor solution
z(1), and the establishment of the mean value of the cost difference�c between z(1)
and z(0). This value is inserted to formula (10), through which the initial temperature
can be obtained. Moreover, in order to find the assumed shape of the generated dis-
tribution, in the first iteration of the FSA algorithm, the additional scaling coefficient
is calculated:

ctemp = − �c

In P(1)Tscale
. (18)

In consequence, in the first iteration of the actual algorithm, in order to generate a
neighbor solution, the scaled temperature T (1)/ctemp (therefore Tscale) is used, and
for the Metropolis rule—just the value T (1). Similar scaling takes place during the
generation of neighbor solutions in each consecutive iteration of the FSA algorithm.
Thanks to this kind of operation it becomes possible to fix the initial probability
of acceptance of a worse solution, which determined by the coefficient P(1), while
retaining the additional possibility of establishing—by assuming the value Tscale—
the parameter of initial spread of values obtained from a pseudorandom numbers
generator.

All iterations of the FSA algorithm have been parallelized using a strategy with
parallel generation of neighbor solutions. So each of pthread threads creates a solution
neighboring the one established in the previous iteration z(k−1). This occurswith the
application of a random generator withmultidimensional Cauchy distribution. For all
threads, the annealing temperature is identical and equals T (k)/ctemp. Furthermore,
every thread realizes the procedure for the Metropolis rule, accepting or rejecting its
own obtained neighbor solutions.

The next two steps of the algorithm are performed in sequence. So, first the current
solution is fixed for the SA algorithm. The procedure for this is to choose as a current
solution either the best from those better than that found in the previous iteration
obtained by different threads, or—if such a solution does not exist—random selection
of one of the worse solutions. Calculated thus, the current solution, together with the
temperature updated according to formula (6), is also used in the next iteration of
the FSA algorithm as the current solution. This kind of strategy can be classified as
a method of parallel processing based on speculative decomposition.
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The last step performed as part of single iteration is verifying the criterion for
stopping the SAprocedure. To this aim the confidence interval for theminimumvalue
of the cost function, given by formula (13), is calculated. The order statistics used for
interval estimation have the order r assumed as 20, in accordance with the proposals
of the paper [30]. As a significance level δ for the confidence interval defined by
formula (13), a typical value 0.99 [35] is assumed. The width of the confidence
interval is compared with the threshold value ε calculated at every iteration with

ε = 10−εw c0 (k) . (19)

Finally, the simulated annealing procedure is terminated if

(
1 − (

1 − δ1/r
)β/t

)

1 −
(
1 − (

1 − δ1/r
)β/t

) (cr (k) − c0 (k)) > ε, (20)

with notations introduced at the end of Sect. 2. Finding the threshold value ε based
on formula (20) allows the adaptation of a such defined criterion to a structure of
a specific data set under investigation. The sensitivity of the above procedure can
be set by assuming the value of the exponent εw ∈ N, one of the arbitrarily fixed
parameters of the procedure worked out in this paper.

It is worth noting that the nature of the method presented here for dimension
reduction enables establishment of the “contribution” which particular elements of
the data set Y make to the final value c0

(
kstop

)
. This fact will be used in the procedure

for reducing the sample size, which will be presented in Sect. 3.2.

3.2 Procedure for Sample Size Reduction

In the case of the dimension reduction method presented above, some sample
elements may be subject to an undesired shift with respect to the others and, as
a result, may noticeably worsen the results of an exploratory data analysis proce-
dure in the reduced space RN . A measure of the location deformation of the single
sample element xi compared to the others, resulting from transformation (2), is the
corresponding stress value c0(kstop) calculated for this point (called stress per point)
[36]. In the case of raw stress it is given by

c0(kstop)i = SR(A)i =
m∑

j=1
j �=i

(di j − δi j (A))2, (21)

whereas for the Sammon stress it takes the form
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c0(kstop)i = Ss(A)i = 1
∑m−1

i=1
∑m

j=i+1 di j

m∑

j=i
j �=i

di j − δi j (A))2

di j
. (22)

It is worth noticing that in both cases these values are nonzero, except for the case—
unattainable in practice—of “perfect” matching of respective distances of elements
in original and reduced spaces. The values c0(kstop)i for particular elements can be
used to construct a set of weights, defining the adequacy of their location in a reduced
space.

Let thereforewi represent nonnegativeweightmappedwith the element xi . Taking
the above into account, it is calculated according to the following formula:

wi =
m 1

c0(kstop)i∑m
i=1

1
c0(kstop)i

. (23)

The normalization which occurs in the above dependence guarantees the condition

m =
m∑

i=1

wi . (24)

The weights in this form contain information as to the degree to which a given
sample element changed its relative location compared to the rest, where the larger
the weight, the more relatively adequate its location, and its significance should be
greater for procedures of exploratory data analysis carried out in a space of reduced
dimension.

The weights’ values which are calculated on the basis of the above formulas can
be used for further procedures of data analysis. They also allow the followingmethod
of reducing sample size. Thus, from the reduced data set Y one can remove those
mel elements, for which their respective weights fulfill the condition wi < W with
assumed W > 0. Intuitively W = 1 is justified—taking into account formula (24),
this results in the elimination of elements corresponding to the values wi less than
the mean.

In conclusion, conjoining the methods from Sects. 3.1 and 3.2 enables a data set
with reduced dimension aswell as size to be obtained, with the degree of compression
implied by the parameters N and W values.

3.3 Comments and Suggestions

In the case of the procedure for reducing dimension and sample size presented here,
efforts were made to limit the number of parameters, the arbitrary selection of which
is always a significant practical problem for heuristic algorithms. At the same time,
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conditioning of data analysis tasks, in which the procedure investigated here will be
applied, means that—from a practical point of view—it is useful to propose specific
values of those parameterswith an analysis of the influence of their potential changes.

One of the most important arbitrarily assumed parameters is the reduced space
dimension N . It can be fixed initially using one of themethods for estimating a hidden
dimension [37], or by taking a value resulting from other requirements, for example
N = 2 or 3 to enable a suitable visualization of the investigated data set. It is worth
remembering that the procedure applied earlier for generating an initial solution
with the fixed parameter k = n − N , creates a solution which does not always have
a dimensionality identical to the assumed (as mentioned in Sect. 3.2). If a strictly
defined dimension of the reduced data set is required, one should adjust the parameter
k by repeating the feature selection algorithm with its correctly modified value, or
use the initial solution, generated randomly, of assumed dimension of reduced space.

It is also worthmentioning the problem of computational complexity of the proce-
dure worked out here, in particular regarding calculation of the cost function value.
In practice, the calculational time for the PSA algorithm increases exponentially
with an increase in sample size. So, despite the heuristic algorithm being the only
method available in practice to minimize the stress function SS or SR for data sets of
large dimensionality and size, its applicationmust, however, be limited to those cases
which are in fact feasible. Therefore, although the number of simulated annealing
treads can be fixed at will, it should take the available number of processing units
into account. This allows efficient parallel calculation of a cost function value by
particular threads.

It should also be noted that the subject algorithm, due to its universal character,
can be applied to a broad range of problems in statistics and data analysis. An
example, from the case of statistical kernel estimators [11, 12], is the introduction
of generalization of the basic definition of the estimator of probability distribution
density to the following form:

f̂ (y) = 1

hn
∑m

i=1 wi

m∑

i=1

wi K

(
y − yi

h

)
. (25)

Such a concept allows not only a reduction of sample size (for removed elements
wi = 0 is assumed), but also alternatively—an improvement in quality of estimation
in the reduced space without eliminating any elements from the initial data set. In
the former case care should also be given to normalize the weights after eliminating
parts of elements, to fulfill condition (24).

Weights wi calculated in the above manner can also be introduced to modified
classical methods of data analysis, such as a weighted k-means algorithm [39], or
a weighted technique of k-nearest neighbors [40]. In the first case, the weights are
activated in the procedure for determining centers of clusters. The location of the
center of the cluster Ci , denoted by si = [si1, si2, . . . , si N ]T, is updated in every
iteration if

∑
yl∈Ci

wl �= 0, according to formula
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si j = 1∑
yl∈Ci

wl

∑
yl∈Ci

wl yl j for j = 1, 2, ..., N . (26)

In the k-nearest neighbors procedure however, each distance from neighbors of any
element from the learning set is scaled using the appropriate weight.

4 Summary and Final Remarks

The subject of this paper was a complete algorithm for reducing dimension and
sample size, ready to use in a wide range of exploratory data analysis problems.
It constitutes a universal, unsupervised linear transformation of a features space,
with the aim of best maintaining distances between sample elements, additionally
supplemented by a reduction in significance of those elements whose locations in
relation to the rest have changed considerably. The foundation for this algorithm is
an innovative version of the parallel fast simulated annealing procedure, with stop
criterion based on order statistics, automatic generation of initial temperature and
a multidimensional generator of pseudorandom numbers with Cauchy distribution.
The sample sizewas reduced as a result of calculatingweights for particular elements,
with the possibility of continuous adjustment of this procedure’s intensity, through
establishing an appropriate—for an investigated problem—value for the compression
coefficient.

The presented methodology underwent detailed numerical testing. The basic
research was carried out on the functionality of the method worked out, in particular
the sensitivity to its assumed version and parameters. In general one can note that
the proposed algorithm is not particularly sensitive to the choice of these parameters,
which may be said to be, in practice, its valuable property. Further testing compared
results with selected reference methods, especially the classic PCA procedure and
the aforementioned selection of features by evolutionary algorithms, in the range
of reduction of sample size, joined with an algorithm for data compression as pre-
sented in the paper [20]. In general, the results achieved with the application of the
procedures investigated in this paper were frequently better, often significantly, than
the reference methods mentioned before.

It should be also noted that the particular functional components of the procedure
presented here can be applied in other tasks of information processing. Thus, the
parallel fast simulated annealing algorithmmay be used successfully in a wide range
of optimization problems, thanks to its universal structure and relatively intuitive
selection of arbitrarily assumed parameters. What is more, the proposed procedure
for reducing the sample size can equally be applied togetherwith other, also nonlinear,
strategies for dimension reduction.

Finally, it is worth stressing that, despite the calculational complexity of the pro-
posed algorithm, its execution—thanks to the possibility of creating highly efficient
parallel implementation—is not very time-consuming. Even for the most complex
of the tested data sets, it took only a few minutes while, thanks to the application of
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an adaptive stop criterion, this time is fitted to the difficulty of the problem under
analysis, thus eliminating the need to introduce arbitrary assumptions. And lastly,
due to the use of linear transformation, which is easy to generalize, and the simple
idea of a set of weights, it is possible to use the investigated method effectively in a
wide range of contemporary data analysis problems, from the areas of engineering,
medicine, economics and social sciences, to name a few.

A detailed description of the methodology presented here can be found in the
work [40] as well as in the paper [41] which will appear soon.
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