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Abstract The Bayes approach is arguably the classification method most used in

unspecialized applications, thanks to its robustness, simplicity, and interpretability. The

main problem here is establishing proper probability values. This paper deals with

adapting the above method for cases where the classified data is of interval type, with

changing environments (evolving data stream, concept drift, nonstationarity). The

probability values are estimated using nonparametric methods, thanks to which the

procedure becomes independent of characteristics of learning subsets representing

particular classes. They can also be supplemented with new, current observations,

added while performing the algorithm. The investigated process also removes elements

with negligible or even negative impact on accuracy of results, which increases the

effectiveness of adaptation in conditions of changing reality. It is possible to differ-

entiate the meanings of particular classes. The method allows any number of them. The

particular attributes of data elements may be continuous, categorical, or both.

Keywords Data analysis ⋅ Classification ⋅ Interval data ⋅ Changing

environment ⋅ Adaptation

1 Introduction

One of the main tasks of contemporary data analysis is classification [2, 5]. Suppose

that we have a data set, whose particular elements are assigned labels explicitly,

indicating membership of particular, previously defined subsets, constituting
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specific classes. Such a label should be forecast for another element submitted for

testing which does not already have one. This procedure of mapping a label sug-

gesting membership to a class, to an investigated element is called a classifier.1 If

the concept of the classifier is based on a rough method, giving no strict guarantee

of finding the best or even a correct solution, it can be categorized as heuristic [23],

while if a few different concepts combine, where some act as servants to others,

then it becomes metaheuristic. Finally, when computational intelligence method-

ology [11] is used, the data set mentioned at the beginning becomes a learning set.

Its subsets assigned to particular classes are referred to as patterns.

This publication concerns the classification of data given in interval form [10],

including also the multidimensional case. The fundamental benefit of this type of

data is its simplicity, transparency, and possibility of using well-developed math-

ematical apparatus. Besides actual interval analysis, the case investigated here also

includes a probabilistic approach with uniform distribution as well as fuzzy logic

for a rectangular membership function. On the other hand in this publication,

patterns consist of elements which are uniquely determined (including single-point

distribution or crisp numbers for probabilistic and fuzzy approaches, respectively).

This corresponds to many situations occurring in practice, for instance when pat-

terns are formed from elements precisely measured some time ago (e.g., exchange

rates, outside temperature), but the forecast, ambiguous in nature, is classified and

presented in interval form [17].

Changeability in time of analyzing data is assumed here. Literature terms this a

changing environment [21], occasionally also evolving data stream [3], concept

drift [29], nonstationarity [19], or relates it with the adaptation process [4]. Such a

problem is most commonly connected to permanent supplementation of a data set

with new elements, which are naturally the most up to date and therefore the most

valuable. In the methodology presented below, each of the patterns’ element

receives coefficients proportional to their influence on correct results. Those ele-

ments with smallest coefficients are removed, although an exception is made for

those with successively growing values, as their character is in accordance with the

trend of changes in the environment.

The metaheuristic proposed here will construct Bayes classifier [5], with a

deservedly high opinion among researchers. It possesses a range of advantages,

both theoretical (ensuring minimum expectation value of losses resulting from

classification errors, albeit for incompletely fulfilled assumption of the attributes’

independence) and practical (the idea is simple, robust, and being easy to interpret,

is easy to modify). This method allows any number of classes and enables to

differentiate their meaning from a practical perspective. The probability values

existing in the classifier will be established by means of the nonparametric kernel

estimators methodology [16]. Patterns can therefore be of any shape, including

consisting of separate parts. Particular attributes of processed data may be

1Sometimes this procedure performs the function of reflecting reality with mathematics and

information technology, which explains why it is occasionally called a model.
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continuous, categorical, or a combination of both. It is worth noting that, thanks to

the correctly chosen measure of similarity, it is possible to treat categorical vari-

ables as multivalued, including binary. The fixing and adaptation of estimators’

parameters are carried out based on optimization procedures [12] and a sensitivity

analysis known from the artificial neural networks technique [30].

The initial sections, Sects. 2–5, shortly present a theoretical basis applied later in

the Sect. 6, the main section, to create the classification procedure for use in

changing environments. Conclusions with numerical verification, followed by final

comments, are the subject of Sect. 7.

The concept worked out here connects research for the interval stationary case

with the deterministic nonstationary, which are accessible in the papers [18, 19],

respectively. Initial results were described in the publication [20]. The specific

aspects of using neural networks in the methodology proposed here are the subject

of the articles [14, 15], currently in press.

2 Kernel Estimators

The nonparametric method of statistical kernel estimators enables the establishment

of characteristics—mainly density of distribution—without any prior knowledge

concerning its type. Thus, let an n-dimensional continuous random variable be

given. Suppose that its distribution has a density, denoted by f. Having the random

sample

x1, x2, . . . , xm ð1Þ

one can obtain its kernel estimator [16, 26, 28] defined as

f ð̂xÞ= 1

mhn
∑
m

i=1

K
x− xi

h

 !
, ð2Þ

whereas the function K: Rn
→ ½0,∞Þ, named a kernel, is measurable, symmetrical

with respect to zero, has a weak global maximum at this point, and fulfills the

condition
R
Rn KðxÞ dx=1; the constant h>0 is called a smoothing parameter.

The generalized one-dimensional Cauchy kernel

KðxÞ= 2

π ðx2 +1Þ2
, ð3Þ

will be used in the following. This type of kernel lends itself especially well to the

classification problem, thanks to the presence of so-called “heavy tails”, valuable in

areas of potential division into particular classes, actually lying on peripheries of

distributions associated with them. For the multidimensional case, the product

approach will be used. The kernel is then defined as
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KðxÞ=K

x1
x2
⋮
xn

2

664

3

775

0

BB@

1

CCA=K1ðx1ÞK2ðx2Þ . . . KnðxnÞ, ð4Þ

where K1, K2, . . . ,Kn represent one-dimensional kernels (3). Note that the

expression hn must be substituted in definition (2) by h1 ⋅ h2 ⋅ . . . ⋅ hn, i.e., the
product of smoothing parameters for consecutive coordinates. Observe also that

thanks to the continuity of the kernel (3)–(4), the estimator f ̂defined by equality (2)

is also continuous.

Due to the planned correction in the smoothing parameter h, for calculation of its

value the so-called simplified method is enough [16—Sect. 3.1.5; 28—Sect. 3.2.1].

In the one-dimensional case, as well as for particular coordinates in the multidi-

mensional case, the smoothing parameter can be then calculated from a simple

formula:

h=
WðKÞ
UðKÞ2

8
ffiffiffi
π

p

3m

 !1 5̸

bσ, ð5Þ

while WðKÞ=
R
R
KðxÞ2 dx, UðKÞ=

R
R
x2KðxÞ dx, and bσ is an (one-dimensional)

estimator of standard deviation obtained on the basis of sample (1). For the Cauchy

kernel (3) one has WðKÞ=1 and UðKÞ=5 4̸π.

Kernel estimators are fully presented in the classic monographs [16, 26, 28], also

including among others comments on the choice of kernel type [16—Sect. 3.1.3;

28—Sects. 2.7 and 4.5], algorithms for calculation of the smoothing parameter

[16—Sect. 3.1.5; 28—Chap. 3 and Sect. 4.7], and additional concepts for fitting

this type of estimator to specific conditions (e.g., boundary of random variable

support) and procedures generally increasing its quality. In this latter group, it is

worth highlighting the procedure for a smoothing parameter modification

[16—Sect. 3.1.6; 26—Sect. 5.3.1], narrowing of particular kernels in dense areas

(which enables better characterization of individual features of distribution), and

also “flattening” them in sparse regions to additionally smooth the estimator on the

peripheries (“tails”) of distribution. The potential addition of this aspect to the

material presented below is obvious and has been described in detail in the

paper [19].

Kernel estimators can also be constructed for different than continuous types of

attributes, in particular categorical (nominal and ordered), which through the

appropriate selection of similarity measure offers a wide range of generalizations to

multivalued variables, including binary. Various compositions of the above types

are also possible. The explanations for this topic can be found in the publications [7,

22, 24]. The supplementation of this aspect to the considerations presented in this

work is obvious.
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3 Bayes Classification

The classification process consists of creating a decision rule, which will map to the

tested element an additional label, demonstrating supposed membership to one of the

earlier defined classes. These classes are represented by patterns, i.e., sets of elements

already possessing such labels. At the beginning consider a continuous random

variable. First, the one-dimensional case (relating to the previous section: n=1) will

be investigated. Consider therefore the tested quantity, given in the formof the interval

½x, x�, ð6Þ

while x≤ x ̄. Note that when x= x ̄, it becomes precise (i.e., deterministic or sharp).

Let also J classes of the sizes m1, m2, . . . , mJ be represented by patterns composed

of real numbers:

x11, x
1
2, . . . , x1m1

ð7Þ

x21, x
2
2, . . . , x

2
m2

ð8Þ

⋮

xJ1, x
J
2, . . . , x

J
mJ
. ð9Þ

(Note that the upper index in the notations (7)–(9) denotes membership to a fixed

class). Bayes classification consists of mapping the tested element (6) to the j-class

(j=1, 2, . . . , J) if the largest is the j-th value among

m1f1ðx ̃Þ, m2f2ðx ̃Þ, . . . , mJ fJðx ̃Þ, ð10Þ

where f1, f2 , . . . , fJ denote probability density with the condition of its member-

ship to the class 1, 2, . . . , J, respectively. In the metaheuristic investigated here,

these densities will be defined by kernel estimators methodology, described in

Sect. 2, where successive patterns (7)–(9) will be used as samples (1). Suppose

therefore such estimators of the above densities as f ̂1, f
̂
2, . . . , f ̂J . Then expressions

(10) take the form

m1f ̂1ðx ̃Þ,m2f ̂2ðx ̃Þ, . . . , mJ f ̂Jðx ̃Þ. ð11Þ

In turn for interval type of data, denoted in the form of element (6), one can

conclude that it belongs to the j-class when the biggest is the j-th value from among

m1

x− x

Zx

x

f ̂1ðxÞ dx,
m2

x− x

Zx

x

f ̂2ðxÞ dx, . . . ,
mJ

x− x

Zx

x

f ̂JðxÞ dx. ð12Þ
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If one uses the continuous kernel K, then formula (12) becomes the generalization

of (11). In fact, here the kernel estimator f ̂j is also continuous, therefore for any

fixed x ̃∈ ½x, x�, if the length of interval (6) is reduced to 0 by x→ x ̃ and x→ x ̃, then

one obtains

lim
x→ x ̃

x ̄→ x ̃

1

x− x

Zx

x

f ̂jðxÞ dx= f ̂jðx ̃Þ for j=1, 2, . . . , J. ð13Þ

The expressions (12) transform into (11).

Furthermore, the positive expression 1 ð̸x− xÞ can be removed as having no

influence on which factor in formula (12) is the largest. Then it becomes equivalent

to

m1

Zx

x

f ̂1ðxÞ dx, m2

Zx

x

f ̂2ðxÞ dx, . . . , mJ

Zx

x

f ̂JðxÞ dx. ð14Þ

Moreover, for every j=1, 2, . . . , J we have

Zx

x

f ð̂xÞ dx= bFðxÞ− bFðxÞ ð15Þ

with

bFðxÞ=
Zx

−∞

f ð̂yÞ dy. ð16Þ

Substituting to the above dependency the definition for kernel estimator (2) (for

n=1) with Cauchy kernel (3) and removing once again the positive constant 1 m̸π

irrelevant here, one can obtain the following analytical formula:

bFðxÞ= ∑
m

i=1

ðx2 − 2xxi + x2i + h2Þ arctg x− xi
h

4 5
+ hðx− xiÞ

x2 − 2xxi + x2i + h2
+

π

2

6 7
. ð17Þ

In summary: the tested element (6) should be mapped to the j-class

(j=1, 2, . . . , J) if the j-th value is the largest from expressions (14). The integrals

appearing there can be calculated using formula (15) with substitution of depen-

dence (17). This completes the classification algorithm in the one-dimensional case.
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Now consider the multidimensional case, i.e., n>1, when the interval vector

½x1, x1�
½x2, x2�

⋮
½xn, xn�

2

664

3

775 ð18Þ

is tested, while elements of patterns (7)–(9) belong to the space Rn. Then expres-

sions (14) are

m1

Z

E

f ̂1ðxÞ dx, m2

Z

E

f ̂2ðxÞ dx, . . . , mJ

Z

E

f ̂JðxÞ dx, ð19Þ

where E= ½x1, x1�× ½x2, x2�×⋯× ½xn, xn�. To calculate the above integrals, observe

that for the product kernel (4), the following is true:

Z

E

KðxÞ dx= ½I1ðx1Þ− I1ðx1Þ�½I2ðx2Þ− I2ðx2Þ� . . . ½InðxnÞ− InðxnÞ�, ð20Þ

where I i means the primitive function of the one-dimensional kernel K i for

i=1, 2, . . . , n. Equalities (15) and (17) provide analytical formulas for obtaining

the values of these integrals, which completes the procedure for classification of

interval data in the continuous random variable case.

The above material can be easily transposed from continuous to categorical

variables. Here, an interval element should be understood to be the set sum of

several categories. In this situation, testing an element of such type, one should add

the kernel estimators values for all categories belonging to the created sum (or their

combinations if there are a number of categorical attributes), and then apply cri-

terion (11). The procedure is similar for a combination of continuous and cate-

gorical attributes: for fixed categories belonging to the set one should—using the

above-presented methodology—calculate kernel estimator values for continuous

attributes, add them, and finally apply criterion (11).

Finally, generalize expressions existing in (11) and (19), introducing the coef-

ficients z1, z2, . . . , zJ >0 in the following manner:

z1m1

Zx

x

f ̂1ðxÞ dx, z2m2

Zx

x

f ̂2ðxÞ dx, . . . , zJmJ

Zx

x

f ̂JðxÞ dx ð21Þ

z1m1

Z

E

f ̂1ðxÞ dx, z2m2

Z

E

f ̂2ðxÞ dx, . . . , zJmJ

Z

E

f ̂JðxÞ dx, ð22Þ
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respectively. Taking as standard values z1 = z2 = . . . = zJ =1, formula (21) brings

us to (14), and (22) to (19). By appropriately changing the value zi, one can

appropriately influence the probability of assigning elements from the i-th class to

other wrong classes, although potentially at the cost of increasing the total number

of misclassifications. This concept can be applied in such situations where partic-

ular classes are associated with phenomena of different significance to the inves-

tigated task, or diverse conditioning. In the case of changing environments, moving

patterns represent a much more difficult scenario. They may contain elements which

are no longer current, or have already appeared, but will only become typical in the

future. The adaptation procedure for such patterns is significantly less efficient than

for unchanging patterns, where instead of the necessity for updating they can be

successively improved by removing less effective elements. In the presented

problem, the coefficient zi values should be, respectively, proportional to the speed

of changes of the i-th classes. The value, 1.25 can be proposed as initial; generally

for the most applicational tasks z1, z2, . . . , zJ ∈ ½1, 1.5�.
Bayes classification is highly regarded among practitioners. It is uncomplicated,

easily interpretable, and often provides results better than many more refined

procedures. Together with kernel estimators, with a very small value of the

smoothing parameter, it is reminiscent of the nearest neighbor algorithm, whereas

when it is large, it is similar to average (mean) linkage. Thanks to the proper choice

of the smoothing parameter, it seems possible to obtain better results than in the

case of those two effective methods. Within the proposed metaheuristic, this aspect

is reflected in the optimal correction of the above parameter, presented in the next

section.

More details concerning Bayes classification is included in the publications [1,

5]; see also [9, 13]. A somewhat broader presentation of the material of the above

section can be found in the paper [18].

4 Correction for Smoothing Parameters

With the aim of improving quality of results as well as creating the possibility of

keeping up with environment changes, the metaheuristic investigated here applies a

correction procedure to the smoothing parameters values, using optimizing algo-

rithms, suiting the value (5) to the classification problem.

Thus, suppose n correcting coefficients b1, b2, . . . , bn >0, which will be used to

multiply the particular smoothing parameters h1, h2, . . . , hn calculated using for-

mula (5), respectively. Note that the case b1 = b2 = . . . = bn =1 means a lack of

correction. Assume the natural performance index

Jðb1, b2, . . . , bnÞ=# incorrect classificationsf g, ð23Þ

where # denotes here the number of elements, and the task of minimization of its

value. First, on the grid created for the values bj =0.25, 0.5, . . . , 1.75 for every
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coordinate j=1, 2, . . . , n, one should calculate the values of the above index, and

then choose the best five. Next, treating these points as initial, static optimization

methods in the space Rn ought to be used. The value of index (23) can be calculated

by the classic leave-one-out method. Due to these values being integers, a modified

Hook–Jeeves procedure [12], with initial step taken as 0.2, was applied. Other

conceptions are described in the survey paper [27]. After finishing the above five

“runs” of the Hook–Jeeves procedure, one should select one of these values of the

correcting coefficients b1, b2 , . . . , bn for which functional (23) value for the end

point is the smallest.

However, the above-presented correction of the smoothing parameters procedure

is not necessary, it increases classification accuracy, enhances adaptation, and

furthermore enables the use of a simplified method for calculating smoothing

parameters values (5), based on the square criterion, which is not always beneficial

to the classification task [8]. Its influence could have particular significance in

abrupt or atypical changes of environment. When applying the modification pro-

cedure for the smoothing parameter (see the penultimate paragraph of Sect. 2), the

above action undergoes moderate generalization in accordance with the concept

described in the paper [19].

5 Pattern Size Reduction

In practical tasks, several elements of patterns (7)–(9) might be unimportant, and in

some cases may even have negative influence for classification quality. Their proper

selection and removal can improve the correctness of results, and also—thanks to a

reduction in pattern sizes—significantly accelerate calculations. To this end, we

shall generalize the definition of kernel estimator (2) to the following form:

f ð̂xÞ= 1

mhn
∑
m

i=1

wiK
x− xi

h

 !
, ð24Þ

where the coefficients w1, w2, . . . , wm ≥ 0 introduced above are normed such that

∑
m

i=1

wi =m. ð25Þ

In the special case wi ≡ 1, formula (24) reduces to its initial definition (2). The

parameters wi are intended to characterize the influence of the respective i-th ele-

ments of the patterns on the accuracy of results. In order to calculate their values,

the sensitivity analysis, familiar from the theory of artificial neural networks [6, 30],

will be applied. Its aim is to define—after the learning phase—the influence of the

particular inputs ui of a neural network on its output value y, described in the natural

way by the quantity
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Si =
∂ yðx1, x2, . . . , xmÞ

∂xi
for i=1, 2, . . . ,m, ð26Þ

and then to aggregate information in the form of the coefficients

Si =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
P

p=1

ðSðpÞi Þ2

P

vuuut
for i=1, 2, . . . ,m, ð27Þ

where S
ðpÞ
i with p=1, 2, . . . ,P denotes the value (26) for particular iterations.

A detailed description of the sensitivity method, together with the appropriate

formulas, is presented in the publications [6, 30]. The configuration of neural

networks and specific aspects associated with this topic are presented in the separate

papers [14, 15]. To every class characterized by patterns (7)–(9) an individual

network is assigned. For the sake of simplified notation, the index j=1, 2, . . . , J

of particular classes will be fixed hereinafter.

In order to define the values of the parameters introduced in definition (24), first

calculate auxiliary quantities

w̃i = 1−
Si

∑
m

j=1

Sj

0

BBB@

1

CCCA, ð28Þ

finally normed—in consideration of condition (25)—to

wi =m
w̃i

∑
m

i=1

w̃i

. ð29Þ

The concept of the above formulas stems from the fact that neural networks are

most sensitive to redundant and atypical elements which, from a classification point

of view, are mainly of negative significance, therefore they receive the values w̃i

and in consequence wi should be proportionately small. Note also that due to the

shape of formulas (26)–(27), in practice not all coefficients Si are equal to zero,

which guarantees the nominator in dependence (28) is not equal to zero.

Finally, those elements of patterns (7)–(9) for which wi <1 are removed. The

limit value 1 results from the fact that, thanks to the form of normalization (29), the

arithmetic mean of parameters equals 1. Empirical research carried out confirmed

this theoretically conditioned point of view [14, 15].
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6 Classification Metaheuristic

This crucial section collates the material presented in this paper. Procedures pre-

sented earlier in Sects. 2–5, will be joined in the classifying metaheuristic designed

for the changing environment case. An illustration is provided in Fig. 1. Blocks

drawn with a continuous line denote operations performed on all elements of

patterns, with a dashed line—on particular classes, while a dotted line symbolizes

operations for each element of those patterns.

To start, one should fix the so-called reference sizes of patterns (7)–(9), denoted

hereinafter as m*
1, m

*
2, . . . ,m*

J . They are the sizes of patterns defined during the

reduction procedure presented in Sect. 5. Of course, initial patterns must be of a

size no smaller than the reference ones. These values may be changed, with the

natural boundary that their increase cannot be smaller than the amount of new

elements. To begin one can propose m*
1 =m*

2 =⋯=m*
J =25 ⋅ 2n. Greater values

may cause an increase in calculation time, while smaller a drop in accuracy of

results.

Initial patterns (7)–(9) constitute preliminary data submitted for investigated

procedure. First, the values of the smoothing parameters h1, h2 , . . . , hn are cal-

culated according to the material of Sect. 2. This action is denoted in Fig. 1 as

block A. The subsequent block B symbolizes computation for the coefficients b1,

b2 , . . . , bn values, realizing a correction of the smoothing parameters, worked out

in Sect. 4.

The next step, described in Sect. 5 (block C in Fig. 1), consists of the calculation

of the parameters wi values, carried out separately for particular classes. After that,

these parameters are sorted within each class (block D in Fig. 1). Any sorting

procedure [25] can be used here. Following this, shown in Fig. 1 as block E, the m*
1,

m*
2, . . . ,m*

J elements corresponding to the largest values wi are the basis of the

principal phase of the investigated procedure—Bayes classification (block F in

Fig. 1), which will be discussed in the subsequent paragraph. On the other hand,

elements corresponding to smaller values wi are sent to block U, during which the

derivative w
0
i is calculated individually for each of them. Newton’s interpolation

polynomial for the last three observations can be proposed here; its description,

together with formulas as well as similar methods are presented in the survey paper

[27]. (If for some element, three previous values wi are not available, then they can

be filled with zeroes, artificially increasing a derivative, while at the same time

securing such elements against premature removal.) Later the values w
0
i are sorted

separately for specific classes (block V in Fig. 1), after which—within block W—

elements of each pattern in the number

qm*
1, qm

*
2, . . . , qm*

J , ð30Þ

respectively, with the largest positive derivative values, return to block A at the

beginning. The leftover elements are finally removed, as is shown in block Z.
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Fig. 1 Classification metaheuristic

30 P. Kulczycki and P.A. Kowalski



The positive parameter q introduced above in formula (30) implies the part played

in further tests of elements with small, but successively increasing significance,

therefore preceding trends of environment changes, as it were. The initial value

q=0.2 is proposed; generally q∈ ½0.1, 0.25� depending on intensity and uniformity

of changes. Bigger values may improve the adaptation process but lengthen cal-

culation time, while smaller ones bring contrary effects.

Let us return to Bayes classification, the essence of the procedure presented here.

As mentioned at the top of the previous paragraph, this stage sees the arrival of

those patterns’ elements which have the greatest influence on accurate results. First

the parameters’ wi values are once more calculated, in accordance with Sect. 5

(block F in Fig. 1). Then within block G those elements for which wi <1 are

excluded from further processing and sent at the beginning to block A, while those

with wi ≥ 1 are prescribed to block H, where they form the basis for Bayes clas-

sification, described in Sect. 3 (block H in Fig. 1). Testing can be performed on

many interval data of type (6) or (18). Next all patterns’ elements join block A at

the beginning.

The presented procedure can be repeated as soon as new elements are provided

to block A. In addition, there are also applied the previously used m*
1, m

*
2, . . . ,m*

J

elements with the largest values wi as the most valuable for accuracy of results, as

well as approximately qm*
1
, qm*

2
, . . . , qm*

J
ones having the greatest positive

derivative w
0
i, as not having yet big influence but successively increasing their

significance as the environment changes.

The expanded description of the procedure presented above can be found in the

paper [19].

7 Verification and Final Comments

The correctness of the method described in this paper underwent comprehensive

numerical verification. In particular, it was shown that the classification developed

here offers correct results also in cases of nonseparated classes with composite

multisegment and multimodal patterns. The character of changing environment may

increase successively, abruptly, or also periodically, although the best results are

found in the first case. The standard values proposed in this text for the parameters

used were obtained as deductions from simulations carried out.

The results differed little in nature from those obtained in the basic case where an

element which is uniquely defined, e.g., deterministic or crisp, undergoes testing. It

proves proper averaging introduced by formulas (14) and (19).

As an example, presented in Fig. 2, let us consider the illustratory

two-dimensional case with two classes, one of which is invariable, with the other

also unchanging at the beginning, after the 18th step it starts to change its place, and

then—after describing a full orbit around the first class—stops in the 54th step at its

initial location. The remaining parameters are accepted in the form proposed above
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in this text. One can see in Fig. 2 that the number of misclassifications increases

sharply at times when the environment changes its character, i.e., in steps 18 and

54. The prediction function is then ineffective by nature. In the periods of non-

stationarity, i.e., before the 18th and after the 54th step, the rate of errors stabilizes

at a value of 0.08, whereas in the period of constant changes between the 18th and

54th steps, at the higher 0.105. This is still lower than the maximums values 0.12,

which would be maintained without the influence of the adaptation function

designed here.

Further research was undertaken on the influence of size of imprecision of

classified data—represented by the length of intervals—on accuracy of results. In

this aspect also the effects showed themselves to be fully satisfactory. If the interval

length was less than the generally understood distance between centers of specific

patterns (a condition usually fulfilled in practice), then its growth did not cause an

increase in the mean value of incorrect classifications, but in fact the results

underwent some stabilization—the variance of misclassifications decreased. Again

averaging, introduced by formulas (14) and (19), proves to have a positive

influence.

A broader description of particular aspects of the above simulations can be found

in the papers [14, 15, 18, 19].

The metaheuristic proposed in this paper was compared with other classification

methods based on computational intelligence, e.g., Support Vector Machine, as

well as natural, e.g., counting components of patterns which are included in the

tested element. Unfortunately, no method has been found to allow exactly the same

conditionings: uniquely defined patterns elements, interval form of tested element,

changing environment, any number of classes and patterns shapes, categorical

attributes. For this reason, it was possible only to compare with simplifications

fitting suitable methodologies, and so offer the results presented below purely in a

qualitative aspect. The advantage of the metaheuristic proposed in this paper mainly

lies in the smaller number of misclassifications for stabilized variability of envi-

ronment, which in Fig. 2 appears as a significant decrease in errors between 30 and

Fig. 2 Number of

misclassifications at particular

steps of the representative run
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55 steps. Better results are also achieved here in areas between particular patterns,

which are always troublesome for classification, as well as for long intervals rep-

resenting specific attributes of tested elements. Thanks to the calculational com-

plexity of particular procedures of the metaheuristic under investigation, the

proposed method is especially destined for those cases where slow learning is

permitted, but the classification process itself must be fast. This is achieved in great

part by obtaining an analytical form of formulas (15)–(17). The computational

complexity of the classification phase alone amounts to OðnJ mÞ, and therefore is

linear with respect to dimensionality of space, number of classes, and size of their

patterns.
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