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Abstract. The paper deals with the classification task of interval information,
when processed data is gradually displaced, i.e. they originate from a nonsta-
tionary environment. The procedure worked out is characterized by its many
practical properties: ensuring the minimum expected value of misclassifications;
allowing influence on the probability of errors in classification to particular
classes; reducing patterns by eliminating elements with insignificant or negative
influence on the results’ accuracy, enabling an unlimited number of patterns and
their shapes. The appropriate modifications of the classifier not only lead to an
increase in the effectiveness of the procedure, but above all adapt to data drift.
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1 Introduction

In most of the methods used today for classification [1], one assumes invariability in
time of data stream under processing. However, more and more often, in particular for
those models in which new – with the most current being the most valuable – elements
are continuously added to patterns, this assumption is successfully ignored [5].

The presented paper proposes the procedure for classification of information given
in the form of an interval for data which may have drifted – undergoing successive
changes. The idea for a solution stems from the sensitivity method used in neural
networks, together with nonparametric kernel estimators. Namely, particular elements
of patterns receive weights proportional to their significance for correct results. Ele-
ments of the smallest weights are eliminated. In order to account for the data drift, those
elements whose weights are currently small but increase successively are kept.

This paper is a novel elaboration of research presented in the paper [6] for the interval
stationary case, and in the publication [7] for the deterministic nonstationary case.

2 Preliminaries

2.1 Statistical Kernel Estimators

Consider an n-dimensional random variable, with a distribution given by the density f .
Its kernel estimator f̂ : Rn ! ½0;1Þ is calculated on the basis of the random sample
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x1; x2; . . . ; xm; ð1Þ

and defined as

f̂ ðxÞ ¼ 1
mhn

Xm
i¼1

K
x� xi
h

� �
; ð2Þ

where the positive coefficient h is known as a smoothing parameter, while the mea-
surable function K : Rn ! ½0;1Þ symmetrical with respect to zero, having at this point
a weak global maximum and fulfilling the condition

R
R

n KðxÞ dx ¼ 1 is termed a
kernel. For details see the monographs [4, 8, 10].

In this paper the one-dimensional Cauchy kernel is applied, for the multidimen-
sional case generalized by the product kernel concept [4 – Sect. 3.1.3, 10 – Sects. 2.7
and 4.5]. For calculation of the smoothing parameter, the simplified method assuming
normal distribution [4 – Sect. 3.1.5, 10 – Sect. 3.2.1] can be used, thanks to the positive
influence of this parameter correction procedure applied in the following. For general
improvement of the kernel estimator quality, modification of the smoothing parameter
[4 – Sect. 3.1.6, 8 – Sect. 5.3.1] will be used, with the intensity c� 0. As its initial
standard value c ¼ 0:5 can be assumed.

2.2 Bayes Classification of Interval Information

Consider J sets

fx01 x02; . . .; x0m1
g; fx001; x002 ; . . .; x00m2

g; . . . ; fx001 � � �0 ; x002 � � �0 ; . . .; x00mJ
� � �0g ð3Þ

representing assumed classes. The sizes m1, m2; . . . ;mJ should be proportional to the
“contribution” of particular classes in the population. Because of practical aspects, one
can assume that the elements from sets (3) belong to the space R

n. Representative
elements, consisting of patterns, are characterized by considerable precision and are
either deterministic in nature, or of interval type with length of this interval so small
that it can be identified with its midpoint without any influence on the quality of the
result.

Let now f̂1; f̂2 ; . . . ; f̂J denote kernel estimators of densities, calculated succes-
sively based on sets (3) treated as samples (1), according to the methodology from
Sect. 2.1.

First consider the one-dimensional case ðn ¼ 1Þ. In accordance with the classic
Bayes approach [1], ensuring a minimum of expected value of losses, the tested ele-
ment ½x; x�, with x\�x, should be ranked to the class for which the value

m1

Zx

x

f̂1ðxÞ dx; m2

Zx

x

f̂2ðxÞ dx; . . .; mJ

Zx

x

f̂JðxÞ dx ð4Þ
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is the greatest. The above can be generalized by introducing to expressions (4) the
positive coefficients z1; z2; . . . ; zJ :

z1m1

Zx

x

f̂1ðxÞ dx; z2m2

Zx

x

f̂2ðxÞ dx; . . .; zJmJ

Zx

x

f̂JðxÞ dx: ð5Þ

Taking as standard values z1 ¼ z2 ¼ . . . ¼ zJ ¼ 1, formula (5) brings us to (4). By
appropriately increasing the value zi, a decrease can be achieved in the probability of
erroneously assigning elements of the i-th class to other wrong classes. Thanks to this,
it is possible to favor classes which are in some way noticeable or more heavily
conditioned. For the classification, these are in a natural way classes defined by non-
stationary patterns, it is worth increasing coefficients relating to more varying patterns.
In such case, the initial value 1:25 can be proposed for further research.

In the multidimensional case, i.e. when n[ 1, the tested element is

½x1; x1�
½x2; x2�

..

.

½xn; xn�

2
6664

3
7775 ð6Þ

with xk\xk for k ¼ 1; 2; . . .; n, and criterion (5) takes the following form:

z1m1

Zx

x

f̂1ðxÞ dx; z2m2

Zx

x

f̂2ðxÞ dx; . . .; zJmJ

Zx

x

f̂JðxÞ dx; ð7Þ

where E ¼ ½x1; x1� � ½x2; x2� � . . .� ½xn; xn�.
For the Cauchy kernel proposed here, generalized in the multidimensional case by

the product kernel concept (see Sect. 2.1), the analytical form of quantities occurring in
formulas (4), (5) and (7) are possible to obtain; see the paper [6].

2.3 Sensitivity Analysis for Learning Data – Reducing Pattern Size

When modeling by artificial neural networks, particular components of an input vector
most often are characterized by diverse significance of information. Using a sensitivity
analysis [12], one obtains the parameters �Si describing proportionally the influence of
the particular inputs (i ¼ 1; 2; . . . ;m) on the output value, and then the least significant
inputs can be eliminated.

To apply the above procedure, the definition of the kernel estimator will be gen-
eralized with the introduction of the nonnegative coefficients w1; w2; . . . ; wm, normed
so that

Pm
i¼1 wi ¼ m, and mapped to particular elements of random sample (1). The

basic form of kernel estimator (2) then takes the form
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f̂ ðxÞ ¼ 1
mhn

Xm
i¼1

wiK
x� xi
h

� �
: ð8Þ

The coefficient wi value may be interpreted as indicating the significance (weight) of
the i-th element of the pattern to classification correctness.

For the purpose of calculation the weights wi values, separate neural networks are
built for each investigated class. This network is submitted to a learning process using a
data set comprising of the values of particular kernels for subsequent pattern elements,
while the given output constitutes the value of the kernel estimator calculated for the
pattern element under consideration. After this, the obtained network undergoes sen-
sitivity analysis on learning data. The resulting coefficients �Si describing sensitivity,
constitute the fundament for calculating the values

~wi ¼ 1�
�Si

Pm
j¼1

�Sj

0
BBB@

1
CCCA normed to wi ¼ m

~wi

Pm
i¼1

~wi

: ð9Þ

The shape of the formula defining the parameters ~wi results from the fact that the
network created here is the most sensitive to atypical and redundant elements, which
implies a necessity to map the appropriately smaller values ~wi, and in consequence wi,
to them. Coefficients wi represent the significance of particular elements of the pattern
to accuracy of the classification. Because – thanks to normalization – the mean value of
the coefficients wi equals 1, the pattern set should be relieved of those elements for
which wi\1.

3 Classification Procedure

This section presents the method for classification of interval information with data
drift.

First one should fix the reference sizes of patterns (3), hereinafter denoted by
m�

1; m
�
2; . . .;m

�
J . The patterns of these sizes will be the subject of a basic reduction

procedure, described in Sect. 2.3. The sizes of patterns available at the beginning of the
algorithm must not be smaller than the above referential values. These values can
however be modified during the procedure’s operation, with the natural condition that
their potential growth does not increase the number of elements newly provided for the
patterns. For preliminary research, m�

1 ¼ m�
2 ¼ . . . ¼ m�

J ¼ 25 � 2n can be proposed.
The elements of initial patterns (3) are provided as introductory data. Based on

these – according to Sect. 2.1 – the value of the parameter h is calculated (for the
parameter c initially assumed to be equal 0:5). Next, corrections in the parameters c and
h1, h2; . . . ; hn values are made by introducing nþ 1 multiplicative correcting coeffi-
cients. Denote them as b0 � 0; b1; b2 ; . . . ; bn [ 0, respectively. Their values can be
calculated by a static optimization procedure in the ðnþ 1Þ-dimensional space, where
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the initial conditions at the beginning are the points of a grid, or the previous values in
the following steps, while the performance index is given as the number of misclas-
sifications. To find the minimum a modified Hook-Jeeves algorithm [2] was applied.

The next procedure is the calculation of the parameters wi values mapped to par-
ticular patterns’ elements, separately for each class, as in Sect. 2.3. Following this,
within each class, the values of the parameter wi are sorted, and then the appropriate
m�

1; m
�
2; . . . ;m

�
J elements of the largest values wi are designated to the classification

phase itself. The remaining ones undergo further treatment, which will be presented
later, after Bayes classification has been dealt with.

The reduced patterns separately go through a procedure newly calculating the
values of parameters wi, shown in Sect. 2.3. Next, these patterns’ elements for which
wi � 1 are submitted to further stages of the classification procedure, while those with
wi\1 are sent to the beginning of the algorithm for further processing in the next steps
of the algorithm, after adding new elements of patterns. The final, and also the principal
part of the procedure worked out here is Bayes classification, presented in Sect. 2.2.
Obviously many tested elements of interval type can be subjected to classification
separately. After the procedure has been finished, elements of patterns which have
undergone classification are sent to the beginning of the algorithm, to further avail of
the next steps, following the addition of new elements of patterns.

Now – in reference to the end of the paragraph before the last – it remains to
consider those elements whose values wi were not counted among the m�

1; m
�
2; . . . ;m

�
J

largest for particular patterns. Thus, for each of them the derivative w
0
i is calculated.

A method based on Newton’s interpolation polynomial [9] is suggested here. If the
element is “too new” and does not possess enough earlier values wi, then the gaps
should be filled with zeros, which prevents premature removal. Next for each separate
class, the elements w

0
i are sorted. The respective

qm�
1; qm

�
2; . . . ; qm

�
J ð10Þ

elements of each pattern with the largest derivative values, on the additional require-
ment that the value is positive, go back to the beginning of the algorithm for further
calculations carried out after the addition of new elements. If the number of elements
with positive derivative is less than qm�

1; qm
�
2; . . . ; qm

�
J , then the number of elements

going back may be smaller (including even zero). The remaining elements are finally
eliminated from the procedure. In the above notation q is a positive constant
influencing the proportion of patterns’ elements with little, but successively increasing
meaning. The standard value of the parameter q can be proposed as q ¼ 0:1.

The above procedure is repeated following the addition of new elements. Besides
these elements – as has been mentioned earlier – for particular patterns respectively
m�

1; m
�
2; . . . ;m

�
J elements of the greatest values wi are taken, as well as up to

qm�
1; qm

�
2; . . . ; qm

�
J elements of the greatest derivative w

0
i, so successively increasing

its significance, most often due to the data drift.
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4 Empirical Verification and Comparison

The correct functioning of the concept under investigation have been comprehensively
verified numerically, and also compared with results obtained using procedures based on
the support vector machine concept. Research was carried out for data sets in various
configurations and with different properties, particularly with nonseparated classes,
complex patterns, multimodal and consisting of detached subsets located alternately.

Comparative analysis was submitted to detailed investigations. Due to lack of an
available algorithm dedicated to interval and drifting data, comparisons were made
using two concepts based on the support vector machine method with proper modifi-
cations. The first one, intended for deterministic nonstationary data, presented in the
article [3], was used with respect to midpoints of classified intervals. The second, from
the publication [11], for stationary interval data was applied by removing the oldest
elements from patterns and replacing them with the newest. And so, in relation to the
first algorithm, the number of misclassifications was up to 20 % lower, while with the
second even 50 % (treating no decision – a possibility there – as an unsatisfactory
result). The advantage of the procedure presented in this paper was particularly visible
in the case of steady drift – taking into account the fact that its idea is based on
derivatives of a predictive nature, this observation is completely understandable.

The broader description of particular aspects and the analytical form of formulas
can be found in the papers [Kulczycki and Kowalski, 2011, 2015].
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