
2nd Reading

October 31, 2014 15:50 WSPC/0219-8762 196-IJCM 1550008

International Journal of Computational Methods
Vol. 12, No. 2 (2015) 1550008 (19 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219876215500085

Bayes Classification for Nonstationary Patterns

Piotr Kulczycki∗ and Piotr Andrzej Kowalski†

Polish Academy of Sciences, Systems Research Institute
Centre of Information Technology for Data Analysis Methods

AGH University of Science and Technology
Faculty of Physics and Applied Computer Science

Division for Information Technology and Biometrics
∗kulczycki@ibspan.waw.pl
†pakowal@ibspan.waw.pl

Received 16 November 2013
Accepted 11 September 2014
Published 4 November 2014

The paper’s subject is classification with nonstationary patterns. The attribute space
is finite-dimensional, while its coordinates in particular may be continuous, binary, dis-
crete, categorical in character, or also a combination of these. The number of patterns is
not methodologically limited. Use of the Bayes approach minimizes the expected value
of misclassifications, allowing additionally for an influence in the proportions of prob-
ability of errors when assigning to specific classes. In turn, the statistical kernel esti-
mators method makes the algorithm independent of patterns’ shapes. The investigated
procedure also eliminates elements of patterns which have insignificant or even nega-
tive influence on the results’ accuracy. Appropriate modifications follow the classifier
parameters, which increases the effectiveness of procedure adaptation for nonstationary
patterns. The algorithm concept is based on the sensitivity method, used with artificial
neural networks.

Keywords: Data analysis; classification; pattern nonstationarity; pattern size reduc-
tion; Bayes approach; classifier adaptation; statistical kernel estimators; artificial neural
networks.

1. Introduction

Classification [Duda et al. (2001)] is one of the basic procedures of data analysis
and exploration [Han and Kamber, 2001]. It consists in assigning a tested element
to earlier established (either in a fundamental way or “automatically” by clustering
[Everitt et al. (2011); Kulczycki and Charytanowicz (2010)]) groups, named here
as classes. They are most often represented by patterns, which are sets of elements
typical for particular classes. In most of the methods used today, one assumes the
stationarity (unchanged by time) of these patterns. However, nowadays — as mod-
els have become more accurate, and investigated phenomena have become more
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complex [Kulczycki et al. (2007)] — this assumption is successfully ignored. It par-
ticularly concerns those practical tasks where new elements, with the most current
naturally being the most valuable, are continuously added to patterns.

Generally the methods of classification with nonstationary patterns can be
divided into three groups, by and large consisting of:

(1) the supplementing or elimination of selected elements of patterns (in the trivial
case, the most recent and the oldest), e.g., [Salganicoff (1997); Widmer and
Kubat (1996)];

(2) the mapping of appropriate weights to particular elements of patterns (in the
simplest case, in proportion to how current they are), e.g., [Klikenberg (2004)];

(3) successive changes and modifications of the classification procedure itself or its
parameters, e.g., [Harries et al. (1998); Muhlbaier and Polikar (2007)].

The majority of these methods are heuristic in character and have been investi-
gated with specific conditions, so are dedicated solely to a particular research task
[Kenyon (1991); Krasotkina et al. (2011)]. The problem of the changeability over
time of various aspects of subjects under research, and resulting nonstationarity, is
formulated in literature using a significantly diverse terminology, from the intuitive
“changing environments” [Kuncheva (2004)] or “evolving data stream” [Aggarwal
et al. (2006)], to “concept drift” [Zlobaite (2009)] specific for the machine learning
area, or “adaptation” [Bouchachia (2009)] coming from the methodology for solving
such tasks, and others, frequently equally inadequate. It is worth remembering that
this leads to generalizations as well as bibliographic and comparative research in
this field, often very specific and rarely coherent.

The concept proposed in this paper belongs firmly in the first of the above
groups 1–3, although elements of the other two are also used. It was conceived on
the basis of the sensitivity method used in artificial neural networks. As a result of
its operation, particular elements of patterns receive weights proportional to their
significance for correct classification. Elements of the smallest weights are elimi-
nated. For the sake of the patterns’ nonstationarity, their elements whose weights
are currently small but increase successively are kept. In consequence a procedure is
proposed ensuring that an adaptation to changing conditions is obtained by correct-
ing classifier parameters values. The concept of the investigated method is based on
the Bayes approach, providing a minimum of potential losses arising from incorrect
classification. It is also possible to introduce preferences for those classes whose
elements — due to potential nonsymmetrical conditioning of the task — especially
should not be mistakenly assigned to others. The classifier was constructed apply-
ing the statistical kernel estimators methodology, thus freeing the above procedure
from arbitrary assumptions regarding patterns’ shapes — their identification is an
integral part of the algorithm presented here. The correct functioning and effective-
ness of the investigated method have been verified by experimental and comparative
analysis.
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The first sections of this paper, i.e., 2–7, briefly describe mathematical apparatus
and component procedures used in the main part — Sec. 8 — to synthesize the
classification algorithm for the nonstationary case investigated here. The numerical
verification and comparison with the similarly conditioned support vector machine
method is the subject of Sec. 9, followed by final comments and remarks.

This concept is the generalization of the procedure for the stationary case pre-
sented in the paper [Kulczycki and Kowalski (2011)]. This publication can be rec-
ommended at this point, since the idea itself — as a basis — is naturally simpler
and more straightforward there. A preliminary version of this paper was partially
presented as [Kulczycki and Kowalski (2013a, 2013b)].

2. Statistical Kernel Estimators

Let (Ω, Σ, P ) denote a probability space. First, the continuous random variable case
will be considered. This provides the basis for the investigation both of theoretical
and practical applications of kernel estimators. Thus, suppose the n-dimensional
random variable X , with a distribution characterized by the density f . Its kernel
estimator f̂ : R

n → [0,∞) is calculated on the basis of the random sample

x1, x2, . . . , xm, (1)

and defined — in the basic form — by the formula

f̂(x) =
1

mhn

m∑
i=1

K

(
x − xi

h

)
, (2)

where the positive coefficient h is known as a smoothing parameter, while the mea-
surable function K : R

n → [0,∞) symmetrical with respect to zero, having at
this point a weak global maximum and fulfilling the condition

∫
Rn K(x)dx = 1 is

termed a kernel. For interpretation of the definition, see Fig. 1. The monographs
[Kulczycki (2005); Silverman (1986); Wand and Jones (1995)] contain a detailed
description of the above methodology, in particular the selection of the shape of
the kernel K [Kulczycki (2005, Sec. 3.1.3); Wand and Jones (1995, Secs. 2.7 and
4.5)] and the calculation of the smoothing parameter h value [Kulczycki (2005,
Sec. 3.1.5); Wand and Jones (1995, Chap. 3 and Sec. 4.7)], based on mean-square
criterion.

In this paper the generalized (one-dimensional) Cauchy kernel is applied:

K(x) =
2

π(x2 + 1)2
, (3)

due to its “heavy tails”, which work well in peripheral areas of distributions, them-
selves potential regions dividing classes in the classification task investigated here.
In the multi-dimensional case, the kernel is defined using the concept of a product
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Fig. 1. Kernel estimator (2).

kernel resulting from one-dimensional kernels for particular coordinates:

K(x) = K






x1

x2

...
xn




 = K1(x1)K2(x2) · · ·Kn(xn), (4)

where K1, K2, . . . ,Kn denote here one-dimensional kernels, for the Cauchy form
given by formula (3). (When one uses the product kernel, the expression hn appear-
ing in definition (2) should be replaced by h1 ·h2 · . . . ·hn, the product of smoothing
parameters for particular coordinates.)

Generally, for calculation of the smoothing parameter h value it is recommended
to avail of the effective plug-in method [Kulczycki (2005, Sec. 3.1.5); Wand and
Jones (1995, Sec. 3.6.1)], used here both for the one-dimensional and — thanks the
application of the product kernel — multidimensional case, separately for partic-
ular coordinates. However if the classification method investigated here uses the
correction of this parameter presented in Sec. 3.3, the simplified method is enough
[Kulczycki (2005, Sec. 3.1.5); Wand and Jones (1995, Sec. 3.2.1)]. The smoothing
parameter is then given as:

h =
(

W (K)
U(K)2

8
√

π

3m

)1/5

σ̂, (5)

where

W (K) =
∫

R

K(x)2dx, (6)

U(K) =
∫

R

x2K(x)dx, (7)
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while σ̂ denotes an estimator of standard deviation obtained from sample (1); (in
the multi-dimensional case: for this coordinate of the sample elements, for which
the smoothing parameter value has been calculated). For the Cauchy kernel (3)
suggested above, coefficients (6) and (7) amount to W (K) = 1 and U(K) = 5/4π.

In practice one employs additional procedures to generally increase the quality
of the kernel estimator and fit its features to those of the considered reality. In this
paper the modification of the smoothing parameter [Kulczycki (2005, Sec. 3.1.6);
Silverman (1986, Sec. 5.3.1)] will be applied. The definition of the kernel estimator
then takes the form

f̂(x) =
1

mhn

m∑
i=1

1
si

K

(
x − xi

hsi

)
, (8)

where additionally introduced non-negative modifying coefficients are given by

si =

(
f̂∗(xi)

s̄

)−c

for i = 1, 2, . . . , m, (9)

while f̂∗ denotes the kernel estimator in its basic form (2), and s̄ is the geometric
mean of the quantities f̂∗(x1), f̂∗(x2), . . . , f̂∗(xm). The constant c ≥ 0 is referred to
as modification intensity. The case c = 0, implying in consequence si ≡ 1, determines
the lack of smoothing parameter modification, whereas together with an increase in
the value c its intensity grows. Corollaries resulting from the mean-square criterion
primarily point to the value:

c = 0.5. (10)

Figure 2 shows an interpretation of the above procedure. In the areas where ele-
ments of the random sample are dense, for the elements xi it is true that f̂∗(xi) > s̄,

Fig. 2. Kernel estimator with smoothing parameter modification.
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and therefore, as a result of formula (6), also si < 1. This leads to a narrowing of
the kernels assigned to them, which in turn allows for better characterization of spe-
cific properties of distribution. In contrast, in the areas where the elements of the
random sample are sparse, one has f̂∗(xi) < s̄ and consequently si > 1. This causes
“flattening” and thus — advantageous to estimation quality — additional smooth-
ing of the kernel estimator in “peripheral” regions of distribution. As mentioned
previously, this is of particular significance in the task of classification, having great
influence on “peripheral” areas where classes potentially border.

Similarly to the above for the continuous random variable, kernel estimators
can be constructed for binary, discrete and categorical (ordered as well). Moreover,
any composition of these variables types is possible. The literature on the subject
is quite broad and varied. For the first case, it is worth quoting the classic mono-
graphs [Kulczycki (2005, Sec. 3.1.8); Silverman (1986, Sec. 6.1.4)] as well as paper
[Aitchison and Aitken (1976)], and for the second [Ahmad and Cerrito (1994); Wang
and Ryzin (1981)]. Issues connected with categorical variables can be found in the
publications [Gaosheng et al. (2009); Li and Racine (2008); Ouyang et al. (2006)].

3. Bayes Classification

Consider J sets consisting of elements of the space R
n:

x′
1, x

′
2, . . . , x

′
m1

, (11)

x′′
1 , x′′

2 , . . . , x′′
m2

, (12)
...

x1
′′...′, x2

′′...′, . . . , xmJ

′′...′, (13)

representing assumed classes. The sizes m1, m2, . . . , mJ should be proportional to
the “contribution” of particular classes in the population under investigation. The
classification task consists of deciding to which of these groups the tested element

x̃ ∈ R
n, (14)

should be assigned. Let now f̂1, f̂2, . . . , f̂J denote kernel estimators of a probability
distribution density, calculated successively based on sets (11)–(13) treated as ran-
dom samples (1) — a description of the methodology used for their construction
is contained in Sec. 2. In accordance with the classic Bayes approach [Duda et al.
(2001)], ensuring a minimum of expected value of losses, the classified element (14)
should then be given to the class for which the value

m1f̂1(x̃), m2f̂2(x̃), . . . , mJ f̂J(x̃) (15)

is the greatest. The above can be generalized by introducing the positive coefficients
z1, z2, . . . , zJ :

z1m1f̂1(x̃), z2m2f̂2(x̃), . . . , zJmJ f̂J(x̃). (16)
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Taking as standard values z1 = z2 = · · · = zJ = 1, formula (16) brings us to (15). By
appropriately increasing the value zi, a decrease can be achieved in the probability
of erroneously assigning elements of the ith class to other wrong classes, although
theoretically the danger does then exist of slightly increasing the general number
of misclassifications. This approach is warranted for those tasks where a class is
associated with a particular phenomenon (e.g., in technical diagnostics — with some
especially dangerous fault type), the oversight of which could have exceptionally
negative consequences. Here an increase in the value zi is inversely proportional
to the raising of probability of an erroneously assigned element of the ith class
to another. A respective growth in the values of a few coefficients zi is possible,
although theoretically this may additionally cause a slight increase in the general
number of classification errors.

4. Discrete Derivative

The task of computing the value of the discrete derivative of the function g : R → R

consists in calculating the quantity g′(t) based on values of this function obtained
for a finite number of arguments t1, t2, . . . , tk. For the problem under investigation a
backward derivative will be used, i.e., where t = tk. As the task considered here does
not require the differences between subsequent values t1, t2, . . . , tk to be equal, it
is therefore advantageous to apply interpolation methods. In the procedure worked
out here, favorable results were achieved using a classic method based on Newton’s
interpolation polynomial. Detailed formulas, as well as a treatment of other related
concepts are found in the survey paper [Venter (2010)]. For the purposes of the
procedure investigated in this paper, k = 3 can be taken as a standard value, a
useful compromise between stability of results and possibility to react to changes
(the derivative has then two degrees of freedom).

5. Sensitivity Analysis for Learning Data

When modeling multi-dimensional problems using artificial neural networks, partic-
ular components of an input vector most often are characterized by diverse signifi-
cance of information, and in consequence influence variously the result of the data
processing. In order to eliminate redundant input vector components, a sensitivity
analysis of the network with respect to particular learning data is often used. A
basic factor for network reduction is sensitivity of the output function with regards
to particular input data.

The essence of the sensitivity method [Zurada (1992)] consists in defining —
after the network learning phase — the influence of the particular inputs xj on the
output value y, which is characterized by the real coefficients

Si =
∂y(x1, x2, . . . , xm)

∂xi
for i = 1, 2, . . . , m. (17)
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Next, one aggregates the particular coefficients S
(p)
i originating from successive

iterations of the previous phase and corresponding to the sensitivity of subsequent
learning data, with p = 1, 2, . . . , P . The result is the final coefficient S̄i given by the
formula

S̄i =

√∑P
p=1 (S(p)

i )2

P
for i = 1, 2, . . . , m. (18)

After the sorting operation for the vector S̄i according to decreasing values, an anal-
ysis of the relevance of particular components to the result of network operation is
performed, and then the least significant inputs are eliminated. (In the general case
the above algorithm can be used repeatedly to achieve further reduction. However,
during empirical testing of the classification method developed here, such action
did not bring positive results and so was forsaken.)

The application of the above method led to reducing the input dimension of the
neural network by removing information of little significance or even elimination of
data (input vector components) having an unfavorable influence on the obtained
result’s correctness. This resulted in an increase in speed as well as a reduction of
errors of learning and generalization.

Detailed considerations concerning the above procedure are found in the publi-
cations [Engelbrecht et al. (1995); Zurada (1992)].

6. Reducing Patterns’ Size

In practice, some elements of sets (11)–(13), constituting patterns of particular
classes, may have insignificant or even negative — in the sense of classification
correctness — influence on quality of obtained results. Their elimination should
therefore imply a reduction in the number of erroneous assignments, as well as
decreasing calculation time. To this aim the sensitivity method for learning data,
used in artificial neural networks, briefly presented in the previous section, will be
applied.

To meet the requirements of this procedure, the definition of the kernel estimator
will be generalized below with the introduction of the non-negative coefficients
w1, w2, . . . , wm, normed by the condition

m∑
i=1

wi = m, (19)

and mapped to particular elements of random sample (1). The basic form of kernel
estimator (2) then takes the form

f̂(x) =
1

mhn

m∑
i=1

wiK

(
x − xi

h

)
. (20)

Formula (8) undergoes analogous generalization. The coefficient wi value may be
interpreted as indicating the significance (weight) of the ith element of the pattern
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to classification correctness. Note that if wi ≡ 1, then definition (20) is regressed to
initial form (2). Generalization (8) and (20) can be joined naturally, which gives

f̂(x) =
1

mhn

m∑
i=1

wi

si
K

(
x − xi

hsi

)
. (21)

The procedure for reducing patterns sets (11)–(13) consists — in its basic form —
of two phases: of calculating the weight wi, and then removing those elements of
random sample (1), for which the respective weights have the lowest values. These
tasks will subsequently be presented in the next two sections.

6.1. Calculation of weights wi

In the method designed here, for the purpose of reduction of sets (11)–(13), separate
neural networks are built for each investigated class. In order to ensure coherence
of the notation below, let now the index j = 1, 2, . . . , J characterizing particular
classes, be arbitrarily fixed.

The constructed network has three layers and is unidirectional, with m inputs
(corresponding to particular elements of a pattern), a hidden layer whose size is
equal to the integral part of the number

√
m, and also one output neuron. This

network is submitted to a learning process using a data set comprising of the values
of particular kernels for subsequent pattern elements, while the given output con-
stitutes the value of the kernel estimator calculated for the pattern element under
consideration. The network’s learning is carried out using backward propagation of
errors with momentum factor. On finishing this process, the thus obtained network
undergoes sensitivity analysis on learning data, in accordance with the method pre-
sented in the previous section. The resulting coefficients S̄i describing sensitivity,
obtained on the basis of formula (18), constitute the fundament for calculating
preliminary values

w̃i =

(
1 − S̄i∑m

j=1 S̄j

)
, (22)

after which they are normed to

wi = m
w̃i∑m
i=1 w̃i

, (23)

with the aim of guaranteeing condition (19). It is worth noting that the form of
formulas (17) and (18) accounting in practice for all coefficients S̄i cannot be equal
to zero, which guarantees feasibility of the above operation. The shape of formula
(22) results from the fact that the network created here is the most sensitive to
atypical and redundant elements, which — taking into account the form of kernel
estimator (20) — implies a necessity to map the appropriately smaller values w̃i, and
in consequence wi, to them. Coefficients (23) represent — as per the idea presented
while introducing the general form (20) — the significance of particular elements of
the pattern to accuracy of the classification process.
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6.2. Removal of pattern elements

Empirical research confirmed the natural assumption that the pattern set should
be relieved of those elements for which wi < 1. (Note that, thanks to normalization
made by formula (23), the mean value of coefficients wi equals 1.) An increase in
this value caused a sharp fall in classification quality, due to a loss of valuable
and nonredundant information included in the pattern. In turn, decreasing such an
assumed threshold value resulted in a significant drop in the degree of a pattern size
reduction, while in the vicinity of the value 1 its influence on classification quality
was practically unnoticeable. However, considerable diminishing implied a sizable
rise in number of errors to the level obtained without reduction.

7. Correcting the Smoothing Parameter and Modification
Intensity Values

Subject literature often presents the opinion that the classic universal methods
of calculating the smoothing parameter value — most often based on a quadratic
criterion — are not proper for the classification task [Ghosh et al. (2006)]. Available
literature does not suggest a definitive solution for such a problem, especially in the
multidimensional case and with more than two classes. This paper will propose a
procedure suited to the conditioning of the investigated method of classification
for nonstationary patterns, in particular those enabling successive adaptation with
regard to the occurring changes.

Thus, it can be proposed to introduce n+1 multiplicative correcting coefficients
for the values of the parameter defining the intensity of modification procedure c

and smoothing parameters for particular coordinates h1, h2, . . . , hn, with respect to
optimal ones calculated using the integrated square error criterion. Denote them as
b0 ≥ 0, b1, b2, . . . , bn > 0, respectively. It is worth noticing that b0 = b1 = · · · =
bn = 1 means in practice no correction. Next through a comprehensive search using
a grid with a relatively large discretization value, one finds the most advantageous
points regarding minimal incorrect classification sense. The final phase is a static
optimization procedure in the (n + 1)-dimensional space, where the initial conditions
are the points chosen above, while the performance index is given as:

J(b0, b1, . . . , bn) = # {incorrect classifications}, (24)

when # denotes the size of a set, that is here the number of its elements. The
value of the above functional for a fixed argument is calculated with the help of the
classic leave-one-out method. As this value is an integer, to find the minimum a
modified Hook–Jeeves algorithm [Kelley (1999)] was applied. Alternative concepts
can be found in the survey paper [Venter (2010)].

Following experimental research it was assumed that the grid used for primary
searches has intersections at the points 0.25, 0.5, . . . , 1.75 for every coordinate. For
such intersections the value of functional (24) is calculated, after which the obtained
results are sorted, and the 5 best become subsequent initial conditions for the
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Hook–Jeeves method, where the value of the initial step is taken as 0.2. After
finishing every one of the above 5 “runs” of this method, the functional (24) value
for the end point is calculated, and finally among them the one with the smallest
value is shown.

Apart from the first step, the above procedure can be used in the simplified ver-
sion, to successively specify current values for the correcting coefficients b0, b1, . . . , bn

as part of adaptation to changes in nonstationary conditions. To this end the Hook–
Jeeves algorithm is used only once, taking the coefficients’ previous values as initial
conditions.

Finally it is worth noting that the correction of classification parameters is
not necessary in this procedure. It does, however, increase classification accuracy
and furthermore enables the use of a simplified method for calculating smoothing
parameters values (5).

8. Classification Method for Nonstationary Patterns

This section, the most essential in this publication, presents the classification
method for the nonstationary case, that is when all or some patterns of classes
undergo significant — considering the investigated task — changes. Here, material
worked out and described in Secs. 2–7 will be used. A block diagram of the calcu-
lation procedure is presented in Fig. 3. Blocks symbolizing operations performed
on all elements of patterns (11)–(13) jointly are drawn with a continuous line; a
dashed line denotes operations on particular classes, while a dotted line is used for
separate operations for each element of those patterns.

First one should fix the reference sizes of patterns (11)–(13), hereinafter denoted
by m∗

1, m
∗
2, . . . , m

∗
J . The patterns of these sizes will be the subject of a basic reduc-

tion procedure, described in Sec. 6. The sizes of patterns available at the beginning
of the algorithm must not be smaller than the above referential values. These values
can however be modified during the procedure’s operation, with the natural condi-
tion that their potential growth does not increase the number of elements newly pro-
vided for the patterns. For preliminary research, m∗

1 = m∗
2 = · · · = m∗

J = 25 ·2n can
be proposed. Lowering these values may worsen the classification quality, whereas
an increase results in an excessive calculation time.

The elements of initial patterns (11)–(13) are provided as introductory data.
Based on these — according to the procedures presented in Sec. 2 — the value
of the parameter h is calculated (for the parameter c it is given by formula (10)).
Figure 3 shows this action in block A. Next corrections in the parameters h and
c values are made by taking the coefficients b0, b1, . . . , bn, as described in Sec. 7
(block B in Fig. 3).

The next procedure, shown by block C, is the calculation of the parameters
wi values mapped to particular patterns’ elements, separately for each class, as in
Sec. 6.1. Following this, within each class, the values of the parameter wi are sorted
(block D), and then — in block E — the appropriate m∗

1, m∗
2, . . . , m

∗
J elements of
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Fig. 3. Block diagram for classification algorithm.
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the largest values wi are designated to the classification phase itself. The remaining
ones undergo further treatment, denoted in block U, which will be presented below,
after Bayes classification has been dealt with.

The reduced patterns separately go through a procedure newly calculating the
values of parameters wi, presented in Sec. 6.1 and depicted in block F. According
to Sec. 6.2, as block G in Fig. 3 denotes, these patterns’ elements for which wi ≥ 1
are submitted to further stages of the classification procedure, while those with
wi < 1 are sent to block A for further processing in the next steps of the algorithm,
after adding new elements of patterns. The final, and also the principal part of the
procedure worked out here is Bayes classification, presented in Sec. 3 and marked
by block H. Obviously many tested elements (14) can be subjected to classification
separately. After the procedure has been finished, elements of patterns which have
undergone classification are sent to the beginning of the algorithm to block A, to
further avail of the next steps, following the addition of new elements of patterns.

Now — as mentioned two paragraphs earlier, in the last sentence — it remains to
consider those patterns’ elements, whose values wi were not counted among the m∗

1,
m∗

2, . . . , m
∗
J largest for particular patterns. Thus, within block U, for each of them

the derivative w′
i is calculated. If the element is “too new” and does not possess the

k − 1 previous values wi, then the gaps are filled with zeros (because the values wi

generally oscillate around unity, such behavior significantly increases the derivative
value, and in consequence ensures against premature elimination of this element).
Next for each separate class, the elements w′

i are sorted (block V). As marked in
block W, the respective

qm∗
1, qm

∗
2, . . . , qm

∗
J , (25)

elements of each pattern with the largest derivative values, on the additional require-
ment that the value is positive, go back to block A for further calculations carried
out after the addition of new elements. If the number of elements with positive
derivative is less than qm∗

1, qm∗
2, . . . , qm

∗
J , then the number of elements going back

may be smaller (including even zero). The remaining elements are permanently
eliminated from the procedure, as shown in block Z. In the above notation q is a
positive constant influencing the proportion of patterns’ elements with little, but
successively increasing meaning. As a standard value q = 0.2 is proposed, or more
generally q ∈ [0.1, 0.25] depending on the size/speed of changes. An increase in
this parameter value allows more effective conforming to pattern changes, although
this potentially increases the calculation time, while lowering it may significantly
worsen adaptation. In the general case this parameter can be different for particu-
lar patterns — then formula (25) takes the form q1m

∗
1, q2m

∗
2, . . . , qJm∗

J , where q1,
q2, . . . , qJ are positive.

The above procedure is repeated following the addition of new elements (block A
in Fig. 3). Besides these elements — as has been mentioned earlier — for particular
patterns respectively m∗

1, m∗
2, . . . , m

∗
J elements of the greatest values wi are taken, as

well as up to qm∗
1
, qm∗

2
, . . . , qm∗

J
(or in the generalized case q1m

∗
1
, q2m

∗
2
, . . . , qJm∗

J
)
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elements of the greatest derivative w′
i, so successively increasing its significance,

most often due to the nonstationarity of patterns.

9. Empirical Verification

The correct functioning and properties of the concept under investigation have
been comprehensively verified numerically, and also compared with results obtained
using a related procedure based on a support vector machine method [Krasotkina
et al. (2011)]. Research was carried out for data sets in various configurations and
with different properties, particularly with nonseparated classes, complex patterns,
multimodal and consisting of detached subsets located alternately. Nonstationarity
was successive either in steps or periodical. The standard values of the parameters
previously proposed in this paper were obtained through research carried out for
verification purposes.

The following are the results obtained for a simple but representative case,
enabling a telling illustration and interpretation of the procedure summaries in
Sec. 8. For visual purposes the two dimensional space (n = 2) and the two classes
(J = 2) will be used. The first class is invariable, while the second is also invariable at
the beginning, but then moves, describing a circle around the first, before stopping
at its initial location.

For both classes, the patterns begin with 100 elements (m1 =m2 = 100),
obtained using a generator with normal distribution, respectively

Es =
[
0
0

]
, Covs =

[
1 0
0 1

]
, (26)

Ens =
[
3
0

]
, Covns =

[
1 0
0 1

]
. (27)

Next 10 elements are added at every step, whereas when the second class describes
the circle, generator (27) is generalized to

Ens =
[
3 cos(k)
3 sin(k)

]
, Covns =

[
1 0
0 1

]
for k = 0◦, 10◦, 20◦, . . . , 360◦. (28)

So, the first — stationary — class is located permanently in the origin of the space
R

2, while the second — nonstationary — following an initial period of no movement,
encircles it with the radius 3, adding 10 new elements every 10◦ before coming to a
stop in its original location. According to the suggestions formulated earlier, it was
also assumed m∗

1 = m∗
2 = 100 and q = 0.2.

Figure 4 illustrates the number of misclassifications in a typical course of a
procedure created in this paper. From the beginning, up to step 18, the second
class is invariable. First a slight increase in the number of erroneous classifications
occurs — in every step new elements (around 10%) are added to patterns, which
worsens the working conditions for the neural network. Finally, however, once the
patterns are stabilized, the number of misclassifications settles at the level 0.08.

1550008-14



2nd Reading

October 31, 2014 15:50 WSPC/0219-8762 196-IJCM 1550008

Bayes Classification for Nonstationary Patterns

Fig. 4. Typical course using the investigated procedure (z1 = z2 = 1, q = 0.2).

In step 18 the aforementioned orbital movement of the second class begins. First
the number of erroneous classifications rises to around 0.12, and then — after the
kernels, which were not previously removed due solely to a positive derivative w′

i,
have received the appropriate meaning — the number of misclassifications drops
and levels off at 0.105. In step 54, where the second class stops, occurrences similar
to the above take place, when the number of classification errors returns to its initial
level of 0.08.

Let us analyze the influence of the coefficients z1, z2, . . . , zJ , introduced by for-
mula (16). The research showed that a number of misclassifications to a large degree
result from the assignation of elements from a nonstationary class to a stationary
one, as opposed to the contrary. This is easy to interpret, as the pattern of a nonsta-
tionary class contains elements which are current to varying degrees and therefore
has a naturally smaller power of “attraction” than a stationary pattern. Moreover,
the pattern of a stationary class contains not only current elements (nota bene: in
the nonstationary case such elements may not even exist in large enough numbers
to infer), but also, as the procedure progresses, elements of this pattern are suc-
cessively improved by substituting them for elements with ever greater values wi,
which increases its “attraction” even more. Both factors lead to a significant asym-
metry of classification errors. This can be dealt with by increasing the coefficients
zi values in proportion to the size/speed of changes of particular classes. As an
initial value, 1.25, which has been fixed during the following research, is suggested.
Figure 5 shows the course similar to Fig. 4, and in addition the number of classifi-
cation errors of elements from a stationary to a nonstationary class and vice versa,
with z1 = 1 and z2 = 1.25, respectively. During the first 18 steps and the last ones,
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Fig. 5. Course with differing values of the coefficients zi(z1 = 1, z2 = 1.25); the dotted line denotes
errors in assigning elements of the first pattern to the second, the broken line shows the inverse.

following the 54th, when the second class once more does not change its position,
the errors in assigning elements from the first to the second dominate, which results
directly from assuming z1 <z2. The opposite situation occurs between steps 18 and
54, when the second class moves. If however the standard z2 = 1 remains, the dispro-
portion would be significantly greater here. Conversely the number of errors would
be leveled here for z2 = 1.5, but this would in turn increase the difference in the
period of no change of the second class (steps to 18 and after 54). It is worth noting
that the total number of misclassifications lowered with respect to that obtained
for the basic case in Fig. 4. This especially concerns local maximums existing after
the second class starts and stops moving (steps 18 and 54).

The procedure worked out and described here was compared with a method
based on the support vector concept (SVM), presented in the publication [Krasotk-
ina et al. (2011)], taken as the closest regarding the conditioning considered in this
paper research task. The obtained results are shown in Fig. 6 — they were achieved
in conditions identical to Fig. 5, with which they will be compared. Although in
conditions of stationarity of the second pattern (steps before 18 and after 54), the
number of misclassifications leveled off at 0.08, the case using the SVM, however,
starts at 0.10, instead of 0.07 as in the procedure investigated here (compare Figs. 5
and 6). When the second pattern changes (steps 18–54) the amount of errors gen-
erated by the SVM settles at the level 0.12, or even slightly higher than that of
local maximums appearing in the method presented in this paper after steps 18 and
45 (compare again Figs. 5 and 6). It should be underlined, though, that when the
second class is moving, the number of misclassifications does not fall to level 0.10
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Fig. 6. Course using the SVM (compare with Fig. 5).

(Fig. 6), as is the case with the procedure worked out here (Fig. 5). Thus one can
see that the concept method in this paper has an advantage over the SVM proce-
dure, especially in conditions of gradual change. Taking into account the fact that
its idea is based on derivatives of a predictive nature, this observation is completely
understandable.

10. Final Remarks

This paper presented a classification procedure which allows for nonstationarity
of patterns and successive supply of new elements to them. Neither the number
of classes itself, nor the number of nonstationary ones are methodologically lim-
ited. The attribute space is a finite-dimensional, and particular coordinates can
be continuous, binary, discrete or categorical in character; they may also be any
combination of these types.

The concept is based on the Bayes approach, which allows for the minimiza-
tion of expected loss value arising from erroneous classifications, as well as actively
influencing the proportion of probabilities of classification errors between particu-
lar classes. The use of kernel estimators frees the algorithm from patterns’ shapes.
The procedure operation is based on the sensitivity method used with artificial
neural networks. It enables the removal of those elements of patterns, which are of
insignificant or even negative influence on accuracy of results. However, it retains
for further calculation some of these elements which due to nonstationarity succes-
sively increase their positive impact. Appropriate adaptation is also performed on
classifier parameters.
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Numerical testing wholly confirmed the positive features of the method worked
out. In particular, the results show that the classifying algorithm can be used suc-
cessfully for inseparable classes of complex multimodal patterns as well as for those
consisting of incoherent subsets at alternate locations. The examined nonstationar-
ity increased successively, and was periodical as well as occurring in steps. For the
former type, the procedure investigated and presented in this paper proved to be
particularly advantageous and useful.

The investigated method has been described in this paper in its fundamental
form. In concrete applications however its various modifications may prove useful.
For example, one can apply other concepts for calculating the value of the deriva-
tive or static optimization besides Newton’s and Hooke–Jeeves methods proposed
in Secs. 4 and 7. It is worth persuading designers to try modifying the proposed
algorithm — an illustrative interpretation of its particular procedures would allow
it to be suited to the specific conditions of elaborated problems as well as individual
preferences and customs.
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